1 /*
2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
28 #include "gc_implementation/shared/vmGCOperations.hpp"
29 #include "memory/cardTableRS.hpp"
30 #include "memory/collectorPolicy.hpp"
31 #include "memory/gcLocker.inline.hpp"
32 #include "memory/genCollectedHeap.hpp"
33 #include "memory/generationSpec.hpp"
34 #include "memory/space.hpp"
35 #include "memory/universe.hpp"
36 #include "runtime/arguments.hpp"
37 #include "runtime/globals_extension.hpp"
38 #include "runtime/handles.inline.hpp"
39 #include "runtime/java.hpp"
40 #include "runtime/thread.inline.hpp"
41 #include "runtime/vmThread.hpp"
42 #include "utilities/macros.hpp"
43 #if INCLUDE_ALL_GCS
44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
46 #endif // INCLUDE_ALL_GCS
47
48 // CollectorPolicy methods
49
50 CollectorPolicy::CollectorPolicy() :
51 _space_alignment(0),
52 _heap_alignment(0),
53 _initial_heap_byte_size(InitialHeapSize),
54 _max_heap_byte_size(MaxHeapSize),
55 _min_heap_byte_size(Arguments::min_heap_size()),
56 _max_heap_size_cmdline(false),
57 _size_policy(NULL),
58 _should_clear_all_soft_refs(false),
59 _all_soft_refs_clear(false)
60 {}
61
62 #ifdef ASSERT
63 void CollectorPolicy::assert_flags() {
64 assert(InitialHeapSize <= MaxHeapSize, "Ergonomics decided on incompatible initial and maximum heap sizes");
65 assert(InitialHeapSize % _heap_alignment == 0, "InitialHeapSize alignment");
66 assert(MaxHeapSize % _heap_alignment == 0, "MaxHeapSize alignment");
67 }
68
69 void CollectorPolicy::assert_size_info() {
70 assert(InitialHeapSize == _initial_heap_byte_size, "Discrepancy between InitialHeapSize flag and local storage");
71 assert(MaxHeapSize == _max_heap_byte_size, "Discrepancy between MaxHeapSize flag and local storage");
72 assert(_max_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible minimum and maximum heap sizes");
73 assert(_initial_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible initial and minimum heap sizes");
74 assert(_max_heap_byte_size >= _initial_heap_byte_size, "Ergonomics decided on incompatible initial and maximum heap sizes");
75 assert(_min_heap_byte_size % _heap_alignment == 0, "min_heap_byte_size alignment");
76 assert(_initial_heap_byte_size % _heap_alignment == 0, "initial_heap_byte_size alignment");
77 assert(_max_heap_byte_size % _heap_alignment == 0, "max_heap_byte_size alignment");
78 }
79 #endif // ASSERT
80
81 void CollectorPolicy::initialize_flags() {
82 assert(_space_alignment != 0, "Space alignment not set up properly");
83 assert(_heap_alignment != 0, "Heap alignment not set up properly");
84 assert(_heap_alignment >= _space_alignment,
85 err_msg("heap_alignment: " SIZE_FORMAT " less than space_alignment: " SIZE_FORMAT,
86 _heap_alignment, _space_alignment));
87 assert(_heap_alignment % _space_alignment == 0,
88 err_msg("heap_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
89 _heap_alignment, _space_alignment));
90
91 if (FLAG_IS_CMDLINE(MaxHeapSize)) {
92 if (FLAG_IS_CMDLINE(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
93 vm_exit_during_initialization("Initial heap size set to a larger value than the maximum heap size");
94 }
95 if (_min_heap_byte_size != 0 && MaxHeapSize < _min_heap_byte_size) {
96 vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
97 }
98 _max_heap_size_cmdline = true;
99 }
100
101 // Check heap parameter properties
102 if (InitialHeapSize < M) {
103 vm_exit_during_initialization("Too small initial heap");
104 }
105 if (_min_heap_byte_size < M) {
106 vm_exit_during_initialization("Too small minimum heap");
107 }
108
109 // User inputs from -Xmx and -Xms must be aligned
110 _min_heap_byte_size = align_size_up(_min_heap_byte_size, _heap_alignment);
111 uintx aligned_initial_heap_size = align_size_up(InitialHeapSize, _heap_alignment);
112 uintx aligned_max_heap_size = align_size_up(MaxHeapSize, _heap_alignment);
113
114 // Write back to flags if the values changed
115 if (aligned_initial_heap_size != InitialHeapSize) {
116 FLAG_SET_ERGO(uintx, InitialHeapSize, aligned_initial_heap_size);
117 }
118 if (aligned_max_heap_size != MaxHeapSize) {
119 FLAG_SET_ERGO(uintx, MaxHeapSize, aligned_max_heap_size);
120 }
121
122 if (FLAG_IS_CMDLINE(InitialHeapSize) && _min_heap_byte_size != 0 &&
123 InitialHeapSize < _min_heap_byte_size) {
124 vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
125 }
126 if (!FLAG_IS_DEFAULT(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
127 FLAG_SET_ERGO(uintx, MaxHeapSize, InitialHeapSize);
128 } else if (!FLAG_IS_DEFAULT(MaxHeapSize) && InitialHeapSize > MaxHeapSize) {
129 FLAG_SET_ERGO(uintx, InitialHeapSize, MaxHeapSize);
130 if (InitialHeapSize < _min_heap_byte_size) {
131 _min_heap_byte_size = InitialHeapSize;
132 }
133 }
134
135 _initial_heap_byte_size = InitialHeapSize;
136 _max_heap_byte_size = MaxHeapSize;
137
138 FLAG_SET_ERGO(uintx, MinHeapDeltaBytes, align_size_up(MinHeapDeltaBytes, _space_alignment));
139
140 DEBUG_ONLY(CollectorPolicy::assert_flags();)
141 }
142
143 void CollectorPolicy::initialize_size_info() {
144 if (PrintGCDetails && Verbose) {
145 gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT " Initial heap "
146 SIZE_FORMAT " Maximum heap " SIZE_FORMAT,
147 _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
148 }
149
150 DEBUG_ONLY(CollectorPolicy::assert_size_info();)
151 }
152
153 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
154 bool result = _should_clear_all_soft_refs;
155 set_should_clear_all_soft_refs(false);
156 return result;
157 }
158
159 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
160 int max_covered_regions) {
161 return new CardTableRS(whole_heap, max_covered_regions);
162 }
163
164 void CollectorPolicy::cleared_all_soft_refs() {
165 // If near gc overhear limit, continue to clear SoftRefs. SoftRefs may
166 // have been cleared in the last collection but if the gc overhear
167 // limit continues to be near, SoftRefs should still be cleared.
168 if (size_policy() != NULL) {
169 _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
170 }
171 _all_soft_refs_clear = true;
172 }
173
174 size_t CollectorPolicy::compute_heap_alignment() {
175 // The card marking array and the offset arrays for old generations are
176 // committed in os pages as well. Make sure they are entirely full (to
177 // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
178 // byte entry and the os page size is 4096, the maximum heap size should
179 // be 512*4096 = 2MB aligned.
180
181 size_t alignment = GenRemSet::max_alignment_constraint();
182
183 // Parallel GC does its own alignment of the generations to avoid requiring a
184 // large page (256M on some platforms) for the permanent generation. The
185 // other collectors should also be updated to do their own alignment and then
186 // this use of lcm() should be removed.
187 if (UseLargePages && !UseParallelGC) {
188 // In presence of large pages we have to make sure that our
189 // alignment is large page aware
190 alignment = lcm(os::large_page_size(), alignment);
191 }
192
193 return alignment;
194 }
195
196 // GenCollectorPolicy methods
197
198 GenCollectorPolicy::GenCollectorPolicy() :
199 _min_young_size(0),
200 _initial_young_size(0),
201 _max_young_size(0),
202 _gen_alignment(0),
203 _min_old_size(0),
204 _initial_old_size(0),
205 _max_old_size(0),
206 _generations(NULL)
207 {}
208
209 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
210 return align_size_down_bounded(base_size / (NewRatio + 1), _gen_alignment);
211 }
212
213 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
214 size_t maximum_size) {
215 size_t max_minus = maximum_size - _gen_alignment;
216 return desired_size < max_minus ? desired_size : max_minus;
217 }
218
219
220 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
221 size_t init_promo_size,
222 size_t init_survivor_size) {
223 const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
224 _size_policy = new AdaptiveSizePolicy(init_eden_size,
225 init_promo_size,
226 init_survivor_size,
227 max_gc_pause_sec,
228 GCTimeRatio);
229 }
230
231 size_t GenCollectorPolicy::young_gen_size_lower_bound() {
232 // The young generation must be aligned and have room for eden + two survivors
233 return align_size_up(3 * _space_alignment, _gen_alignment);
234 }
235
236 #ifdef ASSERT
237 void GenCollectorPolicy::assert_flags() {
238 CollectorPolicy::assert_flags();
239 assert(NewSize >= _min_young_size, "Ergonomics decided on a too small young gen size");
240 assert(NewSize <= MaxNewSize, "Ergonomics decided on incompatible initial and maximum young gen sizes");
241 assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young gen and heap sizes");
242 assert(NewSize % _gen_alignment == 0, "NewSize alignment");
243 assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize % _gen_alignment == 0, "MaxNewSize alignment");
244 assert(OldSize + NewSize <= MaxHeapSize, "Ergonomics decided on incompatible generation and heap sizes");
245 assert(OldSize % _gen_alignment == 0, "OldSize alignment");
246 }
247
248 void GenCollectorPolicy::assert_size_info() {
249 CollectorPolicy::assert_size_info();
250 // GenCollectorPolicy::initialize_size_info may update the MaxNewSize
251 assert(MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young and heap sizes");
252 assert(NewSize == _initial_young_size, "Discrepancy between NewSize flag and local storage");
253 assert(MaxNewSize == _max_young_size, "Discrepancy between MaxNewSize flag and local storage");
254 assert(OldSize == _initial_old_size, "Discrepancy between OldSize flag and local storage");
255 assert(_min_young_size <= _initial_young_size, "Ergonomics decided on incompatible minimum and initial young gen sizes");
256 assert(_initial_young_size <= _max_young_size, "Ergonomics decided on incompatible initial and maximum young gen sizes");
257 assert(_min_young_size % _gen_alignment == 0, "_min_young_size alignment");
258 assert(_initial_young_size % _gen_alignment == 0, "_initial_young_size alignment");
259 assert(_max_young_size % _gen_alignment == 0, "_max_young_size alignment");
260 assert(_min_young_size <= bound_minus_alignment(_min_young_size, _min_heap_byte_size),
261 "Ergonomics made minimum young generation larger than minimum heap");
262 assert(_initial_young_size <= bound_minus_alignment(_initial_young_size, _initial_heap_byte_size),
263 "Ergonomics made initial young generation larger than initial heap");
264 assert(_max_young_size <= bound_minus_alignment(_max_young_size, _max_heap_byte_size),
265 "Ergonomics made maximum young generation lager than maximum heap");
266 assert(_min_old_size <= _initial_old_size, "Ergonomics decided on incompatible minimum and initial old gen sizes");
267 assert(_initial_old_size <= _max_old_size, "Ergonomics decided on incompatible initial and maximum old gen sizes");
268 assert(_max_old_size % _gen_alignment == 0, "_max_old_size alignment");
269 assert(_initial_old_size % _gen_alignment == 0, "_initial_old_size alignment");
270 assert(_max_heap_byte_size <= (_max_young_size + _max_old_size), "Total maximum heap sizes must be sum of generation maximum sizes");
271 assert(_min_young_size + _min_old_size <= _min_heap_byte_size, "Minimum generation sizes exceed minimum heap size");
272 assert(_initial_young_size + _initial_old_size == _initial_heap_byte_size, "Initial generation sizes should match initial heap size");
273 assert(_max_young_size + _max_old_size == _max_heap_byte_size, "Maximum generation sizes should match maximum heap size");
274 }
275 #endif // ASSERT
276
277 void GenCollectorPolicy::initialize_flags() {
278 CollectorPolicy::initialize_flags();
279
280 assert(_gen_alignment != 0, "Generation alignment not set up properly");
281 assert(_heap_alignment >= _gen_alignment,
282 err_msg("heap_alignment: " SIZE_FORMAT " less than gen_alignment: " SIZE_FORMAT,
283 _heap_alignment, _gen_alignment));
284 assert(_gen_alignment % _space_alignment == 0,
285 err_msg("gen_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
286 _gen_alignment, _space_alignment));
287 assert(_heap_alignment % _gen_alignment == 0,
288 err_msg("heap_alignment: " SIZE_FORMAT " not aligned by gen_alignment: " SIZE_FORMAT,
289 _heap_alignment, _gen_alignment));
290
291 // All generational heaps have a youngest gen; handle those flags here
292
293 // Make sure the heap is large enough for two generations
294 uintx smallest_new_size = young_gen_size_lower_bound();
295 uintx smallest_heap_size = align_size_up(smallest_new_size + align_size_up(_space_alignment, _gen_alignment),
296 _heap_alignment);
297 if (MaxHeapSize < smallest_heap_size) {
298 FLAG_SET_ERGO(uintx, MaxHeapSize, smallest_heap_size);
299 _max_heap_byte_size = MaxHeapSize;
300 }
301 // If needed, synchronize _min_heap_byte size and _initial_heap_byte_size
302 if (_min_heap_byte_size < smallest_heap_size) {
303 _min_heap_byte_size = smallest_heap_size;
304 if (InitialHeapSize < _min_heap_byte_size) {
305 FLAG_SET_ERGO(uintx, InitialHeapSize, smallest_heap_size);
306 _initial_heap_byte_size = smallest_heap_size;
307 }
308 }
309
310 // Make sure NewSize allows an old generation to fit even if set on the command line
311 if (FLAG_IS_CMDLINE(NewSize) && NewSize >= _initial_heap_byte_size) {
312 warning("NewSize was set larger than initial heap size, will use initial heap size.");
313 NewSize = bound_minus_alignment(NewSize, _initial_heap_byte_size);
314 }
315
316 // Now take the actual NewSize into account. We will silently increase NewSize
317 // if the user specified a smaller or unaligned value.
318 uintx bounded_new_size = bound_minus_alignment(NewSize, MaxHeapSize);
319 bounded_new_size = MAX2(smallest_new_size, (uintx)align_size_down(bounded_new_size, _gen_alignment));
320 if (bounded_new_size != NewSize) {
321 // Do not use FLAG_SET_ERGO to update NewSize here, since this will override
322 // if NewSize was set on the command line or not. This information is needed
323 // later when setting the initial and minimum young generation size.
324 NewSize = bounded_new_size;
325 }
326 _min_young_size = smallest_new_size;
327 _initial_young_size = NewSize;
328
329 if (!FLAG_IS_DEFAULT(MaxNewSize)) {
330 if (MaxNewSize >= MaxHeapSize) {
331 // Make sure there is room for an old generation
332 uintx smaller_max_new_size = MaxHeapSize - _gen_alignment;
333 if (FLAG_IS_CMDLINE(MaxNewSize)) {
334 warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or greater than the entire "
335 "heap (" SIZE_FORMAT "k). A new max generation size of " SIZE_FORMAT "k will be used.",
336 MaxNewSize/K, MaxHeapSize/K, smaller_max_new_size/K);
337 }
338 FLAG_SET_ERGO(uintx, MaxNewSize, smaller_max_new_size);
339 if (NewSize > MaxNewSize) {
340 FLAG_SET_ERGO(uintx, NewSize, MaxNewSize);
341 _initial_young_size = NewSize;
342 }
343 } else if (MaxNewSize < _initial_young_size) {
344 FLAG_SET_ERGO(uintx, MaxNewSize, _initial_young_size);
345 } else if (!is_size_aligned(MaxNewSize, _gen_alignment)) {
346 FLAG_SET_ERGO(uintx, MaxNewSize, align_size_down(MaxNewSize, _gen_alignment));
347 }
348 _max_young_size = MaxNewSize;
349 }
350
351 if (NewSize > MaxNewSize) {
352 // At this point this should only happen if the user specifies a large NewSize and/or
353 // a small (but not too small) MaxNewSize.
354 if (FLAG_IS_CMDLINE(MaxNewSize)) {
355 warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
356 "A new max generation size of " SIZE_FORMAT "k will be used.",
357 NewSize/K, MaxNewSize/K, NewSize/K);
358 }
359 FLAG_SET_ERGO(uintx, MaxNewSize, NewSize);
360 _max_young_size = MaxNewSize;
361 }
362
363 if (SurvivorRatio < 1 || NewRatio < 1) {
364 vm_exit_during_initialization("Invalid young gen ratio specified");
365 }
366
367 if (!is_size_aligned(OldSize, _gen_alignment)) {
368 // Setting OldSize directly to preserve information about the possible
369 // setting of OldSize on the command line.
370 OldSize = align_size_down(OldSize, _gen_alignment);
371 }
372
373 if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(MaxHeapSize)) {
374 // NewRatio will be used later to set the young generation size so we use
375 // it to calculate how big the heap should be based on the requested OldSize
376 // and NewRatio.
377 assert(NewRatio > 0, "NewRatio should have been set up earlier");
378 size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
379
380 calculated_heapsize = align_size_up(calculated_heapsize, _heap_alignment);
381 FLAG_SET_ERGO(uintx, MaxHeapSize, calculated_heapsize);
382 _max_heap_byte_size = MaxHeapSize;
383 FLAG_SET_ERGO(uintx, InitialHeapSize, calculated_heapsize);
384 _initial_heap_byte_size = InitialHeapSize;
385 }
386
387 // Adjust NewSize and OldSize or MaxHeapSize to match each other
388 if (NewSize + OldSize > MaxHeapSize) {
389 if (_max_heap_size_cmdline) {
390 // Somebody has set a maximum heap size with the intention that we should not
391 // exceed it. Adjust New/OldSize as necessary.
392 uintx calculated_size = NewSize + OldSize;
393 double shrink_factor = (double) MaxHeapSize / calculated_size;
394 uintx smaller_new_size = align_size_down((uintx)(NewSize * shrink_factor), _gen_alignment);
395 FLAG_SET_ERGO(uintx, NewSize, MAX2(young_gen_size_lower_bound(), smaller_new_size));
396 _initial_young_size = NewSize;
397
398 // OldSize is already aligned because above we aligned MaxHeapSize to
399 // _heap_alignment, and we just made sure that NewSize is aligned to
400 // _gen_alignment. In initialize_flags() we verified that _heap_alignment
401 // is a multiple of _gen_alignment.
402 FLAG_SET_ERGO(uintx, OldSize, MaxHeapSize - NewSize);
403 } else {
404 FLAG_SET_ERGO(uintx, MaxHeapSize, align_size_up(NewSize + OldSize, _heap_alignment));
405 _max_heap_byte_size = MaxHeapSize;
406 }
407 }
408
409 // Update NewSize, if possible, to avoid sizing the young gen too small when only
410 // OldSize is set on the command line.
411 if (FLAG_IS_CMDLINE(OldSize) && !FLAG_IS_CMDLINE(NewSize)) {
412 if (OldSize < _initial_heap_byte_size) {
413 size_t new_size = _initial_heap_byte_size - OldSize;
414 // Need to compare against the flag value for max since _max_young_size
415 // might not have been set yet.
416 if (new_size >= _min_young_size && new_size <= MaxNewSize) {
417 FLAG_SET_ERGO(uintx, NewSize, new_size);
418 _initial_young_size = NewSize;
419 }
420 }
421 }
422
423 always_do_update_barrier = UseConcMarkSweepGC;
424
425 DEBUG_ONLY(GenCollectorPolicy::assert_flags();)
426 }
427
428 // Values set on the command line win over any ergonomically
429 // set command line parameters.
430 // Ergonomic choice of parameters are done before this
431 // method is called. Values for command line parameters such as NewSize
432 // and MaxNewSize feed those ergonomic choices into this method.
433 // This method makes the final generation sizings consistent with
434 // themselves and with overall heap sizings.
435 // In the absence of explicitly set command line flags, policies
436 // such as the use of NewRatio are used to size the generation.
437
438 // Minimum sizes of the generations may be different than
439 // the initial sizes. An inconsistency is permitted here
440 // in the total size that can be specified explicitly by
441 // command line specification of OldSize and NewSize and
442 // also a command line specification of -Xms. Issue a warning
443 // but allow the values to pass.
444 void GenCollectorPolicy::initialize_size_info() {
445 CollectorPolicy::initialize_size_info();
446
447 _initial_young_size = NewSize;
448 _max_young_size = MaxNewSize;
449 _initial_old_size = OldSize;
450
451 // Determine maximum size of the young generation.
452
453 if (FLAG_IS_DEFAULT(MaxNewSize)) {
454 _max_young_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
455 // Bound the maximum size by NewSize below (since it historically
456 // would have been NewSize and because the NewRatio calculation could
457 // yield a size that is too small) and bound it by MaxNewSize above.
458 // Ergonomics plays here by previously calculating the desired
459 // NewSize and MaxNewSize.
460 _max_young_size = MIN2(MAX2(_max_young_size, _initial_young_size), MaxNewSize);
461 }
462
463 // Given the maximum young size, determine the initial and
464 // minimum young sizes.
465
466 if (_max_heap_byte_size == _initial_heap_byte_size) {
467 // The maximum and initial heap sizes are the same so the generation's
468 // initial size must be the same as it maximum size. Use NewSize as the
469 // size if set on command line.
470 _max_young_size = FLAG_IS_CMDLINE(NewSize) ? NewSize : _max_young_size;
471 _initial_young_size = _max_young_size;
472
473 // Also update the minimum size if min == initial == max.
474 if (_max_heap_byte_size == _min_heap_byte_size) {
475 _min_young_size = _max_young_size;
476 }
477 } else {
478 if (FLAG_IS_CMDLINE(NewSize)) {
479 // If NewSize is set on the command line, we should use it as
480 // the initial size, but make sure it is within the heap bounds.
481 _initial_young_size =
482 MIN2(_max_young_size, bound_minus_alignment(NewSize, _initial_heap_byte_size));
483 _min_young_size = bound_minus_alignment(_initial_young_size, _min_heap_byte_size);
484 } else {
485 // For the case where NewSize is not set on the command line, use
486 // NewRatio to size the initial generation size. Use the current
487 // NewSize as the floor, because if NewRatio is overly large, the resulting
488 // size can be too small.
489 _initial_young_size =
490 MIN2(_max_young_size, MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), NewSize));
491 }
492 }
493
494 if (PrintGCDetails && Verbose) {
495 gclog_or_tty->print_cr("1: Minimum young " SIZE_FORMAT " Initial young "
496 SIZE_FORMAT " Maximum young " SIZE_FORMAT,
497 _min_young_size, _initial_young_size, _max_young_size);
498 }
499
500 // At this point the minimum, initial and maximum sizes
501 // of the overall heap and of the young generation have been determined.
502 // The maximum old size can be determined from the maximum young
503 // and maximum heap size since no explicit flags exist
504 // for setting the old generation maximum.
505 _max_old_size = MAX2(_max_heap_byte_size - _max_young_size, _gen_alignment);
506
507 // If no explicit command line flag has been set for the
508 // old generation size, use what is left.
509 if (!FLAG_IS_CMDLINE(OldSize)) {
510 // The user has not specified any value but the ergonomics
511 // may have chosen a value (which may or may not be consistent
512 // with the overall heap size). In either case make
513 // the minimum, maximum and initial sizes consistent
514 // with the young sizes and the overall heap sizes.
515 _min_old_size = _gen_alignment;
516 _initial_old_size = MIN2(_max_old_size, MAX2(_initial_heap_byte_size - _initial_young_size, _min_old_size));
517 // _max_old_size has already been made consistent above.
518 } else {
519 // OldSize has been explicitly set on the command line. Use it
520 // for the initial size but make sure the minimum allow a young
521 // generation to fit as well.
522 // If the user has explicitly set an OldSize that is inconsistent
523 // with other command line flags, issue a warning.
524 // The generation minimums and the overall heap minimum should
525 // be within one generation alignment.
526 if (_initial_old_size > _max_old_size) {
527 warning("Inconsistency between maximum heap size and maximum "
528 "generation sizes: using maximum heap = " SIZE_FORMAT
529 " -XX:OldSize flag is being ignored",
530 _max_heap_byte_size);
531 _initial_old_size = _max_old_size;
532 }
533
534 _min_old_size = MIN2(_initial_old_size, _min_heap_byte_size - _min_young_size);
535 }
536
537 // The initial generation sizes should match the initial heap size,
538 // if not issue a warning and resize the generations. This behavior
539 // differs from JDK8 where the generation sizes have higher priority
540 // than the initial heap size.
541 if ((_initial_old_size + _initial_young_size) != _initial_heap_byte_size) {
542 warning("Inconsistency between generation sizes and heap size, resizing "
543 "the generations to fit the heap.");
544
545 size_t desired_young_size = _initial_heap_byte_size - _initial_old_size;
546 if (_initial_heap_byte_size < _initial_old_size) {
547 // Old want all memory, use minimum for young and rest for old
548 _initial_young_size = _min_young_size;
549 _initial_old_size = _initial_heap_byte_size - _min_young_size;
550 } else if (desired_young_size > _max_young_size) {
551 // Need to increase both young and old generation
552 _initial_young_size = _max_young_size;
553 _initial_old_size = _initial_heap_byte_size - _max_young_size;
554 } else if (desired_young_size < _min_young_size) {
555 // Need to decrease both young and old generation
556 _initial_young_size = _min_young_size;
557 _initial_old_size = _initial_heap_byte_size - _min_young_size;
558 } else {
559 // The young generation boundaries allow us to only update the
560 // young generation.
561 _initial_young_size = desired_young_size;
562 }
563
564 if (PrintGCDetails && Verbose) {
565 gclog_or_tty->print_cr("2: Minimum young " SIZE_FORMAT " Initial young "
566 SIZE_FORMAT " Maximum young " SIZE_FORMAT,
567 _min_young_size, _initial_young_size, _max_young_size);
568 }
569 }
570
571 // Write back to flags if necessary.
572 if (NewSize != _initial_young_size) {
573 FLAG_SET_ERGO(uintx, NewSize, _initial_young_size);
574 }
575
576 if (MaxNewSize != _max_young_size) {
577 FLAG_SET_ERGO(uintx, MaxNewSize, _max_young_size);
578 }
579
580 if (OldSize != _initial_old_size) {
581 FLAG_SET_ERGO(uintx, OldSize, _initial_old_size);
582 }
583
584 if (PrintGCDetails && Verbose) {
585 gclog_or_tty->print_cr("Minimum old " SIZE_FORMAT " Initial old "
586 SIZE_FORMAT " Maximum old " SIZE_FORMAT,
587 _min_old_size, _initial_old_size, _max_old_size);
588 }
589
590 DEBUG_ONLY(GenCollectorPolicy::assert_size_info();)
591 }
592
593 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
594 bool is_tlab,
595 bool* gc_overhead_limit_was_exceeded) {
596 GenCollectedHeap *gch = GenCollectedHeap::heap();
597
598 debug_only(gch->check_for_valid_allocation_state());
599 assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
600
601 // In general gc_overhead_limit_was_exceeded should be false so
602 // set it so here and reset it to true only if the gc time
603 // limit is being exceeded as checked below.
604 *gc_overhead_limit_was_exceeded = false;
605
606 HeapWord* result = NULL;
607
608 // Loop until the allocation is satisfied, or unsatisfied after GC.
609 for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
610 HandleMark hm; // Discard any handles allocated in each iteration.
611
612 // First allocation attempt is lock-free.
613 Generation *young = gch->get_gen(0);
614 assert(young->supports_inline_contig_alloc(),
615 "Otherwise, must do alloc within heap lock");
616 if (young->should_allocate(size, is_tlab)) {
617 result = young->par_allocate(size, is_tlab);
618 if (result != NULL) {
619 assert(gch->is_in_reserved(result), "result not in heap");
620 return result;
621 }
622 }
623 unsigned int gc_count_before; // Read inside the Heap_lock locked region.
624 {
625 MutexLocker ml(Heap_lock);
626 if (PrintGC && Verbose) {
627 gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
628 " attempting locked slow path allocation");
629 }
630 // Note that only large objects get a shot at being
631 // allocated in later generations.
632 bool first_only = ! should_try_older_generation_allocation(size);
633
634 result = gch->attempt_allocation(size, is_tlab, first_only);
635 if (result != NULL) {
636 assert(gch->is_in_reserved(result), "result not in heap");
637 return result;
638 }
639
640 if (GC_locker::is_active_and_needs_gc()) {
641 if (is_tlab) {
642 return NULL; // Caller will retry allocating individual object.
643 }
644 if (!gch->is_maximal_no_gc()) {
645 // Try and expand heap to satisfy request.
646 result = expand_heap_and_allocate(size, is_tlab);
647 // Result could be null if we are out of space.
648 if (result != NULL) {
649 return result;
650 }
651 }
652
653 if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
654 return NULL; // We didn't get to do a GC and we didn't get any memory.
655 }
656
657 // If this thread is not in a jni critical section, we stall
658 // the requestor until the critical section has cleared and
659 // GC allowed. When the critical section clears, a GC is
660 // initiated by the last thread exiting the critical section; so
661 // we retry the allocation sequence from the beginning of the loop,
662 // rather than causing more, now probably unnecessary, GC attempts.
663 JavaThread* jthr = JavaThread::current();
664 if (!jthr->in_critical()) {
665 MutexUnlocker mul(Heap_lock);
666 // Wait for JNI critical section to be exited
667 GC_locker::stall_until_clear();
668 gclocker_stalled_count += 1;
669 continue;
670 } else {
671 if (CheckJNICalls) {
672 fatal("Possible deadlock due to allocating while"
673 " in jni critical section");
674 }
675 return NULL;
676 }
677 }
678
679 // Read the gc count while the heap lock is held.
680 gc_count_before = Universe::heap()->total_collections();
681 }
682
683 VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
684 VMThread::execute(&op);
685 if (op.prologue_succeeded()) {
686 result = op.result();
687 if (op.gc_locked()) {
688 assert(result == NULL, "must be NULL if gc_locked() is true");
689 continue; // Retry and/or stall as necessary.
690 }
691
692 // Allocation has failed and a collection
693 // has been done. If the gc time limit was exceeded the
694 // this time, return NULL so that an out-of-memory
695 // will be thrown. Clear gc_overhead_limit_exceeded
696 // so that the overhead exceeded does not persist.
697
698 const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
699 const bool softrefs_clear = all_soft_refs_clear();
700
701 if (limit_exceeded && softrefs_clear) {
702 *gc_overhead_limit_was_exceeded = true;
703 size_policy()->set_gc_overhead_limit_exceeded(false);
704 if (op.result() != NULL) {
705 CollectedHeap::fill_with_object(op.result(), size);
706 }
707 return NULL;
708 }
709 assert(result == NULL || gch->is_in_reserved(result),
710 "result not in heap");
711 return result;
712 }
713
714 // Give a warning if we seem to be looping forever.
715 if ((QueuedAllocationWarningCount > 0) &&
716 (try_count % QueuedAllocationWarningCount == 0)) {
717 warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
718 " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
719 }
720 }
721 }
722
723 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
724 bool is_tlab) {
725 GenCollectedHeap *gch = GenCollectedHeap::heap();
726 HeapWord* result = NULL;
727 for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
728 Generation *gen = gch->get_gen(i);
729 if (gen->should_allocate(size, is_tlab)) {
730 result = gen->expand_and_allocate(size, is_tlab);
731 }
732 }
733 assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
734 return result;
735 }
736
737 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
738 bool is_tlab) {
739 GenCollectedHeap *gch = GenCollectedHeap::heap();
740 GCCauseSetter x(gch, GCCause::_allocation_failure);
741 HeapWord* result = NULL;
742
743 assert(size != 0, "Precondition violated");
744 if (GC_locker::is_active_and_needs_gc()) {
745 // GC locker is active; instead of a collection we will attempt
746 // to expand the heap, if there's room for expansion.
747 if (!gch->is_maximal_no_gc()) {
748 result = expand_heap_and_allocate(size, is_tlab);
749 }
750 return result; // Could be null if we are out of space.
751 } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
752 // Do an incremental collection.
753 gch->do_collection(false /* full */,
754 false /* clear_all_soft_refs */,
755 size /* size */,
756 is_tlab /* is_tlab */,
757 number_of_generations() - 1 /* max_level */);
758 } else {
759 if (Verbose && PrintGCDetails) {
760 gclog_or_tty->print(" :: Trying full because partial may fail :: ");
761 }
762 // Try a full collection; see delta for bug id 6266275
763 // for the original code and why this has been simplified
764 // with from-space allocation criteria modified and
765 // such allocation moved out of the safepoint path.
766 gch->do_collection(true /* full */,
767 false /* clear_all_soft_refs */,
768 size /* size */,
769 is_tlab /* is_tlab */,
770 number_of_generations() - 1 /* max_level */);
771 }
772
773 result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
774
775 if (result != NULL) {
776 assert(gch->is_in_reserved(result), "result not in heap");
777 return result;
778 }
779
780 // OK, collection failed, try expansion.
781 result = expand_heap_and_allocate(size, is_tlab);
782 if (result != NULL) {
783 return result;
784 }
785
786 // If we reach this point, we're really out of memory. Try every trick
787 // we can to reclaim memory. Force collection of soft references. Force
788 // a complete compaction of the heap. Any additional methods for finding
789 // free memory should be here, especially if they are expensive. If this
790 // attempt fails, an OOM exception will be thrown.
791 {
792 UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
793
794 gch->do_collection(true /* full */,
795 true /* clear_all_soft_refs */,
796 size /* size */,
797 is_tlab /* is_tlab */,
798 number_of_generations() - 1 /* max_level */);
799 }
800
801 result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
802 if (result != NULL) {
803 assert(gch->is_in_reserved(result), "result not in heap");
804 return result;
805 }
806
807 assert(!should_clear_all_soft_refs(),
808 "Flag should have been handled and cleared prior to this point");
809
810 // What else? We might try synchronous finalization later. If the total
811 // space available is large enough for the allocation, then a more
812 // complete compaction phase than we've tried so far might be
813 // appropriate.
814 return NULL;
815 }
816
817 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
818 ClassLoaderData* loader_data,
819 size_t word_size,
820 Metaspace::MetadataType mdtype) {
821 uint loop_count = 0;
822 uint gc_count = 0;
823 uint full_gc_count = 0;
824
825 assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
826
827 do {
828 MetaWord* result = NULL;
829 if (GC_locker::is_active_and_needs_gc()) {
830 // If the GC_locker is active, just expand and allocate.
831 // If that does not succeed, wait if this thread is not
832 // in a critical section itself.
833 result =
834 loader_data->metaspace_non_null()->expand_and_allocate(word_size,
835 mdtype);
836 if (result != NULL) {
837 return result;
838 }
839 JavaThread* jthr = JavaThread::current();
840 if (!jthr->in_critical()) {
841 // Wait for JNI critical section to be exited
842 GC_locker::stall_until_clear();
843 // The GC invoked by the last thread leaving the critical
844 // section will be a young collection and a full collection
845 // is (currently) needed for unloading classes so continue
846 // to the next iteration to get a full GC.
847 continue;
848 } else {
849 if (CheckJNICalls) {
850 fatal("Possible deadlock due to allocating while"
851 " in jni critical section");
852 }
853 return NULL;
854 }
855 }
856
857 { // Need lock to get self consistent gc_count's
858 MutexLocker ml(Heap_lock);
859 gc_count = Universe::heap()->total_collections();
860 full_gc_count = Universe::heap()->total_full_collections();
861 }
862
863 // Generate a VM operation
864 VM_CollectForMetadataAllocation op(loader_data,
865 word_size,
866 mdtype,
867 gc_count,
868 full_gc_count,
869 GCCause::_metadata_GC_threshold);
870 VMThread::execute(&op);
871
872 // If GC was locked out, try again. Check before checking success because the
873 // prologue could have succeeded and the GC still have been locked out.
874 if (op.gc_locked()) {
875 continue;
876 }
877
878 if (op.prologue_succeeded()) {
879 return op.result();
880 }
881 loop_count++;
882 if ((QueuedAllocationWarningCount > 0) &&
883 (loop_count % QueuedAllocationWarningCount == 0)) {
884 warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
885 " size=" SIZE_FORMAT, loop_count, word_size);
886 }
887 } while (true); // Until a GC is done
888 }
889
890 // Return true if any of the following is true:
891 // . the allocation won't fit into the current young gen heap
892 // . gc locker is occupied (jni critical section)
893 // . heap memory is tight -- the most recent previous collection
894 // was a full collection because a partial collection (would
895 // have) failed and is likely to fail again
896 bool GenCollectorPolicy::should_try_older_generation_allocation(
897 size_t word_size) const {
898 GenCollectedHeap* gch = GenCollectedHeap::heap();
899 size_t young_capacity = gch->get_gen(0)->capacity_before_gc();
900 return (word_size > heap_word_size(young_capacity))
901 || GC_locker::is_active_and_needs_gc()
902 || gch->incremental_collection_failed();
903 }
904
905
906 //
907 // MarkSweepPolicy methods
908 //
909
910 void MarkSweepPolicy::initialize_alignments() {
911 _space_alignment = _gen_alignment = (uintx)Generation::GenGrain;
912 _heap_alignment = compute_heap_alignment();
913 }
914
915 void MarkSweepPolicy::initialize_generations() {
916 _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
917 if (_generations == NULL) {
918 vm_exit_during_initialization("Unable to allocate gen spec");
919 }
920
921 if (UseParNewGC) {
922 _generations[0] = new GenerationSpec(Generation::ParNew, _initial_young_size, _max_young_size);
923 } else {
924 _generations[0] = new GenerationSpec(Generation::DefNew, _initial_young_size, _max_young_size);
925 }
926 _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_old_size, _max_old_size);
927
928 if (_generations[0] == NULL || _generations[1] == NULL) {
929 vm_exit_during_initialization("Unable to allocate gen spec");
930 }
931 }
932
933 void MarkSweepPolicy::initialize_gc_policy_counters() {
934 // Initialize the policy counters - 2 collectors, 3 generations.
935 if (UseParNewGC) {
936 _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
937 } else {
938 _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
939 }
940 }
941
942 /////////////// Unit tests ///////////////
943
944 #ifndef PRODUCT
945 // Testing that the NewSize flag is handled correct is hard because it
946 // depends on so many other configurable variables. This test only tries to
947 // verify that there are some basic rules for NewSize honored by the policies.
948 class TestGenCollectorPolicy {
949 public:
950 static void test_new_size() {
951 size_t flag_value;
952
953 save_flags();
954
955 // If NewSize is set on the command line, it should be used
956 // for both min and initial young size if less than min heap.
957 flag_value = 20 * M;
958 set_basic_flag_values();
959 FLAG_SET_CMDLINE(uintx, NewSize, flag_value);
960 verify_young_min(flag_value);
961
962 set_basic_flag_values();
963 FLAG_SET_CMDLINE(uintx, NewSize, flag_value);
964 verify_young_initial(flag_value);
965
966 // If NewSize is set on command line, but is larger than the min
967 // heap size, it should only be used for initial young size.
968 flag_value = 80 * M;
969 set_basic_flag_values();
970 FLAG_SET_CMDLINE(uintx, NewSize, flag_value);
971 verify_young_initial(flag_value);
972
973 // If NewSize has been ergonomically set, the collector policy
974 // should use it for min but calculate the initial young size
975 // using NewRatio.
976 flag_value = 20 * M;
977 set_basic_flag_values();
978 FLAG_SET_ERGO(uintx, NewSize, flag_value);
979 verify_young_min(flag_value);
980
981 set_basic_flag_values();
982 FLAG_SET_ERGO(uintx, NewSize, flag_value);
983 verify_scaled_young_initial(InitialHeapSize);
984
985 restore_flags();
986 }
987
988 static void test_old_size() {
989 size_t flag_value;
990
991 save_flags();
992
993 // If OldSize is set on the command line, it should be used
994 // for both min and initial old size if less than min heap.
995 flag_value = 20 * M;
996 set_basic_flag_values();
997 FLAG_SET_CMDLINE(uintx, OldSize, flag_value);
998 verify_old_min(flag_value);
999
1000 set_basic_flag_values();
1001 FLAG_SET_CMDLINE(uintx, OldSize, flag_value);
1002 verify_old_initial(flag_value);
1003
1004 // If MaxNewSize is large, the maximum OldSize will be less than
1005 // what's requested on the command line and it should be reset
1006 // ergonomically.
1007 flag_value = 30 * M;
1008 set_basic_flag_values();
1009 FLAG_SET_CMDLINE(uintx, OldSize, flag_value);
1010 FLAG_SET_CMDLINE(uintx, MaxNewSize, 170*M);
1011 // Calculate what we expect the flag to be.
1012 flag_value = MaxHeapSize - MaxNewSize;
1013 verify_old_initial(flag_value);
1014
1015 }
1016
1017 static void verify_young_min(size_t expected) {
1018 MarkSweepPolicy msp;
1019 msp.initialize_all();
1020
1021 assert(msp.min_young_size() <= expected, err_msg("%zu > %zu", msp.min_young_size(), expected));
1022 }
1023
1024 static void verify_young_initial(size_t expected) {
1025 MarkSweepPolicy msp;
1026 msp.initialize_all();
1027
1028 assert(msp.initial_young_size() == expected, err_msg("%zu != %zu", msp.initial_young_size(), expected));
1029 }
1030
1031 static void verify_scaled_young_initial(size_t initial_heap_size) {
1032 MarkSweepPolicy msp;
1033 msp.initialize_all();
1034
1035 size_t expected = msp.scale_by_NewRatio_aligned(initial_heap_size);
1036 assert(msp.initial_young_size() == expected, err_msg("%zu != %zu", msp.initial_young_size(), expected));
1037 assert(FLAG_IS_ERGO(NewSize) && NewSize == expected,
1038 err_msg("NewSize should have been set ergonomically to %zu, but was %zu", expected, NewSize));
1039 }
1040
1041 static void verify_old_min(size_t expected) {
1042 MarkSweepPolicy msp;
1043 msp.initialize_all();
1044
1045 assert(msp.min_old_size() <= expected, err_msg("%zu > %zu", msp.min_old_size(), expected));
1046 }
1047
1048 static void verify_old_initial(size_t expected) {
1049 MarkSweepPolicy msp;
1050 msp.initialize_all();
1051
1052 assert(msp.initial_old_size() == expected, err_msg("%zu != %zu", msp.initial_old_size(), expected));
1053 }
1054
1055
1056 private:
1057 static size_t original_InitialHeapSize;
1058 static size_t original_MaxHeapSize;
1059 static size_t original_MaxNewSize;
1060 static size_t original_MinHeapDeltaBytes;
1061 static size_t original_NewSize;
1062 static size_t original_OldSize;
1063
1064 static void set_basic_flag_values() {
1065 FLAG_SET_ERGO(uintx, MaxHeapSize, 180 * M);
1066 FLAG_SET_ERGO(uintx, InitialHeapSize, 100 * M);
1067 FLAG_SET_ERGO(uintx, OldSize, 4 * M);
1068 FLAG_SET_ERGO(uintx, NewSize, 1 * M);
1069 FLAG_SET_ERGO(uintx, MaxNewSize, 80 * M);
1070 Arguments::set_min_heap_size(40 * M);
1071 }
1072
1073 static void save_flags() {
1074 original_InitialHeapSize = InitialHeapSize;
1075 original_MaxHeapSize = MaxHeapSize;
1076 original_MaxNewSize = MaxNewSize;
1077 original_MinHeapDeltaBytes = MinHeapDeltaBytes;
1078 original_NewSize = NewSize;
1079 original_OldSize = OldSize;
1080 }
1081
1082 static void restore_flags() {
1083 InitialHeapSize = original_InitialHeapSize;
1084 MaxHeapSize = original_MaxHeapSize;
1085 MaxNewSize = original_MaxNewSize;
1086 MinHeapDeltaBytes = original_MinHeapDeltaBytes;
1087 NewSize = original_NewSize;
1088 OldSize = original_OldSize;
1089 }
1090 };
1091
1092 size_t TestGenCollectorPolicy::original_InitialHeapSize = 0;
1093 size_t TestGenCollectorPolicy::original_MaxHeapSize = 0;
1094 size_t TestGenCollectorPolicy::original_MaxNewSize = 0;
1095 size_t TestGenCollectorPolicy::original_MinHeapDeltaBytes = 0;
1096 size_t TestGenCollectorPolicy::original_NewSize = 0;
1097 size_t TestGenCollectorPolicy::original_OldSize = 0;
1098
1099 void TestNewSize_test() {
1100 TestGenCollectorPolicy::test_new_size();
1101 }
1102
1103 void TestOldSize_test() {
1104 TestGenCollectorPolicy::test_old_size();
1105 }
1106
1107 #endif