
DDiiggiilleenntt SSyynncchhrroonnoouuss PPaarraalllleell
IInntteerrffaaccee ((DDSSTTMM))
Revision: September 2, 2010 1300 NE Henley Court, Suite 3

Pullman, WA 99163
(509) 334 6306 Voice | (509) 334 6300 Fax

Doc: 515-007 page 1 of 10

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

Introduction

This document describes the operation and specifications of the Digilent Synchronous Parallel
Interface (DSTM). This interface is implemented in various Digilent products to provide a
communication and data transfer interface between a personal computer and a Digilent
programmable logic system board.

The Digilent Adept 2 SDK contains the DSTM API, which provides the ability to perform Digilent
Synchronous Parallel Interface data transfer operations between a host PC and a supported Digilent
system board. The data transfer operations supported by Adept Suite DLLs require that certain logic
be implemented in the FPGA/CPLD on the Digilent system board to provide the peripheral side of the
interface. This document describes the requirements for this implementation.

Functional Description

The Digilent Synchronous Parallel Interface uses an 8-bit bidirectional parallel data bus and nine
handshaking lines to control the data transfer. Data transfer is synchronous; it operates based on a
clock generated by the device’s USB microcontroller. The data transfer speed that can be achieved
depends on the particular communications subsystem and the implemented gate array logic.

The term “host” refers to the host PC running the Adept 2 application. The term “device” refers to the
Digilent system board and its gate array logic. “Upload” refers to a device-to-host transfer and
“download” refers to a host-to-device transfer.

The Digilent Synchronous Parallel Interface uses the Cypress USB controller’s slave FIFO mode to
allow for the highest possible transfer rates. The slave FIFO mode is configured for synchronous
operation. Two different FIFOs are used for upload and download. These FIFOs are quad buffered
where the buffer size depends on the USB connection used: 64 bytes for USB 1.1 and 512 bytes for
USB2. With a USB2 connection, both FIFOs are 2k bytes large. The upload FIFO will automatically
commit the filled buffers to the USB domain, allowing the PC to read. The device gate array logic must
implement a controller to read from and write to these FIFOs.

There are two distinct API calls used to perform DSTM transfers. Each is functionally different in both
the host Adept software, the Digilent USB controller, and the gate array logic of the device.

DstmIO is monitored by the USB controller’s firmware. The firmware sets the upload flag according
the requested number of upload data bytes and commits the last bytes of the upload transfer. The flag
will be low while the requested number of bytes is not written to the upload FIFO. The gate array logic
can rely on the upload flag to not write more data than was requested in the DSTM API. This
interaction with the firmware introduces 4+ us delays after each 512 bytes (64 bytes for USB 1.1)
written to the upload FIFO and the download speed is also decreased.

Synchronous Parallel Interface Digilent, Inc.

www.digilentinc.com page 2 of 10

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

DstmIOEx offers faster upload transfer rates with more complex gate array logic. This API call
requires that the gate array logic write the same number of bytes to the IN FIFO as specified in the
API’s cbIn parameter and may need to insert PKTEND at the end of the transfer. When the device
sends more data than requested, the host will generate an error. When the IN (upload) length is not a
multiple of 512 (USB2) or 64 (USB 1.1) and the peripheral does not assert the PKTEND signal, then
the remaining bytes will not be read by the host.

The order of events when calling DSTM APIs is as follows:

• The EPPEN signal is set low to disable the EPP interface.

• The necessary configurations are applied and the USB controller is put in slave FIFO mode.

• The STMEN signal is set high to signal the enabling of the DSTM interface.

• The gate array logic must select between the download and upload FIFOs when performing
read, write, or PKTEND operations, using the FIFOADR[1:0] signals:

� “00” for download transfer
� “10” for upload transfer

• Data can be read from the download FIFO when the FLAGA signal (empty flag of the
download FIFO) is low. The SLOE signal enables the USB FIFO to drive the data bus. On the
rising edge of the IFCLK while the SLRD signal is low the USB FIFO will increment the FIFO
pointer and output the next data byte.

• Data can be written to the upload FIFO when the FLAGB signal (full flag of the upload FIFO) is
low. On the rising edge of IFCLK while the SLWR signal is low the USB FIFO will write the
data from the data bus to the FIFO.

• The PKTEND signal should be activated for one IFCLK cycle to commit the last written bytes
in the buffer so the PC can read out.

Signal Descriptions

In the following description, signals described as being sourced by the “host” are generated by the
Digilent communication interface and are inputs to the logic in the FPGA/CPLD on the Digilent
programmable logic system board. The term “peripheral” refers to logic implemented in the
FPGA/CPLD on the system board. Signals sourced by the peripheral are outputs from the logic
implemented in the FPGA/CPLD.

Synchronous Parallel Interface Digilent, Inc.

www.digilentinc.com page 3 of 10

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

The following signals make up the interface:

Name Source Description

IFCLK host 48MHz interface clock. The synchronous FIFOs operate on
the rising edge of this clock. The peripheral should use this
clock to generate control signals and sample the flags.

SLCS/STMEN host Stream enable. Active high enable signal for the stream
data transfer.

DB[7:0] bidir Data bus. The host is the source during read cycles and
the peripheral is the source during write cycles.

FLAGA/EPPASTB host FIFO OUT flag. Active high FIFO flag that shows the empty
state of the OUT (download) FIFO. While this flag is active
the peripheral should not read from the OUT FIFO.

FLAGB/EPPDSTB host FIFO IN flag. Active high FIFO flag that shows the full state
of the IN (upload) FIFO. While this flag is active the
peripheral should not write to the IN FIFO.

FIFOADR[1:0] peripheral FIFO address. Selects which of the FIFOs is connected to
the DB.

• “00” selects the OUT (download) FIFO

• “10” selects the IN (upload) FIFO

SLRD/EPPWAIT peripheral FIFO read next. Active low synchronous signal used to
read from the OUT FIFO. The FIFO pointer is incremented
on each rising edge of IFCLK while SLRD is asserted.

SLWR peripheral FIFO write. Active low synchronous signal used to write to
the IN FIFO. Data on the DB is written to the FIFO and the
FIFO pointer is incremented on each rising edge of IFCLK
while SLWR is asserted.

SLOE peripheral FIFO output enable. Active low output enable for the FIFO.
When SLOE is asserted, the DB is driven as an output and
contains the data that the FIFO pointer is currently pointing
to.

PKTEND peripheral IN transfer end. Active low signal for the end of the IN
transfer. When asserting this signal, FIFOADR must select
the IN FIFO.

Synchronous Parallel Interface Digilent, Inc.

www.digilentinc.com page 4 of 10

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

Timing Diagrams

FIFO Read

Synchronous Parallel Interface Digilent, Inc.

www.digilentinc.com page 5 of 10

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

FIFO Write

FIFO PKTEND Strobe

The PKEND signal is used with the DstmIOEx API when the upload data length is not a multiple of
512 (USB2) or 64 (USB 1.1) to commit the remaining bytes for the host.

Synchronous Parallel Interface Digilent, Inc.

www.digilentinc.com page 6 of 10

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

There is no specific timing requirement that needs to be met for asserting the PKTEND pin with
regards to asserting SLWR. PKTEND can be asserted with the last data value clocked into the FIFOs
or thereafter. The only consideration is that the set-up time tSPE and the hold time tPEH must be met.

Although there are no specific timing requirements for the PKTEND assertion, there is a specific
corner case condition that needs attention while using PKTEND to commit a one-byte packet. There is
an additional timing requirement that needs to be met when the FIFO is configured to operate auto
mode and you want to send two packets back-to-back: a full packet committed automatically followed
by a short one-byte packet committed manually using the PKTEND pin. In this scenario, you must
assert PKTEND at least one clock cycle after the rising edge that caused the last byte to be clocked
into the previous auto-committed packet.

The figure above shows a scenario where two packets are being committed. The first packet is
committed automatically when the number of bytes in the FIFO reaches X and the second one-byte
short packet is committed manually using PKTEND. Note that there is at least one IFCLK cycle timing
between the assertion of PKTEND and clocking of the last byte of the previous packet (causing the
packet to be committed automatically). Failing to adhere to this timing will result in the FX2 failing to
send the one-byte short packet.

SLOE – FIFO Output Enable

Synchronous Parallel Interface Digilent, Inc.

www.digilentinc.com page 7 of 10

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

FIFOADR to DB – Address to Data

FIFOADR – FIFO Address

Synchronous Parallel Interface Digilent, Inc.

www.digilentinc.com page 8 of 10

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

Sequence Diagrams

Single and Burst Read Example

The diagram shows the timing relationship of the FIFO signals during a synchronous FIFO read using
IFCLK as the synchronizing clock. The diagram illustrates a single read followed by a burst read.

• At T = 0, the FIFO address is stable (tSFA has a minimum of 25 ns). This means that when IFCLK
is running at 48MHz, the FIFO address set-up time is more than one IFCLK cycle.

• At T = 1, SLOE is asserted. SLOE is an output-enable only, whose sole function is to drive the
data bus. The data that is driven on the bus is the data that the internal FIFO pointer is currently
pointing to. In this example, it is the first data value in the FIFO. Note that the data is prefetched
and is driven on the bus when SLOE is asserted.

• At T = 2, SLRD is asserted. SLRD must meet the set-up time of tSRD (time from asserting the
SLRD signal to the rising edge of the IFCLK) and maintain a minimum hold time of tRDH (time
from the IFCLK edge to the deassertion of the SLRD signal).

• The FIFO pointer is updated on the rising edge of the IFCLK while SLRD is asserted. This starts
the propagation of data from the newly addressed location to the data bus. After a propagation
delay of tXFD (measured from the rising edge of IFCLK) the new data value is present. N is the
first data value read from the FIFO. In order to have data on the FIFO data bus, SLOE must also
be asserted.

The same sequence of events is shown for a burst read and is marked with time indicators T = 0
through T = 5. For the burst mode, SLRD and SLOE are left asserted during the entire duration of the
read. In the burst read mode, when SLOE is asserted, data indexed by the FIFO pointer is on the data
bus. During the first read cycle, on the rising edge of the clock, the FIFO pointer is updated and

Synchronous Parallel Interface Digilent, Inc.

www.digilentinc.com page 9 of 10

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

increments to point to address N+1. For each subsequent rising edge of IFCLK, while the SLRD is
asserted, the FIFO pointer is incremented and the next data value is placed on the data bus.

Single and Burst Synchronous Write

This diagram shows the timing relationship of the slave FIFO signals during a synchronous write using
IFCLK as the synchronizing clock. The diagram illustrates a single write followed by burst write of
three bytes and committing all four bytes as a short packet using the PKTEND pin.

• At T = 0, the FIFO address is stable. This means that when IFCLK is running at 48MHz, the FIFO
address set-up time is more than one IFCLK cycle.

• At T = 1, the external master/peripheral outputs the data value onto the data bus with a minimum
set up time of tSFD before the rising edge of IFCLK.

• At T = 2, SLWR is asserted. The SLWR must meet the set-up time of tSWR (time from asserting
the SLWR signal to the rising edge of IFCLK) and maintain a minimum hold time of tWRH (time
from the IFCLK edge to the deassertion of the SLWR signal).

• While the SLWR is asserted, data is written to the FIFO and on the rising edge of the IFCLK, the
FIFO pointer is incremented. The FIFO flag will also be updated after a delay of tXFLG from the
rising edge of the clock.

The same sequence of events is also shown for a burst write and is marked with time indicators T = 0
through T = 5. For the burst mode, SLWR is left asserted for the entire duration of writing all the
required data values. In burst write mode, once the SLWR is asserted, the data on the FIFO data bus
is written to the FIFO on every rising edge of IFCLK. The FIFO pointer is updated on each rising edge
of IFCLK.

In the diagram, once the four bytes are written to the FIFO, SLWR is deasserted. The short 4-byte
packet can be committed to the host by asserting the PKTEND signal. There is no specific timing
requirement that needs to be met for asserting PKTEND signal with regards to asserting the SLWR
signal. PKTEND can be asserted with the last data value or thereafter. The only requirement is that
the set-up time tSPE and the hold time tPEH must be met. In this example, the number of data values
committed includes the last value written to the FIFO. Both the data value and the PKTEND signal are

Synchronous Parallel Interface Digilent, Inc.

www.digilentinc.com page 10 of 10

Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

clocked on the same rising edge of IFCLK. PKTEND can also be asserted in subsequent clock cycles.
The FIFOADDR lines should be held constant during the PKTEND assertion.

Although there are no specific timing requirements for the PKTEND assertion, there is a specific
corner case condition that needs attention while using the PKTEND to commit a one-byte packet.
Additional timing requirements exist when using the PKTEND pin. In this case, the external master
must assert the PKTEND pin at least one clock cycle after the rising edge while SLWR is active.

Design Tips

The data transfer API calls on USB2 devices have at least 300-600us latency. Therefore, using fewer
calls and transferring more data, each call will produce higher transfer rates.

The DstmIOEx API offers higher transfer rates, and can be implemented as follows:

• The upload data can be padded to be a multiple of 512 bytes (64 bytes for USB 1.1) and the
PKTEND signal insertion is not required.

• The gate array logic does not need to include an upload transfer counter. This way, it will write
more than was requested but the host application can ignore the error.

