/* * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_UTILITIES_BITMAP_INLINE_HPP #define SHARE_VM_UTILITIES_BITMAP_INLINE_HPP #include "runtime/atomic.hpp" #include "utilities/bitMap.hpp" #ifdef ASSERT inline void BitMap::verify_index(idx_t index) const { assert(index < _size, "BitMap index out of bounds"); } inline void BitMap::verify_range(idx_t beg_index, idx_t end_index) const { assert(beg_index <= end_index, "BitMap range error"); // Note that [0,0) and [size,size) are both valid ranges. if (end_index != _size) verify_index(end_index); } #endif // #ifdef ASSERT inline void BitMap::set_bit(idx_t bit) { verify_index(bit); *word_addr(bit) |= bit_mask(bit); } inline void BitMap::clear_bit(idx_t bit) { verify_index(bit); *word_addr(bit) &= ~bit_mask(bit); } inline bool BitMap::par_set_bit(idx_t bit) { verify_index(bit); volatile bm_word_t* const addr = word_addr(bit); const bm_word_t mask = bit_mask(bit); bm_word_t old_val = *addr; do { const bm_word_t new_val = old_val | mask; if (new_val == old_val) { return false; // Someone else beat us to it. } const bm_word_t cur_val = (bm_word_t) Atomic::cmpxchg_ptr((void*) new_val, (volatile void*) addr, (void*) old_val); if (cur_val == old_val) { return true; // Success. } old_val = cur_val; // The value changed, try again. } while (true); } inline bool BitMap::par_clear_bit(idx_t bit) { verify_index(bit); volatile bm_word_t* const addr = word_addr(bit); const bm_word_t mask = ~bit_mask(bit); bm_word_t old_val = *addr; do { const bm_word_t new_val = old_val & mask; if (new_val == old_val) { return false; // Someone else beat us to it. } const bm_word_t cur_val = (bm_word_t) Atomic::cmpxchg_ptr((void*) new_val, (volatile void*) addr, (void*) old_val); if (cur_val == old_val) { return true; // Success. } old_val = cur_val; // The value changed, try again. } while (true); } inline void BitMap::set_range(idx_t beg, idx_t end, RangeSizeHint hint) { if (hint == small_range && end - beg == 1) { set_bit(beg); } else { if (hint == large_range) { set_large_range(beg, end); } else { set_range(beg, end); } } } inline void BitMap::clear_range(idx_t beg, idx_t end, RangeSizeHint hint) { if (hint == small_range && end - beg == 1) { clear_bit(beg); } else { if (hint == large_range) { clear_large_range(beg, end); } else { clear_range(beg, end); } } } inline void BitMap::par_set_range(idx_t beg, idx_t end, RangeSizeHint hint) { if (hint == small_range && end - beg == 1) { par_at_put(beg, true); } else { if (hint == large_range) { par_at_put_large_range(beg, end, true); } else { par_at_put_range(beg, end, true); } } } inline void BitMap::set_range_of_words(idx_t beg, idx_t end) { bm_word_t* map = _map; for (idx_t i = beg; i < end; ++i) map[i] = ~(uintptr_t)0; } inline void BitMap::clear_range_of_words(idx_t beg, idx_t end) { bm_word_t* map = _map; for (idx_t i = beg; i < end; ++i) map[i] = 0; } inline void BitMap::clear() { clear_range_of_words(0, size_in_words()); } inline void BitMap::par_clear_range(idx_t beg, idx_t end, RangeSizeHint hint) { if (hint == small_range && end - beg == 1) { par_at_put(beg, false); } else { if (hint == large_range) { par_at_put_large_range(beg, end, false); } else { par_at_put_range(beg, end, false); } } } inline BitMap::idx_t BitMap::get_next_one_offset_inline(idx_t l_offset, idx_t r_offset) const { assert(l_offset <= size(), "BitMap index out of bounds"); assert(r_offset <= size(), "BitMap index out of bounds"); assert(l_offset <= r_offset, "l_offset > r_offset ?"); if (l_offset == r_offset) { return l_offset; } idx_t index = word_index(l_offset); idx_t r_index = word_index(r_offset-1) + 1; idx_t res_offset = l_offset; // check bits including and to the _left_ of offset's position idx_t pos = bit_in_word(res_offset); idx_t res = map(index) >> pos; if (res != (uintptr_t)NoBits) { // find the position of the 1-bit for (; !(res & 1); res_offset++) { res = res >> 1; } #ifdef ASSERT // In the following assert, if r_offset is not bitamp word aligned, // checking that res_offset is strictly less than r_offset is too // strong and will trip the assert. // // Consider the case where l_offset is bit 15 and r_offset is bit 17 // of the same map word, and where bits [15:16:17:18] == [00:00:00:01]. // All the bits in the range [l_offset:r_offset) are 0. // The loop that calculates res_offset, above, would yield the offset // of bit 18 because it's in the same map word as l_offset and there // is a set bit in that map word above l_offset (i.e. res != NoBits). // // In this case, however, we can assert is that res_offset is strictly // less than size() since we know that there is at least one set bit // at an offset above, but in the same map word as, r_offset. // Otherwise, if r_offset is word aligned then it will not be in the // same map word as l_offset (unless it equals l_offset). So either // there won't be a set bit between l_offset and the end of it's map // word (i.e. res == NoBits), or res_offset will be less than r_offset. idx_t limit = is_word_aligned(r_offset) ? r_offset : size(); assert(res_offset >= l_offset && res_offset < limit, "just checking"); #endif // ASSERT return MIN2(res_offset, r_offset); } // skip over all word length 0-bit runs for (index++; index < r_index; index++) { res = map(index); if (res != (uintptr_t)NoBits) { // found a 1, return the offset for (res_offset = bit_index(index); !(res & 1); res_offset++) { res = res >> 1; } assert(res & 1, "tautology; see loop condition"); assert(res_offset >= l_offset, "just checking"); return MIN2(res_offset, r_offset); } } return r_offset; } inline BitMap::idx_t BitMap::get_next_zero_offset_inline(idx_t l_offset, idx_t r_offset) const { assert(l_offset <= size(), "BitMap index out of bounds"); assert(r_offset <= size(), "BitMap index out of bounds"); assert(l_offset <= r_offset, "l_offset > r_offset ?"); if (l_offset == r_offset) { return l_offset; } idx_t index = word_index(l_offset); idx_t r_index = word_index(r_offset-1) + 1; idx_t res_offset = l_offset; // check bits including and to the _left_ of offset's position idx_t pos = res_offset & (BitsPerWord - 1); idx_t res = (map(index) >> pos) | left_n_bits((int)pos); if (res != (uintptr_t)AllBits) { // find the position of the 0-bit for (; res & 1; res_offset++) { res = res >> 1; } assert(res_offset >= l_offset, "just checking"); return MIN2(res_offset, r_offset); } // skip over all word length 1-bit runs for (index++; index < r_index; index++) { res = map(index); if (res != (uintptr_t)AllBits) { // found a 0, return the offset for (res_offset = index << LogBitsPerWord; res & 1; res_offset++) { res = res >> 1; } assert(!(res & 1), "tautology; see loop condition"); assert(res_offset >= l_offset, "just checking"); return MIN2(res_offset, r_offset); } } return r_offset; } inline BitMap::idx_t BitMap::get_next_one_offset_inline_aligned_right(idx_t l_offset, idx_t r_offset) const { verify_range(l_offset, r_offset); assert(bit_in_word(r_offset) == 0, "r_offset not word-aligned"); if (l_offset == r_offset) { return l_offset; } idx_t index = word_index(l_offset); idx_t r_index = word_index(r_offset); idx_t res_offset = l_offset; // check bits including and to the _left_ of offset's position idx_t res = map(index) >> bit_in_word(res_offset); if (res != (uintptr_t)NoBits) { // find the position of the 1-bit for (; !(res & 1); res_offset++) { res = res >> 1; } assert(res_offset >= l_offset && res_offset < r_offset, "just checking"); return res_offset; } // skip over all word length 0-bit runs for (index++; index < r_index; index++) { res = map(index); if (res != (uintptr_t)NoBits) { // found a 1, return the offset for (res_offset = bit_index(index); !(res & 1); res_offset++) { res = res >> 1; } assert(res & 1, "tautology; see loop condition"); assert(res_offset >= l_offset && res_offset < r_offset, "just checking"); return res_offset; } } return r_offset; } // Returns a bit mask for a range of bits [beg, end) within a single word. Each // bit in the mask is 0 if the bit is in the range, 1 if not in the range. The // returned mask can be used directly to clear the range, or inverted to set the // range. Note: end must not be 0. inline BitMap::bm_word_t BitMap::inverted_bit_mask_for_range(idx_t beg, idx_t end) const { assert(end != 0, "does not work when end == 0"); assert(beg == end || word_index(beg) == word_index(end - 1), "must be a single-word range"); bm_word_t mask = bit_mask(beg) - 1; // low (right) bits if (bit_in_word(end) != 0) { mask |= ~(bit_mask(end) - 1); // high (left) bits } return mask; } inline void BitMap::set_large_range_of_words(idx_t beg, idx_t end) { memset(_map + beg, ~(unsigned char)0, (end - beg) * sizeof(uintptr_t)); } inline void BitMap::clear_large_range_of_words(idx_t beg, idx_t end) { memset(_map + beg, 0, (end - beg) * sizeof(uintptr_t)); } inline BitMap::idx_t BitMap::word_index_round_up(idx_t bit) const { idx_t bit_rounded_up = bit + (BitsPerWord - 1); // Check for integer arithmetic overflow. return bit_rounded_up > bit ? word_index(bit_rounded_up) : size_in_words(); } inline BitMap::idx_t BitMap::get_next_one_offset(idx_t l_offset, idx_t r_offset) const { return get_next_one_offset_inline(l_offset, r_offset); } inline BitMap::idx_t BitMap::get_next_zero_offset(idx_t l_offset, idx_t r_offset) const { return get_next_zero_offset_inline(l_offset, r_offset); } inline void BitMap2D::clear() { _map.clear(); } #endif // SHARE_VM_UTILITIES_BITMAP_INLINE_HPP