1 /*
2 * Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24 #include "precompiled.hpp"
25 #include "gc_interface/collectedHeap.hpp"
26 #include "memory/allocation.hpp"
27 #include "memory/binaryTreeDictionary.hpp"
28 #include "memory/freeList.hpp"
29 #include "memory/collectorPolicy.hpp"
30 #include "memory/filemap.hpp"
31 #include "memory/freeList.hpp"
32 #include "memory/gcLocker.hpp"
33 #include "memory/metachunk.hpp"
34 #include "memory/metaspace.hpp"
35 #include "memory/metaspaceGCThresholdUpdater.hpp"
36 #include "memory/metaspaceShared.hpp"
37 #include "memory/metaspaceTracer.hpp"
38 #include "memory/resourceArea.hpp"
39 #include "memory/universe.hpp"
40 #include "runtime/atomic.inline.hpp"
41 #include "runtime/globals.hpp"
42 #include "runtime/init.hpp"
43 #include "runtime/java.hpp"
44 #include "runtime/mutex.hpp"
45 #include "runtime/orderAccess.inline.hpp"
46 #include "services/memTracker.hpp"
47 #include "services/memoryService.hpp"
48 #include "utilities/copy.hpp"
49 #include "utilities/debug.hpp"
50
51 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
52
53 typedef BinaryTreeDictionary<Metablock, FreeList<Metablock> > BlockTreeDictionary;
54 typedef BinaryTreeDictionary<Metachunk, FreeList<Metachunk> > ChunkTreeDictionary;
55
56 // Set this constant to enable slow integrity checking of the free chunk lists
57 const bool metaspace_slow_verify = false;
58
59 size_t const allocation_from_dictionary_limit = 4 * K;
60
61 MetaWord* last_allocated = 0;
62
63 size_t Metaspace::_compressed_class_space_size;
64 const MetaspaceTracer* Metaspace::_tracer = NULL;
65
66 // Used in declarations in SpaceManager and ChunkManager
67 enum ChunkIndex {
68 ZeroIndex = 0,
69 SpecializedIndex = ZeroIndex,
70 SmallIndex = SpecializedIndex + 1,
71 MediumIndex = SmallIndex + 1,
72 HumongousIndex = MediumIndex + 1,
73 NumberOfFreeLists = 3,
74 NumberOfInUseLists = 4
75 };
76
77 enum ChunkSizes { // in words.
78 ClassSpecializedChunk = 128,
79 SpecializedChunk = 128,
80 ClassSmallChunk = 256,
81 SmallChunk = 512,
82 ClassMediumChunk = 4 * K,
83 MediumChunk = 8 * K
84 };
85
86 static ChunkIndex next_chunk_index(ChunkIndex i) {
87 assert(i < NumberOfInUseLists, "Out of bound");
88 return (ChunkIndex) (i+1);
89 }
90
91 volatile intptr_t MetaspaceGC::_capacity_until_GC = 0;
92 uint MetaspaceGC::_shrink_factor = 0;
93 bool MetaspaceGC::_should_concurrent_collect = false;
94
95 typedef class FreeList<Metachunk> ChunkList;
96
97 // Manages the global free lists of chunks.
98 class ChunkManager : public CHeapObj<mtInternal> {
99 friend class TestVirtualSpaceNodeTest;
100
101 // Free list of chunks of different sizes.
102 // SpecializedChunk
103 // SmallChunk
104 // MediumChunk
105 // HumongousChunk
106 ChunkList _free_chunks[NumberOfFreeLists];
107
108 // HumongousChunk
109 ChunkTreeDictionary _humongous_dictionary;
110
111 // ChunkManager in all lists of this type
112 size_t _free_chunks_total;
113 size_t _free_chunks_count;
114
115 void dec_free_chunks_total(size_t v) {
116 assert(_free_chunks_count > 0 &&
117 _free_chunks_total > 0,
118 "About to go negative");
119 Atomic::add_ptr(-1, &_free_chunks_count);
120 jlong minus_v = (jlong) - (jlong) v;
121 Atomic::add_ptr(minus_v, &_free_chunks_total);
122 }
123
124 // Debug support
125
126 size_t sum_free_chunks();
127 size_t sum_free_chunks_count();
128
129 void locked_verify_free_chunks_total();
130 void slow_locked_verify_free_chunks_total() {
131 if (metaspace_slow_verify) {
132 locked_verify_free_chunks_total();
133 }
134 }
135 void locked_verify_free_chunks_count();
136 void slow_locked_verify_free_chunks_count() {
137 if (metaspace_slow_verify) {
138 locked_verify_free_chunks_count();
139 }
140 }
141 void verify_free_chunks_count();
142
143 public:
144
145 ChunkManager(size_t specialized_size, size_t small_size, size_t medium_size)
146 : _free_chunks_total(0), _free_chunks_count(0) {
147 _free_chunks[SpecializedIndex].set_size(specialized_size);
148 _free_chunks[SmallIndex].set_size(small_size);
149 _free_chunks[MediumIndex].set_size(medium_size);
150 }
151
152 // add or delete (return) a chunk to the global freelist.
153 Metachunk* chunk_freelist_allocate(size_t word_size);
154
155 // Map a size to a list index assuming that there are lists
156 // for special, small, medium, and humongous chunks.
157 static ChunkIndex list_index(size_t size);
158
159 // Remove the chunk from its freelist. It is
160 // expected to be on one of the _free_chunks[] lists.
161 void remove_chunk(Metachunk* chunk);
162
163 // Add the simple linked list of chunks to the freelist of chunks
164 // of type index.
165 void return_chunks(ChunkIndex index, Metachunk* chunks);
166
167 // Total of the space in the free chunks list
168 size_t free_chunks_total_words();
169 size_t free_chunks_total_bytes();
170
171 // Number of chunks in the free chunks list
172 size_t free_chunks_count();
173
174 void inc_free_chunks_total(size_t v, size_t count = 1) {
175 Atomic::add_ptr(count, &_free_chunks_count);
176 Atomic::add_ptr(v, &_free_chunks_total);
177 }
178 ChunkTreeDictionary* humongous_dictionary() {
179 return &_humongous_dictionary;
180 }
181
182 ChunkList* free_chunks(ChunkIndex index);
183
184 // Returns the list for the given chunk word size.
185 ChunkList* find_free_chunks_list(size_t word_size);
186
187 // Remove from a list by size. Selects list based on size of chunk.
188 Metachunk* free_chunks_get(size_t chunk_word_size);
189
190 #define index_bounds_check(index) \
191 assert(index == SpecializedIndex || \
192 index == SmallIndex || \
193 index == MediumIndex || \
194 index == HumongousIndex, err_msg("Bad index: %d", (int) index))
195
196 size_t num_free_chunks(ChunkIndex index) const {
197 index_bounds_check(index);
198
199 if (index == HumongousIndex) {
200 return _humongous_dictionary.total_free_blocks();
201 }
202
203 ssize_t count = _free_chunks[index].count();
204 return count == -1 ? 0 : (size_t) count;
205 }
206
207 size_t size_free_chunks_in_bytes(ChunkIndex index) const {
208 index_bounds_check(index);
209
210 size_t word_size = 0;
211 if (index == HumongousIndex) {
212 word_size = _humongous_dictionary.total_size();
213 } else {
214 const size_t size_per_chunk_in_words = _free_chunks[index].size();
215 word_size = size_per_chunk_in_words * num_free_chunks(index);
216 }
217
218 return word_size * BytesPerWord;
219 }
220
221 MetaspaceChunkFreeListSummary chunk_free_list_summary() const {
222 return MetaspaceChunkFreeListSummary(num_free_chunks(SpecializedIndex),
223 num_free_chunks(SmallIndex),
224 num_free_chunks(MediumIndex),
225 num_free_chunks(HumongousIndex),
226 size_free_chunks_in_bytes(SpecializedIndex),
227 size_free_chunks_in_bytes(SmallIndex),
228 size_free_chunks_in_bytes(MediumIndex),
229 size_free_chunks_in_bytes(HumongousIndex));
230 }
231
232 // Debug support
233 void verify();
234 void slow_verify() {
235 if (metaspace_slow_verify) {
236 verify();
237 }
238 }
239 void locked_verify();
240 void slow_locked_verify() {
241 if (metaspace_slow_verify) {
242 locked_verify();
243 }
244 }
245 void verify_free_chunks_total();
246
247 void locked_print_free_chunks(outputStream* st);
248 void locked_print_sum_free_chunks(outputStream* st);
249
250 void print_on(outputStream* st) const;
251 };
252
253 // Used to manage the free list of Metablocks (a block corresponds
254 // to the allocation of a quantum of metadata).
255 class BlockFreelist VALUE_OBJ_CLASS_SPEC {
256 BlockTreeDictionary* _dictionary;
257
258 // Only allocate and split from freelist if the size of the allocation
259 // is at least 1/4th the size of the available block.
260 const static int WasteMultiplier = 4;
261
262 // Accessors
263 BlockTreeDictionary* dictionary() const { return _dictionary; }
264
265 public:
266 BlockFreelist();
267 ~BlockFreelist();
268
269 // Get and return a block to the free list
270 MetaWord* get_block(size_t word_size);
271 void return_block(MetaWord* p, size_t word_size);
272
273 size_t total_size() {
274 if (dictionary() == NULL) {
275 return 0;
276 } else {
277 return dictionary()->total_size();
278 }
279 }
280
281 void print_on(outputStream* st) const;
282 };
283
284 // A VirtualSpaceList node.
285 class VirtualSpaceNode : public CHeapObj<mtClass> {
286 friend class VirtualSpaceList;
287
288 // Link to next VirtualSpaceNode
289 VirtualSpaceNode* _next;
290
291 // total in the VirtualSpace
292 MemRegion _reserved;
293 ReservedSpace _rs;
294 VirtualSpace _virtual_space;
295 MetaWord* _top;
296 // count of chunks contained in this VirtualSpace
297 uintx _container_count;
298
299 // Convenience functions to access the _virtual_space
300 char* low() const { return virtual_space()->low(); }
301 char* high() const { return virtual_space()->high(); }
302
303 // The first Metachunk will be allocated at the bottom of the
304 // VirtualSpace
305 Metachunk* first_chunk() { return (Metachunk*) bottom(); }
306
307 // Committed but unused space in the virtual space
308 size_t free_words_in_vs() const;
309 public:
310
311 VirtualSpaceNode(size_t byte_size);
312 VirtualSpaceNode(ReservedSpace rs) : _top(NULL), _next(NULL), _rs(rs), _container_count(0) {}
313 ~VirtualSpaceNode();
314
315 // Convenience functions for logical bottom and end
316 MetaWord* bottom() const { return (MetaWord*) _virtual_space.low(); }
317 MetaWord* end() const { return (MetaWord*) _virtual_space.high(); }
318
319 bool contains(const void* ptr) { return ptr >= low() && ptr < high(); }
320
321 size_t reserved_words() const { return _virtual_space.reserved_size() / BytesPerWord; }
322 size_t committed_words() const { return _virtual_space.actual_committed_size() / BytesPerWord; }
323
324 bool is_pre_committed() const { return _virtual_space.special(); }
325
326 // address of next available space in _virtual_space;
327 // Accessors
328 VirtualSpaceNode* next() { return _next; }
329 void set_next(VirtualSpaceNode* v) { _next = v; }
330
331 void set_reserved(MemRegion const v) { _reserved = v; }
332 void set_top(MetaWord* v) { _top = v; }
333
334 // Accessors
335 MemRegion* reserved() { return &_reserved; }
336 VirtualSpace* virtual_space() const { return (VirtualSpace*) &_virtual_space; }
337
338 // Returns true if "word_size" is available in the VirtualSpace
339 bool is_available(size_t word_size) { return word_size <= pointer_delta(end(), _top, sizeof(MetaWord)); }
340
341 MetaWord* top() const { return _top; }
342 void inc_top(size_t word_size) { _top += word_size; }
343
344 uintx container_count() { return _container_count; }
345 void inc_container_count();
346 void dec_container_count();
347 #ifdef ASSERT
348 uint container_count_slow();
349 void verify_container_count();
350 #endif
351
352 // used and capacity in this single entry in the list
353 size_t used_words_in_vs() const;
354 size_t capacity_words_in_vs() const;
355
356 bool initialize();
357
358 // get space from the virtual space
359 Metachunk* take_from_committed(size_t chunk_word_size);
360
361 // Allocate a chunk from the virtual space and return it.
362 Metachunk* get_chunk_vs(size_t chunk_word_size);
363
364 // Expands/shrinks the committed space in a virtual space. Delegates
365 // to Virtualspace
366 bool expand_by(size_t min_words, size_t preferred_words);
367
368 // In preparation for deleting this node, remove all the chunks
369 // in the node from any freelist.
370 void purge(ChunkManager* chunk_manager);
371
372 // If an allocation doesn't fit in the current node a new node is created.
373 // Allocate chunks out of the remaining committed space in this node
374 // to avoid wasting that memory.
375 // This always adds up because all the chunk sizes are multiples of
376 // the smallest chunk size.
377 void retire(ChunkManager* chunk_manager);
378
379 #ifdef ASSERT
380 // Debug support
381 void mangle();
382 #endif
383
384 void print_on(outputStream* st) const;
385 };
386
387 #define assert_is_ptr_aligned(ptr, alignment) \
388 assert(is_ptr_aligned(ptr, alignment), \
389 err_msg(PTR_FORMAT " is not aligned to " \
390 SIZE_FORMAT, ptr, alignment))
391
392 #define assert_is_size_aligned(size, alignment) \
393 assert(is_size_aligned(size, alignment), \
394 err_msg(SIZE_FORMAT " is not aligned to " \
395 SIZE_FORMAT, size, alignment))
396
397
398 // Decide if large pages should be committed when the memory is reserved.
399 static bool should_commit_large_pages_when_reserving(size_t bytes) {
400 if (UseLargePages && UseLargePagesInMetaspace && !os::can_commit_large_page_memory()) {
401 size_t words = bytes / BytesPerWord;
402 bool is_class = false; // We never reserve large pages for the class space.
403 if (MetaspaceGC::can_expand(words, is_class) &&
404 MetaspaceGC::allowed_expansion() >= words) {
405 return true;
406 }
407 }
408
409 return false;
410 }
411
412 // byte_size is the size of the associated virtualspace.
413 VirtualSpaceNode::VirtualSpaceNode(size_t bytes) : _top(NULL), _next(NULL), _rs(), _container_count(0) {
414 assert_is_size_aligned(bytes, Metaspace::reserve_alignment());
415
416 // This allocates memory with mmap. For DumpSharedspaces, try to reserve
417 // configurable address, generally at the top of the Java heap so other
418 // memory addresses don't conflict.
419 if (DumpSharedSpaces) {
420 bool large_pages = false; // No large pages when dumping the CDS archive.
421 char* shared_base = (char*)align_ptr_up((char*)SharedBaseAddress, Metaspace::reserve_alignment());
422
423 _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages, shared_base, 0);
424 if (_rs.is_reserved()) {
425 assert(shared_base == 0 || _rs.base() == shared_base, "should match");
426 } else {
427 // Get a mmap region anywhere if the SharedBaseAddress fails.
428 _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
429 }
430 MetaspaceShared::set_shared_rs(&_rs);
431 } else {
432 bool large_pages = should_commit_large_pages_when_reserving(bytes);
433
434 _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
435 }
436
437 if (_rs.is_reserved()) {
438 assert(_rs.base() != NULL, "Catch if we get a NULL address");
439 assert(_rs.size() != 0, "Catch if we get a 0 size");
440 assert_is_ptr_aligned(_rs.base(), Metaspace::reserve_alignment());
441 assert_is_size_aligned(_rs.size(), Metaspace::reserve_alignment());
442
443 MemTracker::record_virtual_memory_type((address)_rs.base(), mtClass);
444 }
445 }
446
447 void VirtualSpaceNode::purge(ChunkManager* chunk_manager) {
448 Metachunk* chunk = first_chunk();
449 Metachunk* invalid_chunk = (Metachunk*) top();
450 while (chunk < invalid_chunk ) {
451 assert(chunk->is_tagged_free(), "Should be tagged free");
452 MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
453 chunk_manager->remove_chunk(chunk);
454 assert(chunk->next() == NULL &&
455 chunk->prev() == NULL,
456 "Was not removed from its list");
457 chunk = (Metachunk*) next;
458 }
459 }
460
461 #ifdef ASSERT
462 uint VirtualSpaceNode::container_count_slow() {
463 uint count = 0;
464 Metachunk* chunk = first_chunk();
465 Metachunk* invalid_chunk = (Metachunk*) top();
466 while (chunk < invalid_chunk ) {
467 MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
468 // Don't count the chunks on the free lists. Those are
469 // still part of the VirtualSpaceNode but not currently
470 // counted.
471 if (!chunk->is_tagged_free()) {
472 count++;
473 }
474 chunk = (Metachunk*) next;
475 }
476 return count;
477 }
478 #endif
479
480 // List of VirtualSpaces for metadata allocation.
481 class VirtualSpaceList : public CHeapObj<mtClass> {
482 friend class VirtualSpaceNode;
483
484 enum VirtualSpaceSizes {
485 VirtualSpaceSize = 256 * K
486 };
487
488 // Head of the list
489 VirtualSpaceNode* _virtual_space_list;
490 // virtual space currently being used for allocations
491 VirtualSpaceNode* _current_virtual_space;
492
493 // Is this VirtualSpaceList used for the compressed class space
494 bool _is_class;
495
496 // Sum of reserved and committed memory in the virtual spaces
497 size_t _reserved_words;
498 size_t _committed_words;
499
500 // Number of virtual spaces
501 size_t _virtual_space_count;
502
503 ~VirtualSpaceList();
504
505 VirtualSpaceNode* virtual_space_list() const { return _virtual_space_list; }
506
507 void set_virtual_space_list(VirtualSpaceNode* v) {
508 _virtual_space_list = v;
509 }
510 void set_current_virtual_space(VirtualSpaceNode* v) {
511 _current_virtual_space = v;
512 }
513
514 void link_vs(VirtualSpaceNode* new_entry);
515
516 // Get another virtual space and add it to the list. This
517 // is typically prompted by a failed attempt to allocate a chunk
518 // and is typically followed by the allocation of a chunk.
519 bool create_new_virtual_space(size_t vs_word_size);
520
521 // Chunk up the unused committed space in the current
522 // virtual space and add the chunks to the free list.
523 void retire_current_virtual_space();
524
525 public:
526 VirtualSpaceList(size_t word_size);
527 VirtualSpaceList(ReservedSpace rs);
528
529 size_t free_bytes();
530
531 Metachunk* get_new_chunk(size_t word_size,
532 size_t grow_chunks_by_words,
533 size_t medium_chunk_bunch);
534
535 bool expand_node_by(VirtualSpaceNode* node,
536 size_t min_words,
537 size_t preferred_words);
538
539 bool expand_by(size_t min_words,
540 size_t preferred_words);
541
542 VirtualSpaceNode* current_virtual_space() {
543 return _current_virtual_space;
544 }
545
546 bool is_class() const { return _is_class; }
547
548 bool initialization_succeeded() { return _virtual_space_list != NULL; }
549
550 size_t reserved_words() { return _reserved_words; }
551 size_t reserved_bytes() { return reserved_words() * BytesPerWord; }
552 size_t committed_words() { return _committed_words; }
553 size_t committed_bytes() { return committed_words() * BytesPerWord; }
554
555 void inc_reserved_words(size_t v);
556 void dec_reserved_words(size_t v);
557 void inc_committed_words(size_t v);
558 void dec_committed_words(size_t v);
559 void inc_virtual_space_count();
560 void dec_virtual_space_count();
561
562 bool contains(const void* ptr);
563
564 // Unlink empty VirtualSpaceNodes and free it.
565 void purge(ChunkManager* chunk_manager);
566
567 void print_on(outputStream* st) const;
568
569 class VirtualSpaceListIterator : public StackObj {
570 VirtualSpaceNode* _virtual_spaces;
571 public:
572 VirtualSpaceListIterator(VirtualSpaceNode* virtual_spaces) :
573 _virtual_spaces(virtual_spaces) {}
574
575 bool repeat() {
576 return _virtual_spaces != NULL;
577 }
578
579 VirtualSpaceNode* get_next() {
580 VirtualSpaceNode* result = _virtual_spaces;
581 if (_virtual_spaces != NULL) {
582 _virtual_spaces = _virtual_spaces->next();
583 }
584 return result;
585 }
586 };
587 };
588
589 class Metadebug : AllStatic {
590 // Debugging support for Metaspaces
591 static int _allocation_fail_alot_count;
592
593 public:
594
595 static void init_allocation_fail_alot_count();
596 #ifdef ASSERT
597 static bool test_metadata_failure();
598 #endif
599 };
600
601 int Metadebug::_allocation_fail_alot_count = 0;
602
603 // SpaceManager - used by Metaspace to handle allocations
604 class SpaceManager : public CHeapObj<mtClass> {
605 friend class Metaspace;
606 friend class Metadebug;
607
608 private:
609
610 // protects allocations
611 Mutex* const _lock;
612
613 // Type of metadata allocated.
614 Metaspace::MetadataType _mdtype;
615
616 // List of chunks in use by this SpaceManager. Allocations
617 // are done from the current chunk. The list is used for deallocating
618 // chunks when the SpaceManager is freed.
619 Metachunk* _chunks_in_use[NumberOfInUseLists];
620 Metachunk* _current_chunk;
621
622 // Number of small chunks to allocate to a manager
623 // If class space manager, small chunks are unlimited
624 static uint const _small_chunk_limit;
625
626 // Sum of all space in allocated chunks
627 size_t _allocated_blocks_words;
628
629 // Sum of all allocated chunks
630 size_t _allocated_chunks_words;
631 size_t _allocated_chunks_count;
632
633 // Free lists of blocks are per SpaceManager since they
634 // are assumed to be in chunks in use by the SpaceManager
635 // and all chunks in use by a SpaceManager are freed when
636 // the class loader using the SpaceManager is collected.
637 BlockFreelist _block_freelists;
638
639 // protects virtualspace and chunk expansions
640 static const char* _expand_lock_name;
641 static const int _expand_lock_rank;
642 static Mutex* const _expand_lock;
643
644 private:
645 // Accessors
646 Metachunk* chunks_in_use(ChunkIndex index) const { return _chunks_in_use[index]; }
647 void set_chunks_in_use(ChunkIndex index, Metachunk* v) {
648 _chunks_in_use[index] = v;
649 }
650
651 BlockFreelist* block_freelists() const {
652 return (BlockFreelist*) &_block_freelists;
653 }
654
655 Metaspace::MetadataType mdtype() { return _mdtype; }
656
657 VirtualSpaceList* vs_list() const { return Metaspace::get_space_list(_mdtype); }
658 ChunkManager* chunk_manager() const { return Metaspace::get_chunk_manager(_mdtype); }
659
660 Metachunk* current_chunk() const { return _current_chunk; }
661 void set_current_chunk(Metachunk* v) {
662 _current_chunk = v;
663 }
664
665 Metachunk* find_current_chunk(size_t word_size);
666
667 // Add chunk to the list of chunks in use
668 void add_chunk(Metachunk* v, bool make_current);
669 void retire_current_chunk();
670
671 Mutex* lock() const { return _lock; }
672
673 const char* chunk_size_name(ChunkIndex index) const;
674
675 protected:
676 void initialize();
677
678 public:
679 SpaceManager(Metaspace::MetadataType mdtype,
680 Mutex* lock);
681 ~SpaceManager();
682
683 enum ChunkMultiples {
684 MediumChunkMultiple = 4
685 };
686
687 bool is_class() { return _mdtype == Metaspace::ClassType; }
688
689 // Accessors
690 size_t specialized_chunk_size() { return (size_t) is_class() ? ClassSpecializedChunk : SpecializedChunk; }
691 size_t small_chunk_size() { return (size_t) is_class() ? ClassSmallChunk : SmallChunk; }
692 size_t medium_chunk_size() { return (size_t) is_class() ? ClassMediumChunk : MediumChunk; }
693 size_t medium_chunk_bunch() { return medium_chunk_size() * MediumChunkMultiple; }
694
695 size_t smallest_chunk_size() { return specialized_chunk_size(); }
696
697 size_t allocated_blocks_words() const { return _allocated_blocks_words; }
698 size_t allocated_blocks_bytes() const { return _allocated_blocks_words * BytesPerWord; }
699 size_t allocated_chunks_words() const { return _allocated_chunks_words; }
700 size_t allocated_chunks_count() const { return _allocated_chunks_count; }
701
702 bool is_humongous(size_t word_size) { return word_size > medium_chunk_size(); }
703
704 static Mutex* expand_lock() { return _expand_lock; }
705
706 // Increment the per Metaspace and global running sums for Metachunks
707 // by the given size. This is used when a Metachunk to added to
708 // the in-use list.
709 void inc_size_metrics(size_t words);
710 // Increment the per Metaspace and global running sums Metablocks by the given
711 // size. This is used when a Metablock is allocated.
712 void inc_used_metrics(size_t words);
713 // Delete the portion of the running sums for this SpaceManager. That is,
714 // the globals running sums for the Metachunks and Metablocks are
715 // decremented for all the Metachunks in-use by this SpaceManager.
716 void dec_total_from_size_metrics();
717
718 // Set the sizes for the initial chunks.
719 void get_initial_chunk_sizes(Metaspace::MetaspaceType type,
720 size_t* chunk_word_size,
721 size_t* class_chunk_word_size);
722
723 size_t sum_capacity_in_chunks_in_use() const;
724 size_t sum_used_in_chunks_in_use() const;
725 size_t sum_free_in_chunks_in_use() const;
726 size_t sum_waste_in_chunks_in_use() const;
727 size_t sum_waste_in_chunks_in_use(ChunkIndex index ) const;
728
729 size_t sum_count_in_chunks_in_use();
730 size_t sum_count_in_chunks_in_use(ChunkIndex i);
731
732 Metachunk* get_new_chunk(size_t word_size, size_t grow_chunks_by_words);
733
734 // Block allocation and deallocation.
735 // Allocates a block from the current chunk
736 MetaWord* allocate(size_t word_size);
737
738 // Helper for allocations
739 MetaWord* allocate_work(size_t word_size);
740
741 // Returns a block to the per manager freelist
742 void deallocate(MetaWord* p, size_t word_size);
743
744 // Based on the allocation size and a minimum chunk size,
745 // returned chunk size (for expanding space for chunk allocation).
746 size_t calc_chunk_size(size_t allocation_word_size);
747
748 // Called when an allocation from the current chunk fails.
749 // Gets a new chunk (may require getting a new virtual space),
750 // and allocates from that chunk.
751 MetaWord* grow_and_allocate(size_t word_size);
752
753 // Notify memory usage to MemoryService.
754 void track_metaspace_memory_usage();
755
756 // debugging support.
757
758 void dump(outputStream* const out) const;
759 void print_on(outputStream* st) const;
760 void locked_print_chunks_in_use_on(outputStream* st) const;
761
762 void verify();
763 void verify_chunk_size(Metachunk* chunk);
764 NOT_PRODUCT(void mangle_freed_chunks();)
765 #ifdef ASSERT
766 void verify_allocated_blocks_words();
767 #endif
768
769 size_t get_raw_word_size(size_t word_size) {
770 size_t byte_size = word_size * BytesPerWord;
771
772 size_t raw_bytes_size = MAX2(byte_size, sizeof(Metablock));
773 raw_bytes_size = align_size_up(raw_bytes_size, Metachunk::object_alignment());
774
775 size_t raw_word_size = raw_bytes_size / BytesPerWord;
776 assert(raw_word_size * BytesPerWord == raw_bytes_size, "Size problem");
777
778 return raw_word_size;
779 }
780 };
781
782 uint const SpaceManager::_small_chunk_limit = 4;
783
784 const char* SpaceManager::_expand_lock_name =
785 "SpaceManager chunk allocation lock";
786 const int SpaceManager::_expand_lock_rank = Monitor::leaf - 1;
787 Mutex* const SpaceManager::_expand_lock =
788 new Mutex(SpaceManager::_expand_lock_rank,
789 SpaceManager::_expand_lock_name,
790 Mutex::_allow_vm_block_flag);
791
792 void VirtualSpaceNode::inc_container_count() {
793 assert_lock_strong(SpaceManager::expand_lock());
794 _container_count++;
795 assert(_container_count == container_count_slow(),
796 err_msg("Inconsistency in container_count _container_count " SIZE_FORMAT
797 " container_count_slow() " SIZE_FORMAT,
798 _container_count, container_count_slow()));
799 }
800
801 void VirtualSpaceNode::dec_container_count() {
802 assert_lock_strong(SpaceManager::expand_lock());
803 _container_count--;
804 }
805
806 #ifdef ASSERT
807 void VirtualSpaceNode::verify_container_count() {
808 assert(_container_count == container_count_slow(),
809 err_msg("Inconsistency in container_count _container_count " SIZE_FORMAT
810 " container_count_slow() " SIZE_FORMAT, _container_count, container_count_slow()));
811 }
812 #endif
813
814 // BlockFreelist methods
815
816 BlockFreelist::BlockFreelist() : _dictionary(NULL) {}
817
818 BlockFreelist::~BlockFreelist() {
819 if (_dictionary != NULL) {
820 if (Verbose && TraceMetadataChunkAllocation) {
821 _dictionary->print_free_lists(gclog_or_tty);
822 }
823 delete _dictionary;
824 }
825 }
826
827 void BlockFreelist::return_block(MetaWord* p, size_t word_size) {
828 Metablock* free_chunk = ::new (p) Metablock(word_size);
829 if (dictionary() == NULL) {
830 _dictionary = new BlockTreeDictionary();
831 }
832 dictionary()->return_chunk(free_chunk);
833 }
834
835 MetaWord* BlockFreelist::get_block(size_t word_size) {
836 if (dictionary() == NULL) {
837 return NULL;
838 }
839
840 if (word_size < TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
841 // Dark matter. Too small for dictionary.
842 return NULL;
843 }
844
845 Metablock* free_block =
846 dictionary()->get_chunk(word_size, FreeBlockDictionary<Metablock>::atLeast);
847 if (free_block == NULL) {
848 return NULL;
849 }
850
851 const size_t block_size = free_block->size();
852 if (block_size > WasteMultiplier * word_size) {
853 return_block((MetaWord*)free_block, block_size);
854 return NULL;
855 }
856
857 MetaWord* new_block = (MetaWord*)free_block;
858 assert(block_size >= word_size, "Incorrect size of block from freelist");
859 const size_t unused = block_size - word_size;
860 if (unused >= TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
861 return_block(new_block + word_size, unused);
862 }
863
864 return new_block;
865 }
866
867 void BlockFreelist::print_on(outputStream* st) const {
868 if (dictionary() == NULL) {
869 return;
870 }
871 dictionary()->print_free_lists(st);
872 }
873
874 // VirtualSpaceNode methods
875
876 VirtualSpaceNode::~VirtualSpaceNode() {
877 _rs.release();
878 #ifdef ASSERT
879 size_t word_size = sizeof(*this) / BytesPerWord;
880 Copy::fill_to_words((HeapWord*) this, word_size, 0xf1f1f1f1);
881 #endif
882 }
883
884 size_t VirtualSpaceNode::used_words_in_vs() const {
885 return pointer_delta(top(), bottom(), sizeof(MetaWord));
886 }
887
888 // Space committed in the VirtualSpace
889 size_t VirtualSpaceNode::capacity_words_in_vs() const {
890 return pointer_delta(end(), bottom(), sizeof(MetaWord));
891 }
892
893 size_t VirtualSpaceNode::free_words_in_vs() const {
894 return pointer_delta(end(), top(), sizeof(MetaWord));
895 }
896
897 // Allocates the chunk from the virtual space only.
898 // This interface is also used internally for debugging. Not all
899 // chunks removed here are necessarily used for allocation.
900 Metachunk* VirtualSpaceNode::take_from_committed(size_t chunk_word_size) {
901 // Bottom of the new chunk
902 MetaWord* chunk_limit = top();
903 assert(chunk_limit != NULL, "Not safe to call this method");
904
905 // The virtual spaces are always expanded by the
906 // commit granularity to enforce the following condition.
907 // Without this the is_available check will not work correctly.
908 assert(_virtual_space.committed_size() == _virtual_space.actual_committed_size(),
909 "The committed memory doesn't match the expanded memory.");
910
911 if (!is_available(chunk_word_size)) {
912 if (TraceMetadataChunkAllocation) {
913 gclog_or_tty->print("VirtualSpaceNode::take_from_committed() not available %d words ", chunk_word_size);
914 // Dump some information about the virtual space that is nearly full
915 print_on(gclog_or_tty);
916 }
917 return NULL;
918 }
919
920 // Take the space (bump top on the current virtual space).
921 inc_top(chunk_word_size);
922
923 // Initialize the chunk
924 Metachunk* result = ::new (chunk_limit) Metachunk(chunk_word_size, this);
925 return result;
926 }
927
928
929 // Expand the virtual space (commit more of the reserved space)
930 bool VirtualSpaceNode::expand_by(size_t min_words, size_t preferred_words) {
931 size_t min_bytes = min_words * BytesPerWord;
932 size_t preferred_bytes = preferred_words * BytesPerWord;
933
934 size_t uncommitted = virtual_space()->reserved_size() - virtual_space()->actual_committed_size();
935
936 if (uncommitted < min_bytes) {
937 return false;
938 }
939
940 size_t commit = MIN2(preferred_bytes, uncommitted);
941 bool result = virtual_space()->expand_by(commit, false);
942
943 assert(result, "Failed to commit memory");
944
945 return result;
946 }
947
948 Metachunk* VirtualSpaceNode::get_chunk_vs(size_t chunk_word_size) {
949 assert_lock_strong(SpaceManager::expand_lock());
950 Metachunk* result = take_from_committed(chunk_word_size);
951 if (result != NULL) {
952 inc_container_count();
953 }
954 return result;
955 }
956
957 bool VirtualSpaceNode::initialize() {
958
959 if (!_rs.is_reserved()) {
960 return false;
961 }
962
963 // These are necessary restriction to make sure that the virtual space always
964 // grows in steps of Metaspace::commit_alignment(). If both base and size are
965 // aligned only the middle alignment of the VirtualSpace is used.
966 assert_is_ptr_aligned(_rs.base(), Metaspace::commit_alignment());
967 assert_is_size_aligned(_rs.size(), Metaspace::commit_alignment());
968
969 // ReservedSpaces marked as special will have the entire memory
970 // pre-committed. Setting a committed size will make sure that
971 // committed_size and actual_committed_size agrees.
972 size_t pre_committed_size = _rs.special() ? _rs.size() : 0;
973
974 bool result = virtual_space()->initialize_with_granularity(_rs, pre_committed_size,
975 Metaspace::commit_alignment());
976 if (result) {
977 assert(virtual_space()->committed_size() == virtual_space()->actual_committed_size(),
978 "Checking that the pre-committed memory was registered by the VirtualSpace");
979
980 set_top((MetaWord*)virtual_space()->low());
981 set_reserved(MemRegion((HeapWord*)_rs.base(),
982 (HeapWord*)(_rs.base() + _rs.size())));
983
984 assert(reserved()->start() == (HeapWord*) _rs.base(),
985 err_msg("Reserved start was not set properly " PTR_FORMAT
986 " != " PTR_FORMAT, reserved()->start(), _rs.base()));
987 assert(reserved()->word_size() == _rs.size() / BytesPerWord,
988 err_msg("Reserved size was not set properly " SIZE_FORMAT
989 " != " SIZE_FORMAT, reserved()->word_size(),
990 _rs.size() / BytesPerWord));
991 }
992
993 return result;
994 }
995
996 void VirtualSpaceNode::print_on(outputStream* st) const {
997 size_t used = used_words_in_vs();
998 size_t capacity = capacity_words_in_vs();
999 VirtualSpace* vs = virtual_space();
1000 st->print_cr(" space @ " PTR_FORMAT " " SIZE_FORMAT "K, %3d%% used "
1001 "[" PTR_FORMAT ", " PTR_FORMAT ", "
1002 PTR_FORMAT ", " PTR_FORMAT ")",
1003 vs, capacity / K,
1004 capacity == 0 ? 0 : used * 100 / capacity,
1005 bottom(), top(), end(),
1006 vs->high_boundary());
1007 }
1008
1009 #ifdef ASSERT
1010 void VirtualSpaceNode::mangle() {
1011 size_t word_size = capacity_words_in_vs();
1012 Copy::fill_to_words((HeapWord*) low(), word_size, 0xf1f1f1f1);
1013 }
1014 #endif // ASSERT
1015
1016 // VirtualSpaceList methods
1017 // Space allocated from the VirtualSpace
1018
1019 VirtualSpaceList::~VirtualSpaceList() {
1020 VirtualSpaceListIterator iter(virtual_space_list());
1021 while (iter.repeat()) {
1022 VirtualSpaceNode* vsl = iter.get_next();
1023 delete vsl;
1024 }
1025 }
1026
1027 void VirtualSpaceList::inc_reserved_words(size_t v) {
1028 assert_lock_strong(SpaceManager::expand_lock());
1029 _reserved_words = _reserved_words + v;
1030 }
1031 void VirtualSpaceList::dec_reserved_words(size_t v) {
1032 assert_lock_strong(SpaceManager::expand_lock());
1033 _reserved_words = _reserved_words - v;
1034 }
1035
1036 #define assert_committed_below_limit() \
1037 assert(MetaspaceAux::committed_bytes() <= MaxMetaspaceSize, \
1038 err_msg("Too much committed memory. Committed: " SIZE_FORMAT \
1039 " limit (MaxMetaspaceSize): " SIZE_FORMAT, \
1040 MetaspaceAux::committed_bytes(), MaxMetaspaceSize));
1041
1042 void VirtualSpaceList::inc_committed_words(size_t v) {
1043 assert_lock_strong(SpaceManager::expand_lock());
1044 _committed_words = _committed_words + v;
1045
1046 assert_committed_below_limit();
1047 }
1048 void VirtualSpaceList::dec_committed_words(size_t v) {
1049 assert_lock_strong(SpaceManager::expand_lock());
1050 _committed_words = _committed_words - v;
1051
1052 assert_committed_below_limit();
1053 }
1054
1055 void VirtualSpaceList::inc_virtual_space_count() {
1056 assert_lock_strong(SpaceManager::expand_lock());
1057 _virtual_space_count++;
1058 }
1059 void VirtualSpaceList::dec_virtual_space_count() {
1060 assert_lock_strong(SpaceManager::expand_lock());
1061 _virtual_space_count--;
1062 }
1063
1064 void ChunkManager::remove_chunk(Metachunk* chunk) {
1065 size_t word_size = chunk->word_size();
1066 ChunkIndex index = list_index(word_size);
1067 if (index != HumongousIndex) {
1068 free_chunks(index)->remove_chunk(chunk);
1069 } else {
1070 humongous_dictionary()->remove_chunk(chunk);
1071 }
1072
1073 // Chunk is being removed from the chunks free list.
1074 dec_free_chunks_total(chunk->word_size());
1075 }
1076
1077 // Walk the list of VirtualSpaceNodes and delete
1078 // nodes with a 0 container_count. Remove Metachunks in
1079 // the node from their respective freelists.
1080 void VirtualSpaceList::purge(ChunkManager* chunk_manager) {
1081 assert(SafepointSynchronize::is_at_safepoint(), "must be called at safepoint for contains to work");
1082 assert_lock_strong(SpaceManager::expand_lock());
1083 // Don't use a VirtualSpaceListIterator because this
1084 // list is being changed and a straightforward use of an iterator is not safe.
1085 VirtualSpaceNode* purged_vsl = NULL;
1086 VirtualSpaceNode* prev_vsl = virtual_space_list();
1087 VirtualSpaceNode* next_vsl = prev_vsl;
1088 while (next_vsl != NULL) {
1089 VirtualSpaceNode* vsl = next_vsl;
1090 next_vsl = vsl->next();
1091 // Don't free the current virtual space since it will likely
1092 // be needed soon.
1093 if (vsl->container_count() == 0 && vsl != current_virtual_space()) {
1094 // Unlink it from the list
1095 if (prev_vsl == vsl) {
1096 // This is the case of the current node being the first node.
1097 assert(vsl == virtual_space_list(), "Expected to be the first node");
1098 set_virtual_space_list(vsl->next());
1099 } else {
1100 prev_vsl->set_next(vsl->next());
1101 }
1102
1103 vsl->purge(chunk_manager);
1104 dec_reserved_words(vsl->reserved_words());
1105 dec_committed_words(vsl->committed_words());
1106 dec_virtual_space_count();
1107 purged_vsl = vsl;
1108 delete vsl;
1109 } else {
1110 prev_vsl = vsl;
1111 }
1112 }
1113 #ifdef ASSERT
1114 if (purged_vsl != NULL) {
1115 // List should be stable enough to use an iterator here.
1116 VirtualSpaceListIterator iter(virtual_space_list());
1117 while (iter.repeat()) {
1118 VirtualSpaceNode* vsl = iter.get_next();
1119 assert(vsl != purged_vsl, "Purge of vsl failed");
1120 }
1121 }
1122 #endif
1123 }
1124
1125
1126 // This function looks at the mmap regions in the metaspace without locking.
1127 // The chunks are added with store ordering and not deleted except for at
1128 // unloading time during a safepoint.
1129 bool VirtualSpaceList::contains(const void* ptr) {
1130 // List should be stable enough to use an iterator here because removing virtual
1131 // space nodes is only allowed at a safepoint.
1132 VirtualSpaceListIterator iter(virtual_space_list());
1133 while (iter.repeat()) {
1134 VirtualSpaceNode* vsn = iter.get_next();
1135 if (vsn->contains(ptr)) {
1136 return true;
1137 }
1138 }
1139 return false;
1140 }
1141
1142 void VirtualSpaceList::retire_current_virtual_space() {
1143 assert_lock_strong(SpaceManager::expand_lock());
1144
1145 VirtualSpaceNode* vsn = current_virtual_space();
1146
1147 ChunkManager* cm = is_class() ? Metaspace::chunk_manager_class() :
1148 Metaspace::chunk_manager_metadata();
1149
1150 vsn->retire(cm);
1151 }
1152
1153 void VirtualSpaceNode::retire(ChunkManager* chunk_manager) {
1154 for (int i = (int)MediumIndex; i >= (int)ZeroIndex; --i) {
1155 ChunkIndex index = (ChunkIndex)i;
1156 size_t chunk_size = chunk_manager->free_chunks(index)->size();
1157
1158 while (free_words_in_vs() >= chunk_size) {
1159 DEBUG_ONLY(verify_container_count();)
1160 Metachunk* chunk = get_chunk_vs(chunk_size);
1161 assert(chunk != NULL, "allocation should have been successful");
1162
1163 chunk_manager->return_chunks(index, chunk);
1164 chunk_manager->inc_free_chunks_total(chunk_size);
1165 DEBUG_ONLY(verify_container_count();)
1166 }
1167 }
1168 assert(free_words_in_vs() == 0, "should be empty now");
1169 }
1170
1171 VirtualSpaceList::VirtualSpaceList(size_t word_size) :
1172 _is_class(false),
1173 _virtual_space_list(NULL),
1174 _current_virtual_space(NULL),
1175 _reserved_words(0),
1176 _committed_words(0),
1177 _virtual_space_count(0) {
1178 MutexLockerEx cl(SpaceManager::expand_lock(),
1179 Mutex::_no_safepoint_check_flag);
1180 create_new_virtual_space(word_size);
1181 }
1182
1183 VirtualSpaceList::VirtualSpaceList(ReservedSpace rs) :
1184 _is_class(true),
1185 _virtual_space_list(NULL),
1186 _current_virtual_space(NULL),
1187 _reserved_words(0),
1188 _committed_words(0),
1189 _virtual_space_count(0) {
1190 MutexLockerEx cl(SpaceManager::expand_lock(),
1191 Mutex::_no_safepoint_check_flag);
1192 VirtualSpaceNode* class_entry = new VirtualSpaceNode(rs);
1193 bool succeeded = class_entry->initialize();
1194 if (succeeded) {
1195 link_vs(class_entry);
1196 }
1197 }
1198
1199 size_t VirtualSpaceList::free_bytes() {
1200 return virtual_space_list()->free_words_in_vs() * BytesPerWord;
1201 }
1202
1203 // Allocate another meta virtual space and add it to the list.
1204 bool VirtualSpaceList::create_new_virtual_space(size_t vs_word_size) {
1205 assert_lock_strong(SpaceManager::expand_lock());
1206
1207 if (is_class()) {
1208 assert(false, "We currently don't support more than one VirtualSpace for"
1209 " the compressed class space. The initialization of the"
1210 " CCS uses another code path and should not hit this path.");
1211 return false;
1212 }
1213
1214 if (vs_word_size == 0) {
1215 assert(false, "vs_word_size should always be at least _reserve_alignment large.");
1216 return false;
1217 }
1218
1219 // Reserve the space
1220 size_t vs_byte_size = vs_word_size * BytesPerWord;
1221 assert_is_size_aligned(vs_byte_size, Metaspace::reserve_alignment());
1222
1223 // Allocate the meta virtual space and initialize it.
1224 VirtualSpaceNode* new_entry = new VirtualSpaceNode(vs_byte_size);
1225 if (!new_entry->initialize()) {
1226 delete new_entry;
1227 return false;
1228 } else {
1229 assert(new_entry->reserved_words() == vs_word_size,
1230 "Reserved memory size differs from requested memory size");
1231 // ensure lock-free iteration sees fully initialized node
1232 OrderAccess::storestore();
1233 link_vs(new_entry);
1234 return true;
1235 }
1236 }
1237
1238 void VirtualSpaceList::link_vs(VirtualSpaceNode* new_entry) {
1239 if (virtual_space_list() == NULL) {
1240 set_virtual_space_list(new_entry);
1241 } else {
1242 current_virtual_space()->set_next(new_entry);
1243 }
1244 set_current_virtual_space(new_entry);
1245 inc_reserved_words(new_entry->reserved_words());
1246 inc_committed_words(new_entry->committed_words());
1247 inc_virtual_space_count();
1248 #ifdef ASSERT
1249 new_entry->mangle();
1250 #endif
1251 if (TraceMetavirtualspaceAllocation && Verbose) {
1252 VirtualSpaceNode* vsl = current_virtual_space();
1253 vsl->print_on(gclog_or_tty);
1254 }
1255 }
1256
1257 bool VirtualSpaceList::expand_node_by(VirtualSpaceNode* node,
1258 size_t min_words,
1259 size_t preferred_words) {
1260 size_t before = node->committed_words();
1261
1262 bool result = node->expand_by(min_words, preferred_words);
1263
1264 size_t after = node->committed_words();
1265
1266 // after and before can be the same if the memory was pre-committed.
1267 assert(after >= before, "Inconsistency");
1268 inc_committed_words(after - before);
1269
1270 return result;
1271 }
1272
1273 bool VirtualSpaceList::expand_by(size_t min_words, size_t preferred_words) {
1274 assert_is_size_aligned(min_words, Metaspace::commit_alignment_words());
1275 assert_is_size_aligned(preferred_words, Metaspace::commit_alignment_words());
1276 assert(min_words <= preferred_words, "Invalid arguments");
1277
1278 if (!MetaspaceGC::can_expand(min_words, this->is_class())) {
1279 return false;
1280 }
1281
1282 size_t allowed_expansion_words = MetaspaceGC::allowed_expansion();
1283 if (allowed_expansion_words < min_words) {
1284 return false;
1285 }
1286
1287 size_t max_expansion_words = MIN2(preferred_words, allowed_expansion_words);
1288
1289 // Commit more memory from the the current virtual space.
1290 bool vs_expanded = expand_node_by(current_virtual_space(),
1291 min_words,
1292 max_expansion_words);
1293 if (vs_expanded) {
1294 return true;
1295 }
1296 retire_current_virtual_space();
1297
1298 // Get another virtual space.
1299 size_t grow_vs_words = MAX2((size_t)VirtualSpaceSize, preferred_words);
1300 grow_vs_words = align_size_up(grow_vs_words, Metaspace::reserve_alignment_words());
1301
1302 if (create_new_virtual_space(grow_vs_words)) {
1303 if (current_virtual_space()->is_pre_committed()) {
1304 // The memory was pre-committed, so we are done here.
1305 assert(min_words <= current_virtual_space()->committed_words(),
1306 "The new VirtualSpace was pre-committed, so it"
1307 "should be large enough to fit the alloc request.");
1308 return true;
1309 }
1310
1311 return expand_node_by(current_virtual_space(),
1312 min_words,
1313 max_expansion_words);
1314 }
1315
1316 return false;
1317 }
1318
1319 Metachunk* VirtualSpaceList::get_new_chunk(size_t word_size,
1320 size_t grow_chunks_by_words,
1321 size_t medium_chunk_bunch) {
1322
1323 // Allocate a chunk out of the current virtual space.
1324 Metachunk* next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
1325
1326 if (next != NULL) {
1327 return next;
1328 }
1329
1330 // The expand amount is currently only determined by the requested sizes
1331 // and not how much committed memory is left in the current virtual space.
1332
1333 size_t min_word_size = align_size_up(grow_chunks_by_words, Metaspace::commit_alignment_words());
1334 size_t preferred_word_size = align_size_up(medium_chunk_bunch, Metaspace::commit_alignment_words());
1335 if (min_word_size >= preferred_word_size) {
1336 // Can happen when humongous chunks are allocated.
1337 preferred_word_size = min_word_size;
1338 }
1339
1340 bool expanded = expand_by(min_word_size, preferred_word_size);
1341 if (expanded) {
1342 next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
1343 assert(next != NULL, "The allocation was expected to succeed after the expansion");
1344 }
1345
1346 return next;
1347 }
1348
1349 void VirtualSpaceList::print_on(outputStream* st) const {
1350 if (TraceMetadataChunkAllocation && Verbose) {
1351 VirtualSpaceListIterator iter(virtual_space_list());
1352 while (iter.repeat()) {
1353 VirtualSpaceNode* node = iter.get_next();
1354 node->print_on(st);
1355 }
1356 }
1357 }
1358
1359 // MetaspaceGC methods
1360
1361 // VM_CollectForMetadataAllocation is the vm operation used to GC.
1362 // Within the VM operation after the GC the attempt to allocate the metadata
1363 // should succeed. If the GC did not free enough space for the metaspace
1364 // allocation, the HWM is increased so that another virtualspace will be
1365 // allocated for the metadata. With perm gen the increase in the perm
1366 // gen had bounds, MinMetaspaceExpansion and MaxMetaspaceExpansion. The
1367 // metaspace policy uses those as the small and large steps for the HWM.
1368 //
1369 // After the GC the compute_new_size() for MetaspaceGC is called to
1370 // resize the capacity of the metaspaces. The current implementation
1371 // is based on the flags MinMetaspaceFreeRatio and MaxMetaspaceFreeRatio used
1372 // to resize the Java heap by some GC's. New flags can be implemented
1373 // if really needed. MinMetaspaceFreeRatio is used to calculate how much
1374 // free space is desirable in the metaspace capacity to decide how much
1375 // to increase the HWM. MaxMetaspaceFreeRatio is used to decide how much
1376 // free space is desirable in the metaspace capacity before decreasing
1377 // the HWM.
1378
1379 // Calculate the amount to increase the high water mark (HWM).
1380 // Increase by a minimum amount (MinMetaspaceExpansion) so that
1381 // another expansion is not requested too soon. If that is not
1382 // enough to satisfy the allocation, increase by MaxMetaspaceExpansion.
1383 // If that is still not enough, expand by the size of the allocation
1384 // plus some.
1385 size_t MetaspaceGC::delta_capacity_until_GC(size_t bytes) {
1386 size_t min_delta = MinMetaspaceExpansion;
1387 size_t max_delta = MaxMetaspaceExpansion;
1388 size_t delta = align_size_up(bytes, Metaspace::commit_alignment());
1389
1390 if (delta <= min_delta) {
1391 delta = min_delta;
1392 } else if (delta <= max_delta) {
1393 // Don't want to hit the high water mark on the next
1394 // allocation so make the delta greater than just enough
1395 // for this allocation.
1396 delta = max_delta;
1397 } else {
1398 // This allocation is large but the next ones are probably not
1399 // so increase by the minimum.
1400 delta = delta + min_delta;
1401 }
1402
1403 assert_is_size_aligned(delta, Metaspace::commit_alignment());
1404
1405 return delta;
1406 }
1407
1408 size_t MetaspaceGC::capacity_until_GC() {
1409 size_t value = (size_t)OrderAccess::load_ptr_acquire(&_capacity_until_GC);
1410 assert(value >= MetaspaceSize, "Not initialied properly?");
1411 return value;
1412 }
1413
1414 size_t MetaspaceGC::inc_capacity_until_GC(size_t v) {
1415 assert_is_size_aligned(v, Metaspace::commit_alignment());
1416
1417 return (size_t)Atomic::add_ptr(v, &_capacity_until_GC);
1418 }
1419
1420 size_t MetaspaceGC::dec_capacity_until_GC(size_t v) {
1421 assert_is_size_aligned(v, Metaspace::commit_alignment());
1422
1423 return (size_t)Atomic::add_ptr(-(intptr_t)v, &_capacity_until_GC);
1424 }
1425
1426 void MetaspaceGC::initialize() {
1427 // Set the high-water mark to MaxMetapaceSize during VM initializaton since
1428 // we can't do a GC during initialization.
1429 _capacity_until_GC = MaxMetaspaceSize;
1430 }
1431
1432 void MetaspaceGC::post_initialize() {
1433 // Reset the high-water mark once the VM initialization is done.
1434 _capacity_until_GC = MAX2(MetaspaceAux::committed_bytes(), (size_t)MetaspaceSize);
1435 }
1436
1437 bool MetaspaceGC::can_expand(size_t word_size, bool is_class) {
1438 // Check if the compressed class space is full.
1439 if (is_class && Metaspace::using_class_space()) {
1440 size_t class_committed = MetaspaceAux::committed_bytes(Metaspace::ClassType);
1441 if (class_committed + word_size * BytesPerWord > CompressedClassSpaceSize) {
1442 return false;
1443 }
1444 }
1445
1446 // Check if the user has imposed a limit on the metaspace memory.
1447 size_t committed_bytes = MetaspaceAux::committed_bytes();
1448 if (committed_bytes + word_size * BytesPerWord > MaxMetaspaceSize) {
1449 return false;
1450 }
1451
1452 return true;
1453 }
1454
1455 size_t MetaspaceGC::allowed_expansion() {
1456 size_t committed_bytes = MetaspaceAux::committed_bytes();
1457 size_t capacity_until_gc = capacity_until_GC();
1458
1459 assert(capacity_until_gc >= committed_bytes,
1460 err_msg("capacity_until_gc: " SIZE_FORMAT " < committed_bytes: " SIZE_FORMAT,
1461 capacity_until_gc, committed_bytes));
1462
1463 size_t left_until_max = MaxMetaspaceSize - committed_bytes;
1464 size_t left_until_GC = capacity_until_gc - committed_bytes;
1465 size_t left_to_commit = MIN2(left_until_GC, left_until_max);
1466
1467 return left_to_commit / BytesPerWord;
1468 }
1469
1470 void MetaspaceGC::compute_new_size() {
1471 assert(_shrink_factor <= 100, "invalid shrink factor");
1472 uint current_shrink_factor = _shrink_factor;
1473 _shrink_factor = 0;
1474
1475 // Using committed_bytes() for used_after_gc is an overestimation, since the
1476 // chunk free lists are included in committed_bytes() and the memory in an
1477 // un-fragmented chunk free list is available for future allocations.
1478 // However, if the chunk free lists becomes fragmented, then the memory may
1479 // not be available for future allocations and the memory is therefore "in use".
1480 // Including the chunk free lists in the definition of "in use" is therefore
1481 // necessary. Not including the chunk free lists can cause capacity_until_GC to
1482 // shrink below committed_bytes() and this has caused serious bugs in the past.
1483 const size_t used_after_gc = MetaspaceAux::committed_bytes();
1484 const size_t capacity_until_GC = MetaspaceGC::capacity_until_GC();
1485
1486 const double minimum_free_percentage = MinMetaspaceFreeRatio / 100.0;
1487 const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1488
1489 const double min_tmp = used_after_gc / maximum_used_percentage;
1490 size_t minimum_desired_capacity =
1491 (size_t)MIN2(min_tmp, double(max_uintx));
1492 // Don't shrink less than the initial generation size
1493 minimum_desired_capacity = MAX2(minimum_desired_capacity,
1494 (size_t)MetaspaceSize);
1495
1496 if (PrintGCDetails && Verbose) {
1497 gclog_or_tty->print_cr("\nMetaspaceGC::compute_new_size: ");
1498 gclog_or_tty->print_cr(" "
1499 " minimum_free_percentage: %6.2f"
1500 " maximum_used_percentage: %6.2f",
1501 minimum_free_percentage,
1502 maximum_used_percentage);
1503 gclog_or_tty->print_cr(" "
1504 " used_after_gc : %6.1fKB",
1505 used_after_gc / (double) K);
1506 }
1507
1508
1509 size_t shrink_bytes = 0;
1510 if (capacity_until_GC < minimum_desired_capacity) {
1511 // If we have less capacity below the metaspace HWM, then
1512 // increment the HWM.
1513 size_t expand_bytes = minimum_desired_capacity - capacity_until_GC;
1514 expand_bytes = align_size_up(expand_bytes, Metaspace::commit_alignment());
1515 // Don't expand unless it's significant
1516 if (expand_bytes >= MinMetaspaceExpansion) {
1517 size_t new_capacity_until_GC = MetaspaceGC::inc_capacity_until_GC(expand_bytes);
1518 Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
1519 new_capacity_until_GC,
1520 MetaspaceGCThresholdUpdater::ComputeNewSize);
1521 if (PrintGCDetails && Verbose) {
1522 gclog_or_tty->print_cr(" expanding:"
1523 " minimum_desired_capacity: %6.1fKB"
1524 " expand_bytes: %6.1fKB"
1525 " MinMetaspaceExpansion: %6.1fKB"
1526 " new metaspace HWM: %6.1fKB",
1527 minimum_desired_capacity / (double) K,
1528 expand_bytes / (double) K,
1529 MinMetaspaceExpansion / (double) K,
1530 new_capacity_until_GC / (double) K);
1531 }
1532 }
1533 return;
1534 }
1535
1536 // No expansion, now see if we want to shrink
1537 // We would never want to shrink more than this
1538 assert(capacity_until_GC >= minimum_desired_capacity,
1539 err_msg(SIZE_FORMAT " >= " SIZE_FORMAT,
1540 capacity_until_GC, minimum_desired_capacity));
1541 size_t max_shrink_bytes = capacity_until_GC - minimum_desired_capacity;
1542
1543 // Should shrinking be considered?
1544 if (MaxMetaspaceFreeRatio < 100) {
1545 const double maximum_free_percentage = MaxMetaspaceFreeRatio / 100.0;
1546 const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1547 const double max_tmp = used_after_gc / minimum_used_percentage;
1548 size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
1549 maximum_desired_capacity = MAX2(maximum_desired_capacity,
1550 (size_t)MetaspaceSize);
1551 if (PrintGCDetails && Verbose) {
1552 gclog_or_tty->print_cr(" "
1553 " maximum_free_percentage: %6.2f"
1554 " minimum_used_percentage: %6.2f",
1555 maximum_free_percentage,
1556 minimum_used_percentage);
1557 gclog_or_tty->print_cr(" "
1558 " minimum_desired_capacity: %6.1fKB"
1559 " maximum_desired_capacity: %6.1fKB",
1560 minimum_desired_capacity / (double) K,
1561 maximum_desired_capacity / (double) K);
1562 }
1563
1564 assert(minimum_desired_capacity <= maximum_desired_capacity,
1565 "sanity check");
1566
1567 if (capacity_until_GC > maximum_desired_capacity) {
1568 // Capacity too large, compute shrinking size
1569 shrink_bytes = capacity_until_GC - maximum_desired_capacity;
1570 // We don't want shrink all the way back to initSize if people call
1571 // System.gc(), because some programs do that between "phases" and then
1572 // we'd just have to grow the heap up again for the next phase. So we
1573 // damp the shrinking: 0% on the first call, 10% on the second call, 40%
1574 // on the third call, and 100% by the fourth call. But if we recompute
1575 // size without shrinking, it goes back to 0%.
1576 shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
1577
1578 shrink_bytes = align_size_down(shrink_bytes, Metaspace::commit_alignment());
1579
1580 assert(shrink_bytes <= max_shrink_bytes,
1581 err_msg("invalid shrink size " SIZE_FORMAT " not <= " SIZE_FORMAT,
1582 shrink_bytes, max_shrink_bytes));
1583 if (current_shrink_factor == 0) {
1584 _shrink_factor = 10;
1585 } else {
1586 _shrink_factor = MIN2(current_shrink_factor * 4, (uint) 100);
1587 }
1588 if (PrintGCDetails && Verbose) {
1589 gclog_or_tty->print_cr(" "
1590 " shrinking:"
1591 " initSize: %.1fK"
1592 " maximum_desired_capacity: %.1fK",
1593 MetaspaceSize / (double) K,
1594 maximum_desired_capacity / (double) K);
1595 gclog_or_tty->print_cr(" "
1596 " shrink_bytes: %.1fK"
1597 " current_shrink_factor: %d"
1598 " new shrink factor: %d"
1599 " MinMetaspaceExpansion: %.1fK",
1600 shrink_bytes / (double) K,
1601 current_shrink_factor,
1602 _shrink_factor,
1603 MinMetaspaceExpansion / (double) K);
1604 }
1605 }
1606 }
1607
1608 // Don't shrink unless it's significant
1609 if (shrink_bytes >= MinMetaspaceExpansion &&
1610 ((capacity_until_GC - shrink_bytes) >= MetaspaceSize)) {
1611 size_t new_capacity_until_GC = MetaspaceGC::dec_capacity_until_GC(shrink_bytes);
1612 Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
1613 new_capacity_until_GC,
1614 MetaspaceGCThresholdUpdater::ComputeNewSize);
1615 }
1616 }
1617
1618 // Metadebug methods
1619
1620 void Metadebug::init_allocation_fail_alot_count() {
1621 if (MetadataAllocationFailALot) {
1622 _allocation_fail_alot_count =
1623 1+(long)((double)MetadataAllocationFailALotInterval*os::random()/(max_jint+1.0));
1624 }
1625 }
1626
1627 #ifdef ASSERT
1628 bool Metadebug::test_metadata_failure() {
1629 if (MetadataAllocationFailALot &&
1630 Threads::is_vm_complete()) {
1631 if (_allocation_fail_alot_count > 0) {
1632 _allocation_fail_alot_count--;
1633 } else {
1634 if (TraceMetadataChunkAllocation && Verbose) {
1635 gclog_or_tty->print_cr("Metadata allocation failing for "
1636 "MetadataAllocationFailALot");
1637 }
1638 init_allocation_fail_alot_count();
1639 return true;
1640 }
1641 }
1642 return false;
1643 }
1644 #endif
1645
1646 // ChunkManager methods
1647
1648 size_t ChunkManager::free_chunks_total_words() {
1649 return _free_chunks_total;
1650 }
1651
1652 size_t ChunkManager::free_chunks_total_bytes() {
1653 return free_chunks_total_words() * BytesPerWord;
1654 }
1655
1656 size_t ChunkManager::free_chunks_count() {
1657 #ifdef ASSERT
1658 if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
1659 MutexLockerEx cl(SpaceManager::expand_lock(),
1660 Mutex::_no_safepoint_check_flag);
1661 // This lock is only needed in debug because the verification
1662 // of the _free_chunks_totals walks the list of free chunks
1663 slow_locked_verify_free_chunks_count();
1664 }
1665 #endif
1666 return _free_chunks_count;
1667 }
1668
1669 void ChunkManager::locked_verify_free_chunks_total() {
1670 assert_lock_strong(SpaceManager::expand_lock());
1671 assert(sum_free_chunks() == _free_chunks_total,
1672 err_msg("_free_chunks_total " SIZE_FORMAT " is not the"
1673 " same as sum " SIZE_FORMAT, _free_chunks_total,
1674 sum_free_chunks()));
1675 }
1676
1677 void ChunkManager::verify_free_chunks_total() {
1678 MutexLockerEx cl(SpaceManager::expand_lock(),
1679 Mutex::_no_safepoint_check_flag);
1680 locked_verify_free_chunks_total();
1681 }
1682
1683 void ChunkManager::locked_verify_free_chunks_count() {
1684 assert_lock_strong(SpaceManager::expand_lock());
1685 assert(sum_free_chunks_count() == _free_chunks_count,
1686 err_msg("_free_chunks_count " SIZE_FORMAT " is not the"
1687 " same as sum " SIZE_FORMAT, _free_chunks_count,
1688 sum_free_chunks_count()));
1689 }
1690
1691 void ChunkManager::verify_free_chunks_count() {
1692 #ifdef ASSERT
1693 MutexLockerEx cl(SpaceManager::expand_lock(),
1694 Mutex::_no_safepoint_check_flag);
1695 locked_verify_free_chunks_count();
1696 #endif
1697 }
1698
1699 void ChunkManager::verify() {
1700 MutexLockerEx cl(SpaceManager::expand_lock(),
1701 Mutex::_no_safepoint_check_flag);
1702 locked_verify();
1703 }
1704
1705 void ChunkManager::locked_verify() {
1706 locked_verify_free_chunks_count();
1707 locked_verify_free_chunks_total();
1708 }
1709
1710 void ChunkManager::locked_print_free_chunks(outputStream* st) {
1711 assert_lock_strong(SpaceManager::expand_lock());
1712 st->print_cr("Free chunk total " SIZE_FORMAT " count " SIZE_FORMAT,
1713 _free_chunks_total, _free_chunks_count);
1714 }
1715
1716 void ChunkManager::locked_print_sum_free_chunks(outputStream* st) {
1717 assert_lock_strong(SpaceManager::expand_lock());
1718 st->print_cr("Sum free chunk total " SIZE_FORMAT " count " SIZE_FORMAT,
1719 sum_free_chunks(), sum_free_chunks_count());
1720 }
1721 ChunkList* ChunkManager::free_chunks(ChunkIndex index) {
1722 return &_free_chunks[index];
1723 }
1724
1725 // These methods that sum the free chunk lists are used in printing
1726 // methods that are used in product builds.
1727 size_t ChunkManager::sum_free_chunks() {
1728 assert_lock_strong(SpaceManager::expand_lock());
1729 size_t result = 0;
1730 for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1731 ChunkList* list = free_chunks(i);
1732
1733 if (list == NULL) {
1734 continue;
1735 }
1736
1737 result = result + list->count() * list->size();
1738 }
1739 result = result + humongous_dictionary()->total_size();
1740 return result;
1741 }
1742
1743 size_t ChunkManager::sum_free_chunks_count() {
1744 assert_lock_strong(SpaceManager::expand_lock());
1745 size_t count = 0;
1746 for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1747 ChunkList* list = free_chunks(i);
1748 if (list == NULL) {
1749 continue;
1750 }
1751 count = count + list->count();
1752 }
1753 count = count + humongous_dictionary()->total_free_blocks();
1754 return count;
1755 }
1756
1757 ChunkList* ChunkManager::find_free_chunks_list(size_t word_size) {
1758 ChunkIndex index = list_index(word_size);
1759 assert(index < HumongousIndex, "No humongous list");
1760 return free_chunks(index);
1761 }
1762
1763 Metachunk* ChunkManager::free_chunks_get(size_t word_size) {
1764 assert_lock_strong(SpaceManager::expand_lock());
1765
1766 slow_locked_verify();
1767
1768 Metachunk* chunk = NULL;
1769 if (list_index(word_size) != HumongousIndex) {
1770 ChunkList* free_list = find_free_chunks_list(word_size);
1771 assert(free_list != NULL, "Sanity check");
1772
1773 chunk = free_list->head();
1774
1775 if (chunk == NULL) {
1776 return NULL;
1777 }
1778
1779 // Remove the chunk as the head of the list.
1780 free_list->remove_chunk(chunk);
1781
1782 if (TraceMetadataChunkAllocation && Verbose) {
1783 gclog_or_tty->print_cr("ChunkManager::free_chunks_get: free_list "
1784 PTR_FORMAT " head " PTR_FORMAT " size " SIZE_FORMAT,
1785 free_list, chunk, chunk->word_size());
1786 }
1787 } else {
1788 chunk = humongous_dictionary()->get_chunk(
1789 word_size,
1790 FreeBlockDictionary<Metachunk>::atLeast);
1791
1792 if (chunk == NULL) {
1793 return NULL;
1794 }
1795
1796 if (TraceMetadataHumongousAllocation) {
1797 size_t waste = chunk->word_size() - word_size;
1798 gclog_or_tty->print_cr("Free list allocate humongous chunk size "
1799 SIZE_FORMAT " for requested size " SIZE_FORMAT
1800 " waste " SIZE_FORMAT,
1801 chunk->word_size(), word_size, waste);
1802 }
1803 }
1804
1805 // Chunk is being removed from the chunks free list.
1806 dec_free_chunks_total(chunk->word_size());
1807
1808 // Remove it from the links to this freelist
1809 chunk->set_next(NULL);
1810 chunk->set_prev(NULL);
1811 #ifdef ASSERT
1812 // Chunk is no longer on any freelist. Setting to false make container_count_slow()
1813 // work.
1814 chunk->set_is_tagged_free(false);
1815 #endif
1816 chunk->container()->inc_container_count();
1817
1818 slow_locked_verify();
1819 return chunk;
1820 }
1821
1822 Metachunk* ChunkManager::chunk_freelist_allocate(size_t word_size) {
1823 assert_lock_strong(SpaceManager::expand_lock());
1824 slow_locked_verify();
1825
1826 // Take from the beginning of the list
1827 Metachunk* chunk = free_chunks_get(word_size);
1828 if (chunk == NULL) {
1829 return NULL;
1830 }
1831
1832 assert((word_size <= chunk->word_size()) ||
1833 list_index(chunk->word_size() == HumongousIndex),
1834 "Non-humongous variable sized chunk");
1835 if (TraceMetadataChunkAllocation) {
1836 size_t list_count;
1837 if (list_index(word_size) < HumongousIndex) {
1838 ChunkList* list = find_free_chunks_list(word_size);
1839 list_count = list->count();
1840 } else {
1841 list_count = humongous_dictionary()->total_count();
1842 }
1843 gclog_or_tty->print("ChunkManager::chunk_freelist_allocate: " PTR_FORMAT " chunk "
1844 PTR_FORMAT " size " SIZE_FORMAT " count " SIZE_FORMAT " ",
1845 this, chunk, chunk->word_size(), list_count);
1846 locked_print_free_chunks(gclog_or_tty);
1847 }
1848
1849 return chunk;
1850 }
1851
1852 void ChunkManager::print_on(outputStream* out) const {
1853 if (PrintFLSStatistics != 0) {
1854 const_cast<ChunkManager *>(this)->humongous_dictionary()->report_statistics();
1855 }
1856 }
1857
1858 // SpaceManager methods
1859
1860 void SpaceManager::get_initial_chunk_sizes(Metaspace::MetaspaceType type,
1861 size_t* chunk_word_size,
1862 size_t* class_chunk_word_size) {
1863 switch (type) {
1864 case Metaspace::BootMetaspaceType:
1865 *chunk_word_size = Metaspace::first_chunk_word_size();
1866 *class_chunk_word_size = Metaspace::first_class_chunk_word_size();
1867 break;
1868 case Metaspace::ROMetaspaceType:
1869 *chunk_word_size = SharedReadOnlySize / wordSize;
1870 *class_chunk_word_size = ClassSpecializedChunk;
1871 break;
1872 case Metaspace::ReadWriteMetaspaceType:
1873 *chunk_word_size = SharedReadWriteSize / wordSize;
1874 *class_chunk_word_size = ClassSpecializedChunk;
1875 break;
1876 case Metaspace::AnonymousMetaspaceType:
1877 case Metaspace::ReflectionMetaspaceType:
1878 *chunk_word_size = SpecializedChunk;
1879 *class_chunk_word_size = ClassSpecializedChunk;
1880 break;
1881 default:
1882 *chunk_word_size = SmallChunk;
1883 *class_chunk_word_size = ClassSmallChunk;
1884 break;
1885 }
1886 assert(*chunk_word_size != 0 && *class_chunk_word_size != 0,
1887 err_msg("Initial chunks sizes bad: data " SIZE_FORMAT
1888 " class " SIZE_FORMAT,
1889 *chunk_word_size, *class_chunk_word_size));
1890 }
1891
1892 size_t SpaceManager::sum_free_in_chunks_in_use() const {
1893 MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1894 size_t free = 0;
1895 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1896 Metachunk* chunk = chunks_in_use(i);
1897 while (chunk != NULL) {
1898 free += chunk->free_word_size();
1899 chunk = chunk->next();
1900 }
1901 }
1902 return free;
1903 }
1904
1905 size_t SpaceManager::sum_waste_in_chunks_in_use() const {
1906 MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1907 size_t result = 0;
1908 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1909 result += sum_waste_in_chunks_in_use(i);
1910 }
1911
1912 return result;
1913 }
1914
1915 size_t SpaceManager::sum_waste_in_chunks_in_use(ChunkIndex index) const {
1916 size_t result = 0;
1917 Metachunk* chunk = chunks_in_use(index);
1918 // Count the free space in all the chunk but not the
1919 // current chunk from which allocations are still being done.
1920 while (chunk != NULL) {
1921 if (chunk != current_chunk()) {
1922 result += chunk->free_word_size();
1923 }
1924 chunk = chunk->next();
1925 }
1926 return result;
1927 }
1928
1929 size_t SpaceManager::sum_capacity_in_chunks_in_use() const {
1930 // For CMS use "allocated_chunks_words()" which does not need the
1931 // Metaspace lock. For the other collectors sum over the
1932 // lists. Use both methods as a check that "allocated_chunks_words()"
1933 // is correct. That is, sum_capacity_in_chunks() is too expensive
1934 // to use in the product and allocated_chunks_words() should be used
1935 // but allow for checking that allocated_chunks_words() returns the same
1936 // value as sum_capacity_in_chunks_in_use() which is the definitive
1937 // answer.
1938 if (UseConcMarkSweepGC) {
1939 return allocated_chunks_words();
1940 } else {
1941 MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1942 size_t sum = 0;
1943 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1944 Metachunk* chunk = chunks_in_use(i);
1945 while (chunk != NULL) {
1946 sum += chunk->word_size();
1947 chunk = chunk->next();
1948 }
1949 }
1950 return sum;
1951 }
1952 }
1953
1954 size_t SpaceManager::sum_count_in_chunks_in_use() {
1955 size_t count = 0;
1956 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1957 count = count + sum_count_in_chunks_in_use(i);
1958 }
1959
1960 return count;
1961 }
1962
1963 size_t SpaceManager::sum_count_in_chunks_in_use(ChunkIndex i) {
1964 size_t count = 0;
1965 Metachunk* chunk = chunks_in_use(i);
1966 while (chunk != NULL) {
1967 count++;
1968 chunk = chunk->next();
1969 }
1970 return count;
1971 }
1972
1973
1974 size_t SpaceManager::sum_used_in_chunks_in_use() const {
1975 MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1976 size_t used = 0;
1977 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1978 Metachunk* chunk = chunks_in_use(i);
1979 while (chunk != NULL) {
1980 used += chunk->used_word_size();
1981 chunk = chunk->next();
1982 }
1983 }
1984 return used;
1985 }
1986
1987 void SpaceManager::locked_print_chunks_in_use_on(outputStream* st) const {
1988
1989 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1990 Metachunk* chunk = chunks_in_use(i);
1991 st->print("SpaceManager: %s " PTR_FORMAT,
1992 chunk_size_name(i), chunk);
1993 if (chunk != NULL) {
1994 st->print_cr(" free " SIZE_FORMAT,
1995 chunk->free_word_size());
1996 } else {
1997 st->cr();
1998 }
1999 }
2000
2001 chunk_manager()->locked_print_free_chunks(st);
2002 chunk_manager()->locked_print_sum_free_chunks(st);
2003 }
2004
2005 size_t SpaceManager::calc_chunk_size(size_t word_size) {
2006
2007 // Decide between a small chunk and a medium chunk. Up to
2008 // _small_chunk_limit small chunks can be allocated but
2009 // once a medium chunk has been allocated, no more small
2010 // chunks will be allocated.
2011 size_t chunk_word_size;
2012 if (chunks_in_use(MediumIndex) == NULL &&
2013 sum_count_in_chunks_in_use(SmallIndex) < _small_chunk_limit) {
2014 chunk_word_size = (size_t) small_chunk_size();
2015 if (word_size + Metachunk::overhead() > small_chunk_size()) {
2016 chunk_word_size = medium_chunk_size();
2017 }
2018 } else {
2019 chunk_word_size = medium_chunk_size();
2020 }
2021
2022 // Might still need a humongous chunk. Enforce
2023 // humongous allocations sizes to be aligned up to
2024 // the smallest chunk size.
2025 size_t if_humongous_sized_chunk =
2026 align_size_up(word_size + Metachunk::overhead(),
2027 smallest_chunk_size());
2028 chunk_word_size =
2029 MAX2((size_t) chunk_word_size, if_humongous_sized_chunk);
2030
2031 assert(!SpaceManager::is_humongous(word_size) ||
2032 chunk_word_size == if_humongous_sized_chunk,
2033 err_msg("Size calculation is wrong, word_size " SIZE_FORMAT
2034 " chunk_word_size " SIZE_FORMAT,
2035 word_size, chunk_word_size));
2036 if (TraceMetadataHumongousAllocation &&
2037 SpaceManager::is_humongous(word_size)) {
2038 gclog_or_tty->print_cr("Metadata humongous allocation:");
2039 gclog_or_tty->print_cr(" word_size " PTR_FORMAT, word_size);
2040 gclog_or_tty->print_cr(" chunk_word_size " PTR_FORMAT,
2041 chunk_word_size);
2042 gclog_or_tty->print_cr(" chunk overhead " PTR_FORMAT,
2043 Metachunk::overhead());
2044 }
2045 return chunk_word_size;
2046 }
2047
2048 void SpaceManager::track_metaspace_memory_usage() {
2049 if (is_init_completed()) {
2050 if (is_class()) {
2051 MemoryService::track_compressed_class_memory_usage();
2052 }
2053 MemoryService::track_metaspace_memory_usage();
2054 }
2055 }
2056
2057 MetaWord* SpaceManager::grow_and_allocate(size_t word_size) {
2058 assert(vs_list()->current_virtual_space() != NULL,
2059 "Should have been set");
2060 assert(current_chunk() == NULL ||
2061 current_chunk()->allocate(word_size) == NULL,
2062 "Don't need to expand");
2063 MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
2064
2065 if (TraceMetadataChunkAllocation && Verbose) {
2066 size_t words_left = 0;
2067 size_t words_used = 0;
2068 if (current_chunk() != NULL) {
2069 words_left = current_chunk()->free_word_size();
2070 words_used = current_chunk()->used_word_size();
2071 }
2072 gclog_or_tty->print_cr("SpaceManager::grow_and_allocate for " SIZE_FORMAT
2073 " words " SIZE_FORMAT " words used " SIZE_FORMAT
2074 " words left",
2075 word_size, words_used, words_left);
2076 }
2077
2078 // Get another chunk out of the virtual space
2079 size_t grow_chunks_by_words = calc_chunk_size(word_size);
2080 Metachunk* next = get_new_chunk(word_size, grow_chunks_by_words);
2081
2082 MetaWord* mem = NULL;
2083
2084 // If a chunk was available, add it to the in-use chunk list
2085 // and do an allocation from it.
2086 if (next != NULL) {
2087 // Add to this manager's list of chunks in use.
2088 add_chunk(next, false);
2089 mem = next->allocate(word_size);
2090 }
2091
2092 // Track metaspace memory usage statistic.
2093 track_metaspace_memory_usage();
2094
2095 return mem;
2096 }
2097
2098 void SpaceManager::print_on(outputStream* st) const {
2099
2100 for (ChunkIndex i = ZeroIndex;
2101 i < NumberOfInUseLists ;
2102 i = next_chunk_index(i) ) {
2103 st->print_cr(" chunks_in_use " PTR_FORMAT " chunk size " PTR_FORMAT,
2104 chunks_in_use(i),
2105 chunks_in_use(i) == NULL ? 0 : chunks_in_use(i)->word_size());
2106 }
2107 st->print_cr(" waste: Small " SIZE_FORMAT " Medium " SIZE_FORMAT
2108 " Humongous " SIZE_FORMAT,
2109 sum_waste_in_chunks_in_use(SmallIndex),
2110 sum_waste_in_chunks_in_use(MediumIndex),
2111 sum_waste_in_chunks_in_use(HumongousIndex));
2112 // block free lists
2113 if (block_freelists() != NULL) {
2114 st->print_cr("total in block free lists " SIZE_FORMAT,
2115 block_freelists()->total_size());
2116 }
2117 }
2118
2119 SpaceManager::SpaceManager(Metaspace::MetadataType mdtype,
2120 Mutex* lock) :
2121 _mdtype(mdtype),
2122 _allocated_blocks_words(0),
2123 _allocated_chunks_words(0),
2124 _allocated_chunks_count(0),
2125 _lock(lock)
2126 {
2127 initialize();
2128 }
2129
2130 void SpaceManager::inc_size_metrics(size_t words) {
2131 assert_lock_strong(SpaceManager::expand_lock());
2132 // Total of allocated Metachunks and allocated Metachunks count
2133 // for each SpaceManager
2134 _allocated_chunks_words = _allocated_chunks_words + words;
2135 _allocated_chunks_count++;
2136 // Global total of capacity in allocated Metachunks
2137 MetaspaceAux::inc_capacity(mdtype(), words);
2138 // Global total of allocated Metablocks.
2139 // used_words_slow() includes the overhead in each
2140 // Metachunk so include it in the used when the
2141 // Metachunk is first added (so only added once per
2142 // Metachunk).
2143 MetaspaceAux::inc_used(mdtype(), Metachunk::overhead());
2144 }
2145
2146 void SpaceManager::inc_used_metrics(size_t words) {
2147 // Add to the per SpaceManager total
2148 Atomic::add_ptr(words, &_allocated_blocks_words);
2149 // Add to the global total
2150 MetaspaceAux::inc_used(mdtype(), words);
2151 }
2152
2153 void SpaceManager::dec_total_from_size_metrics() {
2154 MetaspaceAux::dec_capacity(mdtype(), allocated_chunks_words());
2155 MetaspaceAux::dec_used(mdtype(), allocated_blocks_words());
2156 // Also deduct the overhead per Metachunk
2157 MetaspaceAux::dec_used(mdtype(), allocated_chunks_count() * Metachunk::overhead());
2158 }
2159
2160 void SpaceManager::initialize() {
2161 Metadebug::init_allocation_fail_alot_count();
2162 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2163 _chunks_in_use[i] = NULL;
2164 }
2165 _current_chunk = NULL;
2166 if (TraceMetadataChunkAllocation && Verbose) {
2167 gclog_or_tty->print_cr("SpaceManager(): " PTR_FORMAT, this);
2168 }
2169 }
2170
2171 void ChunkManager::return_chunks(ChunkIndex index, Metachunk* chunks) {
2172 if (chunks == NULL) {
2173 return;
2174 }
2175 ChunkList* list = free_chunks(index);
2176 assert(list->size() == chunks->word_size(), "Mismatch in chunk sizes");
2177 assert_lock_strong(SpaceManager::expand_lock());
2178 Metachunk* cur = chunks;
2179
2180 // This returns chunks one at a time. If a new
2181 // class List can be created that is a base class
2182 // of FreeList then something like FreeList::prepend()
2183 // can be used in place of this loop
2184 while (cur != NULL) {
2185 assert(cur->container() != NULL, "Container should have been set");
2186 cur->container()->dec_container_count();
2187 // Capture the next link before it is changed
2188 // by the call to return_chunk_at_head();
2189 Metachunk* next = cur->next();
2190 DEBUG_ONLY(cur->set_is_tagged_free(true);)
2191 list->return_chunk_at_head(cur);
2192 cur = next;
2193 }
2194 }
2195
2196 SpaceManager::~SpaceManager() {
2197 // This call this->_lock which can't be done while holding expand_lock()
2198 assert(sum_capacity_in_chunks_in_use() == allocated_chunks_words(),
2199 err_msg("sum_capacity_in_chunks_in_use() " SIZE_FORMAT
2200 " allocated_chunks_words() " SIZE_FORMAT,
2201 sum_capacity_in_chunks_in_use(), allocated_chunks_words()));
2202
2203 MutexLockerEx fcl(SpaceManager::expand_lock(),
2204 Mutex::_no_safepoint_check_flag);
2205
2206 chunk_manager()->slow_locked_verify();
2207
2208 dec_total_from_size_metrics();
2209
2210 if (TraceMetadataChunkAllocation && Verbose) {
2211 gclog_or_tty->print_cr("~SpaceManager(): " PTR_FORMAT, this);
2212 locked_print_chunks_in_use_on(gclog_or_tty);
2213 }
2214
2215 // Do not mangle freed Metachunks. The chunk size inside Metachunks
2216 // is during the freeing of a VirtualSpaceNodes.
2217
2218 // Have to update before the chunks_in_use lists are emptied
2219 // below.
2220 chunk_manager()->inc_free_chunks_total(allocated_chunks_words(),
2221 sum_count_in_chunks_in_use());
2222
2223 // Add all the chunks in use by this space manager
2224 // to the global list of free chunks.
2225
2226 // Follow each list of chunks-in-use and add them to the
2227 // free lists. Each list is NULL terminated.
2228
2229 for (ChunkIndex i = ZeroIndex; i < HumongousIndex; i = next_chunk_index(i)) {
2230 if (TraceMetadataChunkAllocation && Verbose) {
2231 gclog_or_tty->print_cr("returned %d %s chunks to freelist",
2232 sum_count_in_chunks_in_use(i),
2233 chunk_size_name(i));
2234 }
2235 Metachunk* chunks = chunks_in_use(i);
2236 chunk_manager()->return_chunks(i, chunks);
2237 set_chunks_in_use(i, NULL);
2238 if (TraceMetadataChunkAllocation && Verbose) {
2239 gclog_or_tty->print_cr("updated freelist count %d %s",
2240 chunk_manager()->free_chunks(i)->count(),
2241 chunk_size_name(i));
2242 }
2243 assert(i != HumongousIndex, "Humongous chunks are handled explicitly later");
2244 }
2245
2246 // The medium chunk case may be optimized by passing the head and
2247 // tail of the medium chunk list to add_at_head(). The tail is often
2248 // the current chunk but there are probably exceptions.
2249
2250 // Humongous chunks
2251 if (TraceMetadataChunkAllocation && Verbose) {
2252 gclog_or_tty->print_cr("returned %d %s humongous chunks to dictionary",
2253 sum_count_in_chunks_in_use(HumongousIndex),
2254 chunk_size_name(HumongousIndex));
2255 gclog_or_tty->print("Humongous chunk dictionary: ");
2256 }
2257 // Humongous chunks are never the current chunk.
2258 Metachunk* humongous_chunks = chunks_in_use(HumongousIndex);
2259
2260 while (humongous_chunks != NULL) {
2261 #ifdef ASSERT
2262 humongous_chunks->set_is_tagged_free(true);
2263 #endif
2264 if (TraceMetadataChunkAllocation && Verbose) {
2265 gclog_or_tty->print(PTR_FORMAT " (" SIZE_FORMAT ") ",
2266 humongous_chunks,
2267 humongous_chunks->word_size());
2268 }
2269 assert(humongous_chunks->word_size() == (size_t)
2270 align_size_up(humongous_chunks->word_size(),
2271 smallest_chunk_size()),
2272 err_msg("Humongous chunk size is wrong: word size " SIZE_FORMAT
2273 " granularity %d",
2274 humongous_chunks->word_size(), smallest_chunk_size()));
2275 Metachunk* next_humongous_chunks = humongous_chunks->next();
2276 humongous_chunks->container()->dec_container_count();
2277 chunk_manager()->humongous_dictionary()->return_chunk(humongous_chunks);
2278 humongous_chunks = next_humongous_chunks;
2279 }
2280 if (TraceMetadataChunkAllocation && Verbose) {
2281 gclog_or_tty->cr();
2282 gclog_or_tty->print_cr("updated dictionary count %d %s",
2283 chunk_manager()->humongous_dictionary()->total_count(),
2284 chunk_size_name(HumongousIndex));
2285 }
2286 chunk_manager()->slow_locked_verify();
2287 }
2288
2289 const char* SpaceManager::chunk_size_name(ChunkIndex index) const {
2290 switch (index) {
2291 case SpecializedIndex:
2292 return "Specialized";
2293 case SmallIndex:
2294 return "Small";
2295 case MediumIndex:
2296 return "Medium";
2297 case HumongousIndex:
2298 return "Humongous";
2299 default:
2300 return NULL;
2301 }
2302 }
2303
2304 ChunkIndex ChunkManager::list_index(size_t size) {
2305 switch (size) {
2306 case SpecializedChunk:
2307 assert(SpecializedChunk == ClassSpecializedChunk,
2308 "Need branch for ClassSpecializedChunk");
2309 return SpecializedIndex;
2310 case SmallChunk:
2311 case ClassSmallChunk:
2312 return SmallIndex;
2313 case MediumChunk:
2314 case ClassMediumChunk:
2315 return MediumIndex;
2316 default:
2317 assert(size > MediumChunk || size > ClassMediumChunk,
2318 "Not a humongous chunk");
2319 return HumongousIndex;
2320 }
2321 }
2322
2323 void SpaceManager::deallocate(MetaWord* p, size_t word_size) {
2324 assert_lock_strong(_lock);
2325 size_t raw_word_size = get_raw_word_size(word_size);
2326 size_t min_size = TreeChunk<Metablock, FreeList<Metablock> >::min_size();
2327 assert(raw_word_size >= min_size,
2328 err_msg("Should not deallocate dark matter " SIZE_FORMAT "<" SIZE_FORMAT, word_size, min_size));
2329 block_freelists()->return_block(p, raw_word_size);
2330 }
2331
2332 // Adds a chunk to the list of chunks in use.
2333 void SpaceManager::add_chunk(Metachunk* new_chunk, bool make_current) {
2334
2335 assert(new_chunk != NULL, "Should not be NULL");
2336 assert(new_chunk->next() == NULL, "Should not be on a list");
2337
2338 new_chunk->reset_empty();
2339
2340 // Find the correct list and and set the current
2341 // chunk for that list.
2342 ChunkIndex index = ChunkManager::list_index(new_chunk->word_size());
2343
2344 if (index != HumongousIndex) {
2345 retire_current_chunk();
2346 set_current_chunk(new_chunk);
2347 new_chunk->set_next(chunks_in_use(index));
2348 set_chunks_in_use(index, new_chunk);
2349 } else {
2350 // For null class loader data and DumpSharedSpaces, the first chunk isn't
2351 // small, so small will be null. Link this first chunk as the current
2352 // chunk.
2353 if (make_current) {
2354 // Set as the current chunk but otherwise treat as a humongous chunk.
2355 set_current_chunk(new_chunk);
2356 }
2357 // Link at head. The _current_chunk only points to a humongous chunk for
2358 // the null class loader metaspace (class and data virtual space managers)
2359 // any humongous chunks so will not point to the tail
2360 // of the humongous chunks list.
2361 new_chunk->set_next(chunks_in_use(HumongousIndex));
2362 set_chunks_in_use(HumongousIndex, new_chunk);
2363
2364 assert(new_chunk->word_size() > medium_chunk_size(), "List inconsistency");
2365 }
2366
2367 // Add to the running sum of capacity
2368 inc_size_metrics(new_chunk->word_size());
2369
2370 assert(new_chunk->is_empty(), "Not ready for reuse");
2371 if (TraceMetadataChunkAllocation && Verbose) {
2372 gclog_or_tty->print("SpaceManager::add_chunk: %d) ",
2373 sum_count_in_chunks_in_use());
2374 new_chunk->print_on(gclog_or_tty);
2375 chunk_manager()->locked_print_free_chunks(gclog_or_tty);
2376 }
2377 }
2378
2379 void SpaceManager::retire_current_chunk() {
2380 if (current_chunk() != NULL) {
2381 size_t remaining_words = current_chunk()->free_word_size();
2382 if (remaining_words >= TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
2383 block_freelists()->return_block(current_chunk()->allocate(remaining_words), remaining_words);
2384 inc_used_metrics(remaining_words);
2385 }
2386 }
2387 }
2388
2389 Metachunk* SpaceManager::get_new_chunk(size_t word_size,
2390 size_t grow_chunks_by_words) {
2391 // Get a chunk from the chunk freelist
2392 Metachunk* next = chunk_manager()->chunk_freelist_allocate(grow_chunks_by_words);
2393
2394 if (next == NULL) {
2395 next = vs_list()->get_new_chunk(word_size,
2396 grow_chunks_by_words,
2397 medium_chunk_bunch());
2398 }
2399
2400 if (TraceMetadataHumongousAllocation && next != NULL &&
2401 SpaceManager::is_humongous(next->word_size())) {
2402 gclog_or_tty->print_cr(" new humongous chunk word size "
2403 PTR_FORMAT, next->word_size());
2404 }
2405
2406 return next;
2407 }
2408
2409 MetaWord* SpaceManager::allocate(size_t word_size) {
2410 MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2411
2412 size_t raw_word_size = get_raw_word_size(word_size);
2413 BlockFreelist* fl = block_freelists();
2414 MetaWord* p = NULL;
2415 // Allocation from the dictionary is expensive in the sense that
2416 // the dictionary has to be searched for a size. Don't allocate
2417 // from the dictionary until it starts to get fat. Is this
2418 // a reasonable policy? Maybe an skinny dictionary is fast enough
2419 // for allocations. Do some profiling. JJJ
2420 if (fl->total_size() > allocation_from_dictionary_limit) {
2421 p = fl->get_block(raw_word_size);
2422 }
2423 if (p == NULL) {
2424 p = allocate_work(raw_word_size);
2425 }
2426
2427 return p;
2428 }
2429
2430 // Returns the address of spaced allocated for "word_size".
2431 // This methods does not know about blocks (Metablocks)
2432 MetaWord* SpaceManager::allocate_work(size_t word_size) {
2433 assert_lock_strong(_lock);
2434 #ifdef ASSERT
2435 if (Metadebug::test_metadata_failure()) {
2436 return NULL;
2437 }
2438 #endif
2439 // Is there space in the current chunk?
2440 MetaWord* result = NULL;
2441
2442 // For DumpSharedSpaces, only allocate out of the current chunk which is
2443 // never null because we gave it the size we wanted. Caller reports out
2444 // of memory if this returns null.
2445 if (DumpSharedSpaces) {
2446 assert(current_chunk() != NULL, "should never happen");
2447 inc_used_metrics(word_size);
2448 return current_chunk()->allocate(word_size); // caller handles null result
2449 }
2450
2451 if (current_chunk() != NULL) {
2452 result = current_chunk()->allocate(word_size);
2453 }
2454
2455 if (result == NULL) {
2456 result = grow_and_allocate(word_size);
2457 }
2458
2459 if (result != NULL) {
2460 inc_used_metrics(word_size);
2461 assert(result != (MetaWord*) chunks_in_use(MediumIndex),
2462 "Head of the list is being allocated");
2463 }
2464
2465 return result;
2466 }
2467
2468 void SpaceManager::verify() {
2469 // If there are blocks in the dictionary, then
2470 // verification of chunks does not work since
2471 // being in the dictionary alters a chunk.
2472 if (block_freelists()->total_size() == 0) {
2473 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2474 Metachunk* curr = chunks_in_use(i);
2475 while (curr != NULL) {
2476 curr->verify();
2477 verify_chunk_size(curr);
2478 curr = curr->next();
2479 }
2480 }
2481 }
2482 }
2483
2484 void SpaceManager::verify_chunk_size(Metachunk* chunk) {
2485 assert(is_humongous(chunk->word_size()) ||
2486 chunk->word_size() == medium_chunk_size() ||
2487 chunk->word_size() == small_chunk_size() ||
2488 chunk->word_size() == specialized_chunk_size(),
2489 "Chunk size is wrong");
2490 return;
2491 }
2492
2493 #ifdef ASSERT
2494 void SpaceManager::verify_allocated_blocks_words() {
2495 // Verification is only guaranteed at a safepoint.
2496 assert(SafepointSynchronize::is_at_safepoint() || !Universe::is_fully_initialized(),
2497 "Verification can fail if the applications is running");
2498 assert(allocated_blocks_words() == sum_used_in_chunks_in_use(),
2499 err_msg("allocation total is not consistent " SIZE_FORMAT
2500 " vs " SIZE_FORMAT,
2501 allocated_blocks_words(), sum_used_in_chunks_in_use()));
2502 }
2503
2504 #endif
2505
2506 void SpaceManager::dump(outputStream* const out) const {
2507 size_t curr_total = 0;
2508 size_t waste = 0;
2509 uint i = 0;
2510 size_t used = 0;
2511 size_t capacity = 0;
2512
2513 // Add up statistics for all chunks in this SpaceManager.
2514 for (ChunkIndex index = ZeroIndex;
2515 index < NumberOfInUseLists;
2516 index = next_chunk_index(index)) {
2517 for (Metachunk* curr = chunks_in_use(index);
2518 curr != NULL;
2519 curr = curr->next()) {
2520 out->print("%d) ", i++);
2521 curr->print_on(out);
2522 curr_total += curr->word_size();
2523 used += curr->used_word_size();
2524 capacity += curr->word_size();
2525 waste += curr->free_word_size() + curr->overhead();;
2526 }
2527 }
2528
2529 if (TraceMetadataChunkAllocation && Verbose) {
2530 block_freelists()->print_on(out);
2531 }
2532
2533 size_t free = current_chunk() == NULL ? 0 : current_chunk()->free_word_size();
2534 // Free space isn't wasted.
2535 waste -= free;
2536
2537 out->print_cr("total of all chunks " SIZE_FORMAT " used " SIZE_FORMAT
2538 " free " SIZE_FORMAT " capacity " SIZE_FORMAT
2539 " waste " SIZE_FORMAT, curr_total, used, free, capacity, waste);
2540 }
2541
2542 #ifndef PRODUCT
2543 void SpaceManager::mangle_freed_chunks() {
2544 for (ChunkIndex index = ZeroIndex;
2545 index < NumberOfInUseLists;
2546 index = next_chunk_index(index)) {
2547 for (Metachunk* curr = chunks_in_use(index);
2548 curr != NULL;
2549 curr = curr->next()) {
2550 curr->mangle();
2551 }
2552 }
2553 }
2554 #endif // PRODUCT
2555
2556 // MetaspaceAux
2557
2558
2559 size_t MetaspaceAux::_capacity_words[] = {0, 0};
2560 size_t MetaspaceAux::_used_words[] = {0, 0};
2561
2562 size_t MetaspaceAux::free_bytes(Metaspace::MetadataType mdtype) {
2563 VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2564 return list == NULL ? 0 : list->free_bytes();
2565 }
2566
2567 size_t MetaspaceAux::free_bytes() {
2568 return free_bytes(Metaspace::ClassType) + free_bytes(Metaspace::NonClassType);
2569 }
2570
2571 void MetaspaceAux::dec_capacity(Metaspace::MetadataType mdtype, size_t words) {
2572 assert_lock_strong(SpaceManager::expand_lock());
2573 assert(words <= capacity_words(mdtype),
2574 err_msg("About to decrement below 0: words " SIZE_FORMAT
2575 " is greater than _capacity_words[%u] " SIZE_FORMAT,
2576 words, mdtype, capacity_words(mdtype)));
2577 _capacity_words[mdtype] -= words;
2578 }
2579
2580 void MetaspaceAux::inc_capacity(Metaspace::MetadataType mdtype, size_t words) {
2581 assert_lock_strong(SpaceManager::expand_lock());
2582 // Needs to be atomic
2583 _capacity_words[mdtype] += words;
2584 }
2585
2586 void MetaspaceAux::dec_used(Metaspace::MetadataType mdtype, size_t words) {
2587 assert(words <= used_words(mdtype),
2588 err_msg("About to decrement below 0: words " SIZE_FORMAT
2589 " is greater than _used_words[%u] " SIZE_FORMAT,
2590 words, mdtype, used_words(mdtype)));
2591 // For CMS deallocation of the Metaspaces occurs during the
2592 // sweep which is a concurrent phase. Protection by the expand_lock()
2593 // is not enough since allocation is on a per Metaspace basis
2594 // and protected by the Metaspace lock.
2595 jlong minus_words = (jlong) - (jlong) words;
2596 Atomic::add_ptr(minus_words, &_used_words[mdtype]);
2597 }
2598
2599 void MetaspaceAux::inc_used(Metaspace::MetadataType mdtype, size_t words) {
2600 // _used_words tracks allocations for
2601 // each piece of metadata. Those allocations are
2602 // generally done concurrently by different application
2603 // threads so must be done atomically.
2604 Atomic::add_ptr(words, &_used_words[mdtype]);
2605 }
2606
2607 size_t MetaspaceAux::used_bytes_slow(Metaspace::MetadataType mdtype) {
2608 size_t used = 0;
2609 ClassLoaderDataGraphMetaspaceIterator iter;
2610 while (iter.repeat()) {
2611 Metaspace* msp = iter.get_next();
2612 // Sum allocated_blocks_words for each metaspace
2613 if (msp != NULL) {
2614 used += msp->used_words_slow(mdtype);
2615 }
2616 }
2617 return used * BytesPerWord;
2618 }
2619
2620 size_t MetaspaceAux::free_bytes_slow(Metaspace::MetadataType mdtype) {
2621 size_t free = 0;
2622 ClassLoaderDataGraphMetaspaceIterator iter;
2623 while (iter.repeat()) {
2624 Metaspace* msp = iter.get_next();
2625 if (msp != NULL) {
2626 free += msp->free_words_slow(mdtype);
2627 }
2628 }
2629 return free * BytesPerWord;
2630 }
2631
2632 size_t MetaspaceAux::capacity_bytes_slow(Metaspace::MetadataType mdtype) {
2633 if ((mdtype == Metaspace::ClassType) && !Metaspace::using_class_space()) {
2634 return 0;
2635 }
2636 // Don't count the space in the freelists. That space will be
2637 // added to the capacity calculation as needed.
2638 size_t capacity = 0;
2639 ClassLoaderDataGraphMetaspaceIterator iter;
2640 while (iter.repeat()) {
2641 Metaspace* msp = iter.get_next();
2642 if (msp != NULL) {
2643 capacity += msp->capacity_words_slow(mdtype);
2644 }
2645 }
2646 return capacity * BytesPerWord;
2647 }
2648
2649 size_t MetaspaceAux::capacity_bytes_slow() {
2650 #ifdef PRODUCT
2651 // Use capacity_bytes() in PRODUCT instead of this function.
2652 guarantee(false, "Should not call capacity_bytes_slow() in the PRODUCT");
2653 #endif
2654 size_t class_capacity = capacity_bytes_slow(Metaspace::ClassType);
2655 size_t non_class_capacity = capacity_bytes_slow(Metaspace::NonClassType);
2656 assert(capacity_bytes() == class_capacity + non_class_capacity,
2657 err_msg("bad accounting: capacity_bytes() " SIZE_FORMAT
2658 " class_capacity + non_class_capacity " SIZE_FORMAT
2659 " class_capacity " SIZE_FORMAT " non_class_capacity " SIZE_FORMAT,
2660 capacity_bytes(), class_capacity + non_class_capacity,
2661 class_capacity, non_class_capacity));
2662
2663 return class_capacity + non_class_capacity;
2664 }
2665
2666 size_t MetaspaceAux::reserved_bytes(Metaspace::MetadataType mdtype) {
2667 VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2668 return list == NULL ? 0 : list->reserved_bytes();
2669 }
2670
2671 size_t MetaspaceAux::committed_bytes(Metaspace::MetadataType mdtype) {
2672 VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2673 return list == NULL ? 0 : list->committed_bytes();
2674 }
2675
2676 size_t MetaspaceAux::min_chunk_size_words() { return Metaspace::first_chunk_word_size(); }
2677
2678 size_t MetaspaceAux::free_chunks_total_words(Metaspace::MetadataType mdtype) {
2679 ChunkManager* chunk_manager = Metaspace::get_chunk_manager(mdtype);
2680 if (chunk_manager == NULL) {
2681 return 0;
2682 }
2683 chunk_manager->slow_verify();
2684 return chunk_manager->free_chunks_total_words();
2685 }
2686
2687 size_t MetaspaceAux::free_chunks_total_bytes(Metaspace::MetadataType mdtype) {
2688 return free_chunks_total_words(mdtype) * BytesPerWord;
2689 }
2690
2691 size_t MetaspaceAux::free_chunks_total_words() {
2692 return free_chunks_total_words(Metaspace::ClassType) +
2693 free_chunks_total_words(Metaspace::NonClassType);
2694 }
2695
2696 size_t MetaspaceAux::free_chunks_total_bytes() {
2697 return free_chunks_total_words() * BytesPerWord;
2698 }
2699
2700 bool MetaspaceAux::has_chunk_free_list(Metaspace::MetadataType mdtype) {
2701 return Metaspace::get_chunk_manager(mdtype) != NULL;
2702 }
2703
2704 MetaspaceChunkFreeListSummary MetaspaceAux::chunk_free_list_summary(Metaspace::MetadataType mdtype) {
2705 if (!has_chunk_free_list(mdtype)) {
2706 return MetaspaceChunkFreeListSummary();
2707 }
2708
2709 const ChunkManager* cm = Metaspace::get_chunk_manager(mdtype);
2710 return cm->chunk_free_list_summary();
2711 }
2712
2713 void MetaspaceAux::print_metaspace_change(size_t prev_metadata_used) {
2714 gclog_or_tty->print(", [Metaspace:");
2715 if (PrintGCDetails && Verbose) {
2716 gclog_or_tty->print(" " SIZE_FORMAT
2717 "->" SIZE_FORMAT
2718 "(" SIZE_FORMAT ")",
2719 prev_metadata_used,
2720 used_bytes(),
2721 reserved_bytes());
2722 } else {
2723 gclog_or_tty->print(" " SIZE_FORMAT "K"
2724 "->" SIZE_FORMAT "K"
2725 "(" SIZE_FORMAT "K)",
2726 prev_metadata_used/K,
2727 used_bytes()/K,
2728 reserved_bytes()/K);
2729 }
2730
2731 gclog_or_tty->print("]");
2732 }
2733
2734 // This is printed when PrintGCDetails
2735 void MetaspaceAux::print_on(outputStream* out) {
2736 Metaspace::MetadataType nct = Metaspace::NonClassType;
2737
2738 out->print_cr(" Metaspace "
2739 "used " SIZE_FORMAT "K, "
2740 "capacity " SIZE_FORMAT "K, "
2741 "committed " SIZE_FORMAT "K, "
2742 "reserved " SIZE_FORMAT "K",
2743 used_bytes()/K,
2744 capacity_bytes()/K,
2745 committed_bytes()/K,
2746 reserved_bytes()/K);
2747
2748 if (Metaspace::using_class_space()) {
2749 Metaspace::MetadataType ct = Metaspace::ClassType;
2750 out->print_cr(" class space "
2751 "used " SIZE_FORMAT "K, "
2752 "capacity " SIZE_FORMAT "K, "
2753 "committed " SIZE_FORMAT "K, "
2754 "reserved " SIZE_FORMAT "K",
2755 used_bytes(ct)/K,
2756 capacity_bytes(ct)/K,
2757 committed_bytes(ct)/K,
2758 reserved_bytes(ct)/K);
2759 }
2760 }
2761
2762 // Print information for class space and data space separately.
2763 // This is almost the same as above.
2764 void MetaspaceAux::print_on(outputStream* out, Metaspace::MetadataType mdtype) {
2765 size_t free_chunks_capacity_bytes = free_chunks_total_bytes(mdtype);
2766 size_t capacity_bytes = capacity_bytes_slow(mdtype);
2767 size_t used_bytes = used_bytes_slow(mdtype);
2768 size_t free_bytes = free_bytes_slow(mdtype);
2769 size_t used_and_free = used_bytes + free_bytes +
2770 free_chunks_capacity_bytes;
2771 out->print_cr(" Chunk accounting: used in chunks " SIZE_FORMAT
2772 "K + unused in chunks " SIZE_FORMAT "K + "
2773 " capacity in free chunks " SIZE_FORMAT "K = " SIZE_FORMAT
2774 "K capacity in allocated chunks " SIZE_FORMAT "K",
2775 used_bytes / K,
2776 free_bytes / K,
2777 free_chunks_capacity_bytes / K,
2778 used_and_free / K,
2779 capacity_bytes / K);
2780 // Accounting can only be correct if we got the values during a safepoint
2781 assert(!SafepointSynchronize::is_at_safepoint() || used_and_free == capacity_bytes, "Accounting is wrong");
2782 }
2783
2784 // Print total fragmentation for class metaspaces
2785 void MetaspaceAux::print_class_waste(outputStream* out) {
2786 assert(Metaspace::using_class_space(), "class metaspace not used");
2787 size_t cls_specialized_waste = 0, cls_small_waste = 0, cls_medium_waste = 0;
2788 size_t cls_specialized_count = 0, cls_small_count = 0, cls_medium_count = 0, cls_humongous_count = 0;
2789 ClassLoaderDataGraphMetaspaceIterator iter;
2790 while (iter.repeat()) {
2791 Metaspace* msp = iter.get_next();
2792 if (msp != NULL) {
2793 cls_specialized_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
2794 cls_specialized_count += msp->class_vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2795 cls_small_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2796 cls_small_count += msp->class_vsm()->sum_count_in_chunks_in_use(SmallIndex);
2797 cls_medium_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2798 cls_medium_count += msp->class_vsm()->sum_count_in_chunks_in_use(MediumIndex);
2799 cls_humongous_count += msp->class_vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2800 }
2801 }
2802 out->print_cr(" class: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
2803 SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2804 SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
2805 "large count " SIZE_FORMAT,
2806 cls_specialized_count, cls_specialized_waste,
2807 cls_small_count, cls_small_waste,
2808 cls_medium_count, cls_medium_waste, cls_humongous_count);
2809 }
2810
2811 // Print total fragmentation for data and class metaspaces separately
2812 void MetaspaceAux::print_waste(outputStream* out) {
2813 size_t specialized_waste = 0, small_waste = 0, medium_waste = 0;
2814 size_t specialized_count = 0, small_count = 0, medium_count = 0, humongous_count = 0;
2815
2816 ClassLoaderDataGraphMetaspaceIterator iter;
2817 while (iter.repeat()) {
2818 Metaspace* msp = iter.get_next();
2819 if (msp != NULL) {
2820 specialized_waste += msp->vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
2821 specialized_count += msp->vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2822 small_waste += msp->vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2823 small_count += msp->vsm()->sum_count_in_chunks_in_use(SmallIndex);
2824 medium_waste += msp->vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2825 medium_count += msp->vsm()->sum_count_in_chunks_in_use(MediumIndex);
2826 humongous_count += msp->vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2827 }
2828 }
2829 out->print_cr("Total fragmentation waste (words) doesn't count free space");
2830 out->print_cr(" data: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
2831 SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2832 SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
2833 "large count " SIZE_FORMAT,
2834 specialized_count, specialized_waste, small_count,
2835 small_waste, medium_count, medium_waste, humongous_count);
2836 if (Metaspace::using_class_space()) {
2837 print_class_waste(out);
2838 }
2839 }
2840
2841 // Dump global metaspace things from the end of ClassLoaderDataGraph
2842 void MetaspaceAux::dump(outputStream* out) {
2843 out->print_cr("All Metaspace:");
2844 out->print("data space: "); print_on(out, Metaspace::NonClassType);
2845 out->print("class space: "); print_on(out, Metaspace::ClassType);
2846 print_waste(out);
2847 }
2848
2849 void MetaspaceAux::verify_free_chunks() {
2850 Metaspace::chunk_manager_metadata()->verify();
2851 if (Metaspace::using_class_space()) {
2852 Metaspace::chunk_manager_class()->verify();
2853 }
2854 }
2855
2856 void MetaspaceAux::verify_capacity() {
2857 #ifdef ASSERT
2858 size_t running_sum_capacity_bytes = capacity_bytes();
2859 // For purposes of the running sum of capacity, verify against capacity
2860 size_t capacity_in_use_bytes = capacity_bytes_slow();
2861 assert(running_sum_capacity_bytes == capacity_in_use_bytes,
2862 err_msg("capacity_words() * BytesPerWord " SIZE_FORMAT
2863 " capacity_bytes_slow()" SIZE_FORMAT,
2864 running_sum_capacity_bytes, capacity_in_use_bytes));
2865 for (Metaspace::MetadataType i = Metaspace::ClassType;
2866 i < Metaspace:: MetadataTypeCount;
2867 i = (Metaspace::MetadataType)(i + 1)) {
2868 size_t capacity_in_use_bytes = capacity_bytes_slow(i);
2869 assert(capacity_bytes(i) == capacity_in_use_bytes,
2870 err_msg("capacity_bytes(%u) " SIZE_FORMAT
2871 " capacity_bytes_slow(%u)" SIZE_FORMAT,
2872 i, capacity_bytes(i), i, capacity_in_use_bytes));
2873 }
2874 #endif
2875 }
2876
2877 void MetaspaceAux::verify_used() {
2878 #ifdef ASSERT
2879 size_t running_sum_used_bytes = used_bytes();
2880 // For purposes of the running sum of used, verify against used
2881 size_t used_in_use_bytes = used_bytes_slow();
2882 assert(used_bytes() == used_in_use_bytes,
2883 err_msg("used_bytes() " SIZE_FORMAT
2884 " used_bytes_slow()" SIZE_FORMAT,
2885 used_bytes(), used_in_use_bytes));
2886 for (Metaspace::MetadataType i = Metaspace::ClassType;
2887 i < Metaspace:: MetadataTypeCount;
2888 i = (Metaspace::MetadataType)(i + 1)) {
2889 size_t used_in_use_bytes = used_bytes_slow(i);
2890 assert(used_bytes(i) == used_in_use_bytes,
2891 err_msg("used_bytes(%u) " SIZE_FORMAT
2892 " used_bytes_slow(%u)" SIZE_FORMAT,
2893 i, used_bytes(i), i, used_in_use_bytes));
2894 }
2895 #endif
2896 }
2897
2898 void MetaspaceAux::verify_metrics() {
2899 verify_capacity();
2900 verify_used();
2901 }
2902
2903
2904 // Metaspace methods
2905
2906 size_t Metaspace::_first_chunk_word_size = 0;
2907 size_t Metaspace::_first_class_chunk_word_size = 0;
2908
2909 size_t Metaspace::_commit_alignment = 0;
2910 size_t Metaspace::_reserve_alignment = 0;
2911
2912 Metaspace::Metaspace(Mutex* lock, MetaspaceType type) {
2913 initialize(lock, type);
2914 }
2915
2916 Metaspace::~Metaspace() {
2917 delete _vsm;
2918 if (using_class_space()) {
2919 delete _class_vsm;
2920 }
2921 }
2922
2923 VirtualSpaceList* Metaspace::_space_list = NULL;
2924 VirtualSpaceList* Metaspace::_class_space_list = NULL;
2925
2926 ChunkManager* Metaspace::_chunk_manager_metadata = NULL;
2927 ChunkManager* Metaspace::_chunk_manager_class = NULL;
2928
2929 #define VIRTUALSPACEMULTIPLIER 2
2930
2931 #ifdef _LP64
2932 static const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1);
2933
2934 void Metaspace::set_narrow_klass_base_and_shift(address metaspace_base, address cds_base) {
2935 // Figure out the narrow_klass_base and the narrow_klass_shift. The
2936 // narrow_klass_base is the lower of the metaspace base and the cds base
2937 // (if cds is enabled). The narrow_klass_shift depends on the distance
2938 // between the lower base and higher address.
2939 address lower_base;
2940 address higher_address;
2941 if (UseSharedSpaces) {
2942 higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
2943 (address)(metaspace_base + compressed_class_space_size()));
2944 lower_base = MIN2(metaspace_base, cds_base);
2945 } else {
2946 higher_address = metaspace_base + compressed_class_space_size();
2947 lower_base = metaspace_base;
2948
2949 uint64_t klass_encoding_max = UnscaledClassSpaceMax << LogKlassAlignmentInBytes;
2950 // If compressed class space fits in lower 32G, we don't need a base.
2951 if (higher_address <= (address)klass_encoding_max) {
2952 lower_base = 0; // Effectively lower base is zero.
2953 }
2954 }
2955
2956 Universe::set_narrow_klass_base(lower_base);
2957
2958 if ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax) {
2959 Universe::set_narrow_klass_shift(0);
2960 } else {
2961 assert(!UseSharedSpaces, "Cannot shift with UseSharedSpaces");
2962 Universe::set_narrow_klass_shift(LogKlassAlignmentInBytes);
2963 }
2964 }
2965
2966 // Return TRUE if the specified metaspace_base and cds_base are close enough
2967 // to work with compressed klass pointers.
2968 bool Metaspace::can_use_cds_with_metaspace_addr(char* metaspace_base, address cds_base) {
2969 assert(cds_base != 0 && UseSharedSpaces, "Only use with CDS");
2970 assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
2971 address lower_base = MIN2((address)metaspace_base, cds_base);
2972 address higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
2973 (address)(metaspace_base + compressed_class_space_size()));
2974 return ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax);
2975 }
2976
2977 // Try to allocate the metaspace at the requested addr.
2978 void Metaspace::allocate_metaspace_compressed_klass_ptrs(char* requested_addr, address cds_base) {
2979 assert(using_class_space(), "called improperly");
2980 assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
2981 assert(compressed_class_space_size() < KlassEncodingMetaspaceMax,
2982 "Metaspace size is too big");
2983 assert_is_ptr_aligned(requested_addr, _reserve_alignment);
2984 assert_is_ptr_aligned(cds_base, _reserve_alignment);
2985 assert_is_size_aligned(compressed_class_space_size(), _reserve_alignment);
2986
2987 // Don't use large pages for the class space.
2988 bool large_pages = false;
2989
2990 ReservedSpace metaspace_rs = ReservedSpace(compressed_class_space_size(),
2991 _reserve_alignment,
2992 large_pages,
2993 requested_addr, 0);
2994 if (!metaspace_rs.is_reserved()) {
2995 if (UseSharedSpaces) {
2996 size_t increment = align_size_up(1*G, _reserve_alignment);
2997
2998 // Keep trying to allocate the metaspace, increasing the requested_addr
2999 // by 1GB each time, until we reach an address that will no longer allow
3000 // use of CDS with compressed klass pointers.
3001 char *addr = requested_addr;
3002 while (!metaspace_rs.is_reserved() && (addr + increment > addr) &&
3003 can_use_cds_with_metaspace_addr(addr + increment, cds_base)) {
3004 addr = addr + increment;
3005 metaspace_rs = ReservedSpace(compressed_class_space_size(),
3006 _reserve_alignment, large_pages, addr, 0);
3007 }
3008 }
3009
3010 // If no successful allocation then try to allocate the space anywhere. If
3011 // that fails then OOM doom. At this point we cannot try allocating the
3012 // metaspace as if UseCompressedClassPointers is off because too much
3013 // initialization has happened that depends on UseCompressedClassPointers.
3014 // So, UseCompressedClassPointers cannot be turned off at this point.
3015 if (!metaspace_rs.is_reserved()) {
3016 metaspace_rs = ReservedSpace(compressed_class_space_size(),
3017 _reserve_alignment, large_pages);
3018 if (!metaspace_rs.is_reserved()) {
3019 vm_exit_during_initialization(err_msg("Could not allocate metaspace: %d bytes",
3020 compressed_class_space_size()));
3021 }
3022 }
3023 }
3024
3025 // If we got here then the metaspace got allocated.
3026 MemTracker::record_virtual_memory_type((address)metaspace_rs.base(), mtClass);
3027
3028 // Verify that we can use shared spaces. Otherwise, turn off CDS.
3029 if (UseSharedSpaces && !can_use_cds_with_metaspace_addr(metaspace_rs.base(), cds_base)) {
3030 FileMapInfo::stop_sharing_and_unmap(
3031 "Could not allocate metaspace at a compatible address");
3032 }
3033
3034 set_narrow_klass_base_and_shift((address)metaspace_rs.base(),
3035 UseSharedSpaces ? (address)cds_base : 0);
3036
3037 initialize_class_space(metaspace_rs);
3038
3039 if (PrintCompressedOopsMode || (PrintMiscellaneous && Verbose)) {
3040 gclog_or_tty->print_cr("Narrow klass base: " PTR_FORMAT ", Narrow klass shift: " SIZE_FORMAT,
3041 Universe::narrow_klass_base(), Universe::narrow_klass_shift());
3042 gclog_or_tty->print_cr("Compressed class space size: " SIZE_FORMAT " Address: " PTR_FORMAT " Req Addr: " PTR_FORMAT,
3043 compressed_class_space_size(), metaspace_rs.base(), requested_addr);
3044 }
3045 }
3046
3047 // For UseCompressedClassPointers the class space is reserved above the top of
3048 // the Java heap. The argument passed in is at the base of the compressed space.
3049 void Metaspace::initialize_class_space(ReservedSpace rs) {
3050 // The reserved space size may be bigger because of alignment, esp with UseLargePages
3051 assert(rs.size() >= CompressedClassSpaceSize,
3052 err_msg(SIZE_FORMAT " != " UINTX_FORMAT, rs.size(), CompressedClassSpaceSize));
3053 assert(using_class_space(), "Must be using class space");
3054 _class_space_list = new VirtualSpaceList(rs);
3055 _chunk_manager_class = new ChunkManager(SpecializedChunk, ClassSmallChunk, ClassMediumChunk);
3056
3057 if (!_class_space_list->initialization_succeeded()) {
3058 vm_exit_during_initialization("Failed to setup compressed class space virtual space list.");
3059 }
3060 }
3061
3062 #endif
3063
3064 void Metaspace::ergo_initialize() {
3065 if (DumpSharedSpaces) {
3066 // Using large pages when dumping the shared archive is currently not implemented.
3067 FLAG_SET_ERGO(bool, UseLargePagesInMetaspace, false);
3068 }
3069
3070 size_t page_size = os::vm_page_size();
3071 if (UseLargePages && UseLargePagesInMetaspace) {
3072 page_size = os::large_page_size();
3073 }
3074
3075 _commit_alignment = page_size;
3076 _reserve_alignment = MAX2(page_size, (size_t)os::vm_allocation_granularity());
3077
3078 // Do not use FLAG_SET_ERGO to update MaxMetaspaceSize, since this will
3079 // override if MaxMetaspaceSize was set on the command line or not.
3080 // This information is needed later to conform to the specification of the
3081 // java.lang.management.MemoryUsage API.
3082 //
3083 // Ideally, we would be able to set the default value of MaxMetaspaceSize in
3084 // globals.hpp to the aligned value, but this is not possible, since the
3085 // alignment depends on other flags being parsed.
3086 MaxMetaspaceSize = align_size_down_bounded(MaxMetaspaceSize, _reserve_alignment);
3087
3088 if (MetaspaceSize > MaxMetaspaceSize) {
3089 MetaspaceSize = MaxMetaspaceSize;
3090 }
3091
3092 MetaspaceSize = align_size_down_bounded(MetaspaceSize, _commit_alignment);
3093
3094 assert(MetaspaceSize <= MaxMetaspaceSize, "MetaspaceSize should be limited by MaxMetaspaceSize");
3095
3096 if (MetaspaceSize < 256*K) {
3097 vm_exit_during_initialization("Too small initial Metaspace size");
3098 }
3099
3100 MinMetaspaceExpansion = align_size_down_bounded(MinMetaspaceExpansion, _commit_alignment);
3101 MaxMetaspaceExpansion = align_size_down_bounded(MaxMetaspaceExpansion, _commit_alignment);
3102
3103 CompressedClassSpaceSize = align_size_down_bounded(CompressedClassSpaceSize, _reserve_alignment);
3104 set_compressed_class_space_size(CompressedClassSpaceSize);
3105 }
3106
3107 void Metaspace::global_initialize() {
3108 MetaspaceGC::initialize();
3109
3110 // Initialize the alignment for shared spaces.
3111 int max_alignment = os::vm_allocation_granularity();
3112 size_t cds_total = 0;
3113
3114 MetaspaceShared::set_max_alignment(max_alignment);
3115
3116 if (DumpSharedSpaces) {
3117 SharedReadOnlySize = align_size_up(SharedReadOnlySize, max_alignment);
3118 SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment);
3119 SharedMiscDataSize = align_size_up(SharedMiscDataSize, max_alignment);
3120 SharedMiscCodeSize = align_size_up(SharedMiscCodeSize, max_alignment);
3121
3122 // Initialize with the sum of the shared space sizes. The read-only
3123 // and read write metaspace chunks will be allocated out of this and the
3124 // remainder is the misc code and data chunks.
3125 cds_total = FileMapInfo::shared_spaces_size();
3126 cds_total = align_size_up(cds_total, _reserve_alignment);
3127 _space_list = new VirtualSpaceList(cds_total/wordSize);
3128 _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3129
3130 if (!_space_list->initialization_succeeded()) {
3131 vm_exit_during_initialization("Unable to dump shared archive.", NULL);
3132 }
3133
3134 #ifdef _LP64
3135 if (cds_total + compressed_class_space_size() > UnscaledClassSpaceMax) {
3136 vm_exit_during_initialization("Unable to dump shared archive.",
3137 err_msg("Size of archive (" SIZE_FORMAT ") + compressed class space ("
3138 SIZE_FORMAT ") == total (" SIZE_FORMAT ") is larger than compressed "
3139 "klass limit: " SIZE_FORMAT, cds_total, compressed_class_space_size(),
3140 cds_total + compressed_class_space_size(), UnscaledClassSpaceMax));
3141 }
3142
3143 // Set the compressed klass pointer base so that decoding of these pointers works
3144 // properly when creating the shared archive.
3145 assert(UseCompressedOops && UseCompressedClassPointers,
3146 "UseCompressedOops and UseCompressedClassPointers must be set");
3147 Universe::set_narrow_klass_base((address)_space_list->current_virtual_space()->bottom());
3148 if (TraceMetavirtualspaceAllocation && Verbose) {
3149 gclog_or_tty->print_cr("Setting_narrow_klass_base to Address: " PTR_FORMAT,
3150 _space_list->current_virtual_space()->bottom());
3151 }
3152
3153 Universe::set_narrow_klass_shift(0);
3154 #endif
3155
3156 } else {
3157 // If using shared space, open the file that contains the shared space
3158 // and map in the memory before initializing the rest of metaspace (so
3159 // the addresses don't conflict)
3160 address cds_address = NULL;
3161 if (UseSharedSpaces) {
3162 FileMapInfo* mapinfo = new FileMapInfo();
3163 memset(mapinfo, 0, sizeof(FileMapInfo));
3164
3165 // Open the shared archive file, read and validate the header. If
3166 // initialization fails, shared spaces [UseSharedSpaces] are
3167 // disabled and the file is closed.
3168 // Map in spaces now also
3169 if (mapinfo->initialize() && MetaspaceShared::map_shared_spaces(mapinfo)) {
3170 FileMapInfo::set_current_info(mapinfo);
3171 cds_total = FileMapInfo::shared_spaces_size();
3172 cds_address = (address)mapinfo->region_base(0);
3173 } else {
3174 assert(!mapinfo->is_open() && !UseSharedSpaces,
3175 "archive file not closed or shared spaces not disabled.");
3176 }
3177 }
3178
3179 #ifdef _LP64
3180 // If UseCompressedClassPointers is set then allocate the metaspace area
3181 // above the heap and above the CDS area (if it exists).
3182 if (using_class_space()) {
3183 if (UseSharedSpaces) {
3184 char* cds_end = (char*)(cds_address + cds_total);
3185 cds_end = (char *)align_ptr_up(cds_end, _reserve_alignment);
3186 allocate_metaspace_compressed_klass_ptrs(cds_end, cds_address);
3187 } else {
3188 char* base = (char*)align_ptr_up(Universe::heap()->reserved_region().end(), _reserve_alignment);
3189 allocate_metaspace_compressed_klass_ptrs(base, 0);
3190 }
3191 }
3192 #endif
3193
3194 // Initialize these before initializing the VirtualSpaceList
3195 _first_chunk_word_size = InitialBootClassLoaderMetaspaceSize / BytesPerWord;
3196 _first_chunk_word_size = align_word_size_up(_first_chunk_word_size);
3197 // Make the first class chunk bigger than a medium chunk so it's not put
3198 // on the medium chunk list. The next chunk will be small and progress
3199 // from there. This size calculated by -version.
3200 _first_class_chunk_word_size = MIN2((uintx)MediumChunk*6,
3201 (CompressedClassSpaceSize/BytesPerWord)*2);
3202 _first_class_chunk_word_size = align_word_size_up(_first_class_chunk_word_size);
3203 // Arbitrarily set the initial virtual space to a multiple
3204 // of the boot class loader size.
3205 size_t word_size = VIRTUALSPACEMULTIPLIER * _first_chunk_word_size;
3206 word_size = align_size_up(word_size, Metaspace::reserve_alignment_words());
3207
3208 // Initialize the list of virtual spaces.
3209 _space_list = new VirtualSpaceList(word_size);
3210 _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3211
3212 if (!_space_list->initialization_succeeded()) {
3213 vm_exit_during_initialization("Unable to setup metadata virtual space list.", NULL);
3214 }
3215 }
3216
3217 _tracer = new MetaspaceTracer();
3218 }
3219
3220 void Metaspace::post_initialize() {
3221 MetaspaceGC::post_initialize();
3222 }
3223
3224 Metachunk* Metaspace::get_initialization_chunk(MetadataType mdtype,
3225 size_t chunk_word_size,
3226 size_t chunk_bunch) {
3227 // Get a chunk from the chunk freelist
3228 Metachunk* chunk = get_chunk_manager(mdtype)->chunk_freelist_allocate(chunk_word_size);
3229 if (chunk != NULL) {
3230 return chunk;
3231 }
3232
3233 return get_space_list(mdtype)->get_new_chunk(chunk_word_size, chunk_word_size, chunk_bunch);
3234 }
3235
3236 void Metaspace::initialize(Mutex* lock, MetaspaceType type) {
3237
3238 assert(space_list() != NULL,
3239 "Metadata VirtualSpaceList has not been initialized");
3240 assert(chunk_manager_metadata() != NULL,
3241 "Metadata ChunkManager has not been initialized");
3242
3243 _vsm = new SpaceManager(NonClassType, lock);
3244 if (_vsm == NULL) {
3245 return;
3246 }
3247 size_t word_size;
3248 size_t class_word_size;
3249 vsm()->get_initial_chunk_sizes(type, &word_size, &class_word_size);
3250
3251 if (using_class_space()) {
3252 assert(class_space_list() != NULL,
3253 "Class VirtualSpaceList has not been initialized");
3254 assert(chunk_manager_class() != NULL,
3255 "Class ChunkManager has not been initialized");
3256
3257 // Allocate SpaceManager for classes.
3258 _class_vsm = new SpaceManager(ClassType, lock);
3259 if (_class_vsm == NULL) {
3260 return;
3261 }
3262 }
3263
3264 MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3265
3266 // Allocate chunk for metadata objects
3267 Metachunk* new_chunk = get_initialization_chunk(NonClassType,
3268 word_size,
3269 vsm()->medium_chunk_bunch());
3270 assert(!DumpSharedSpaces || new_chunk != NULL, "should have enough space for both chunks");
3271 if (new_chunk != NULL) {
3272 // Add to this manager's list of chunks in use and current_chunk().
3273 vsm()->add_chunk(new_chunk, true);
3274 }
3275
3276 // Allocate chunk for class metadata objects
3277 if (using_class_space()) {
3278 Metachunk* class_chunk = get_initialization_chunk(ClassType,
3279 class_word_size,
3280 class_vsm()->medium_chunk_bunch());
3281 if (class_chunk != NULL) {
3282 class_vsm()->add_chunk(class_chunk, true);
3283 }
3284 }
3285
3286 _alloc_record_head = NULL;
3287 _alloc_record_tail = NULL;
3288 }
3289
3290 size_t Metaspace::align_word_size_up(size_t word_size) {
3291 size_t byte_size = word_size * wordSize;
3292 return ReservedSpace::allocation_align_size_up(byte_size) / wordSize;
3293 }
3294
3295 MetaWord* Metaspace::allocate(size_t word_size, MetadataType mdtype) {
3296 // DumpSharedSpaces doesn't use class metadata area (yet)
3297 // Also, don't use class_vsm() unless UseCompressedClassPointers is true.
3298 if (is_class_space_allocation(mdtype)) {
3299 return class_vsm()->allocate(word_size);
3300 } else {
3301 return vsm()->allocate(word_size);
3302 }
3303 }
3304
3305 MetaWord* Metaspace::expand_and_allocate(size_t word_size, MetadataType mdtype) {
3306 size_t delta_bytes = MetaspaceGC::delta_capacity_until_GC(word_size * BytesPerWord);
3307 assert(delta_bytes > 0, "Must be");
3308
3309 size_t after_inc = MetaspaceGC::inc_capacity_until_GC(delta_bytes);
3310
3311 // capacity_until_GC might be updated concurrently, must calculate previous value.
3312 size_t before_inc = after_inc - delta_bytes;
3313
3314 tracer()->report_gc_threshold(before_inc, after_inc,
3315 MetaspaceGCThresholdUpdater::ExpandAndAllocate);
3316 if (PrintGCDetails && Verbose) {
3317 gclog_or_tty->print_cr("Increase capacity to GC from " SIZE_FORMAT
3318 " to " SIZE_FORMAT, before_inc, after_inc);
3319 }
3320
3321 return allocate(word_size, mdtype);
3322 }
3323
3324 // Space allocated in the Metaspace. This may
3325 // be across several metadata virtual spaces.
3326 char* Metaspace::bottom() const {
3327 assert(DumpSharedSpaces, "only useful and valid for dumping shared spaces");
3328 return (char*)vsm()->current_chunk()->bottom();
3329 }
3330
3331 size_t Metaspace::used_words_slow(MetadataType mdtype) const {
3332 if (mdtype == ClassType) {
3333 return using_class_space() ? class_vsm()->sum_used_in_chunks_in_use() : 0;
3334 } else {
3335 return vsm()->sum_used_in_chunks_in_use(); // includes overhead!
3336 }
3337 }
3338
3339 size_t Metaspace::free_words_slow(MetadataType mdtype) const {
3340 if (mdtype == ClassType) {
3341 return using_class_space() ? class_vsm()->sum_free_in_chunks_in_use() : 0;
3342 } else {
3343 return vsm()->sum_free_in_chunks_in_use();
3344 }
3345 }
3346
3347 // Space capacity in the Metaspace. It includes
3348 // space in the list of chunks from which allocations
3349 // have been made. Don't include space in the global freelist and
3350 // in the space available in the dictionary which
3351 // is already counted in some chunk.
3352 size_t Metaspace::capacity_words_slow(MetadataType mdtype) const {
3353 if (mdtype == ClassType) {
3354 return using_class_space() ? class_vsm()->sum_capacity_in_chunks_in_use() : 0;
3355 } else {
3356 return vsm()->sum_capacity_in_chunks_in_use();
3357 }
3358 }
3359
3360 size_t Metaspace::used_bytes_slow(MetadataType mdtype) const {
3361 return used_words_slow(mdtype) * BytesPerWord;
3362 }
3363
3364 size_t Metaspace::capacity_bytes_slow(MetadataType mdtype) const {
3365 return capacity_words_slow(mdtype) * BytesPerWord;
3366 }
3367
3368 void Metaspace::deallocate(MetaWord* ptr, size_t word_size, bool is_class) {
3369 assert(!SafepointSynchronize::is_at_safepoint()
3370 || Thread::current()->is_VM_thread(), "should be the VM thread");
3371
3372 MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
3373
3374 if (word_size < TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
3375 // Dark matter. Too small for dictionary.
3376 #ifdef ASSERT
3377 Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
3378 #endif
3379 return;
3380 }
3381 if (is_class && using_class_space()) {
3382 class_vsm()->deallocate(ptr, word_size);
3383 } else {
3384 vsm()->deallocate(ptr, word_size);
3385 }
3386 }
3387
3388
3389 MetaWord* Metaspace::allocate(ClassLoaderData* loader_data, size_t word_size,
3390 bool read_only, MetaspaceObj::Type type, TRAPS) {
3391 if (HAS_PENDING_EXCEPTION) {
3392 assert(false, "Should not allocate with exception pending");
3393 return NULL; // caller does a CHECK_NULL too
3394 }
3395
3396 assert(loader_data != NULL, "Should never pass around a NULL loader_data. "
3397 "ClassLoaderData::the_null_class_loader_data() should have been used.");
3398
3399 // Allocate in metaspaces without taking out a lock, because it deadlocks
3400 // with the SymbolTable_lock. Dumping is single threaded for now. We'll have
3401 // to revisit this for application class data sharing.
3402 if (DumpSharedSpaces) {
3403 assert(type > MetaspaceObj::UnknownType && type < MetaspaceObj::_number_of_types, "sanity");
3404 Metaspace* space = read_only ? loader_data->ro_metaspace() : loader_data->rw_metaspace();
3405 MetaWord* result = space->allocate(word_size, NonClassType);
3406 if (result == NULL) {
3407 report_out_of_shared_space(read_only ? SharedReadOnly : SharedReadWrite);
3408 }
3409
3410 space->record_allocation(result, type, space->vsm()->get_raw_word_size(word_size));
3411
3412 // Zero initialize.
3413 Copy::fill_to_aligned_words((HeapWord*)result, word_size, 0);
3414
3415 return result;
3416 }
3417
3418 MetadataType mdtype = (type == MetaspaceObj::ClassType) ? ClassType : NonClassType;
3419
3420 // Try to allocate metadata.
3421 MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
3422
3423 if (result == NULL) {
3424 tracer()->report_metaspace_allocation_failure(loader_data, word_size, type, mdtype);
3425
3426 // Allocation failed.
3427 if (is_init_completed()) {
3428 // Only start a GC if the bootstrapping has completed.
3429
3430 // Try to clean out some memory and retry.
3431 result = Universe::heap()->collector_policy()->satisfy_failed_metadata_allocation(
3432 loader_data, word_size, mdtype);
3433 }
3434 }
3435
3436 if (result == NULL) {
3437 report_metadata_oome(loader_data, word_size, type, mdtype, CHECK_NULL);
3438 }
3439
3440 // Zero initialize.
3441 Copy::fill_to_aligned_words((HeapWord*)result, word_size, 0);
3442
3443 return result;
3444 }
3445
3446 size_t Metaspace::class_chunk_size(size_t word_size) {
3447 assert(using_class_space(), "Has to use class space");
3448 return class_vsm()->calc_chunk_size(word_size);
3449 }
3450
3451 void Metaspace::report_metadata_oome(ClassLoaderData* loader_data, size_t word_size, MetaspaceObj::Type type, MetadataType mdtype, TRAPS) {
3452 tracer()->report_metadata_oom(loader_data, word_size, type, mdtype);
3453
3454 // If result is still null, we are out of memory.
3455 if (Verbose && TraceMetadataChunkAllocation) {
3456 gclog_or_tty->print_cr("Metaspace allocation failed for size "
3457 SIZE_FORMAT, word_size);
3458 if (loader_data->metaspace_or_null() != NULL) {
3459 loader_data->dump(gclog_or_tty);
3460 }
3461 MetaspaceAux::dump(gclog_or_tty);
3462 }
3463
3464 bool out_of_compressed_class_space = false;
3465 if (is_class_space_allocation(mdtype)) {
3466 Metaspace* metaspace = loader_data->metaspace_non_null();
3467 out_of_compressed_class_space =
3468 MetaspaceAux::committed_bytes(Metaspace::ClassType) +
3469 (metaspace->class_chunk_size(word_size) * BytesPerWord) >
3470 CompressedClassSpaceSize;
3471 }
3472
3473 // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
3474 const char* space_string = out_of_compressed_class_space ?
3475 "Compressed class space" : "Metaspace";
3476
3477 report_java_out_of_memory(space_string);
3478
3479 if (JvmtiExport::should_post_resource_exhausted()) {
3480 JvmtiExport::post_resource_exhausted(
3481 JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR,
3482 space_string);
3483 }
3484
3485 if (!is_init_completed()) {
3486 vm_exit_during_initialization("OutOfMemoryError", space_string);
3487 }
3488
3489 if (out_of_compressed_class_space) {
3490 THROW_OOP(Universe::out_of_memory_error_class_metaspace());
3491 } else {
3492 THROW_OOP(Universe::out_of_memory_error_metaspace());
3493 }
3494 }
3495
3496 const char* Metaspace::metadata_type_name(Metaspace::MetadataType mdtype) {
3497 switch (mdtype) {
3498 case Metaspace::ClassType: return "Class";
3499 case Metaspace::NonClassType: return "Metadata";
3500 default:
3501 assert(false, err_msg("Got bad mdtype: %d", (int) mdtype));
3502 return NULL;
3503 }
3504 }
3505
3506 void Metaspace::record_allocation(void* ptr, MetaspaceObj::Type type, size_t word_size) {
3507 assert(DumpSharedSpaces, "sanity");
3508
3509 AllocRecord *rec = new AllocRecord((address)ptr, type, (int)word_size * HeapWordSize);
3510 if (_alloc_record_head == NULL) {
3511 _alloc_record_head = _alloc_record_tail = rec;
3512 } else {
3513 _alloc_record_tail->_next = rec;
3514 _alloc_record_tail = rec;
3515 }
3516 }
3517
3518 void Metaspace::iterate(Metaspace::AllocRecordClosure *closure) {
3519 assert(DumpSharedSpaces, "unimplemented for !DumpSharedSpaces");
3520
3521 address last_addr = (address)bottom();
3522
3523 for (AllocRecord *rec = _alloc_record_head; rec; rec = rec->_next) {
3524 address ptr = rec->_ptr;
3525 if (last_addr < ptr) {
3526 closure->doit(last_addr, MetaspaceObj::UnknownType, ptr - last_addr);
3527 }
3528 closure->doit(ptr, rec->_type, rec->_byte_size);
3529 last_addr = ptr + rec->_byte_size;
3530 }
3531
3532 address top = ((address)bottom()) + used_bytes_slow(Metaspace::NonClassType);
3533 if (last_addr < top) {
3534 closure->doit(last_addr, MetaspaceObj::UnknownType, top - last_addr);
3535 }
3536 }
3537
3538 void Metaspace::purge(MetadataType mdtype) {
3539 get_space_list(mdtype)->purge(get_chunk_manager(mdtype));
3540 }
3541
3542 void Metaspace::purge() {
3543 MutexLockerEx cl(SpaceManager::expand_lock(),
3544 Mutex::_no_safepoint_check_flag);
3545 purge(NonClassType);
3546 if (using_class_space()) {
3547 purge(ClassType);
3548 }
3549 }
3550
3551 void Metaspace::print_on(outputStream* out) const {
3552 // Print both class virtual space counts and metaspace.
3553 if (Verbose) {
3554 vsm()->print_on(out);
3555 if (using_class_space()) {
3556 class_vsm()->print_on(out);
3557 }
3558 }
3559 }
3560
3561 bool Metaspace::contains(const void* ptr) {
3562 if (UseSharedSpaces && MetaspaceShared::is_in_shared_space(ptr)) {
3563 return true;
3564 }
3565
3566 if (using_class_space() && get_space_list(ClassType)->contains(ptr)) {
3567 return true;
3568 }
3569
3570 return get_space_list(NonClassType)->contains(ptr);
3571 }
3572
3573 void Metaspace::verify() {
3574 vsm()->verify();
3575 if (using_class_space()) {
3576 class_vsm()->verify();
3577 }
3578 }
3579
3580 void Metaspace::dump(outputStream* const out) const {
3581 out->print_cr("\nVirtual space manager: " INTPTR_FORMAT, vsm());
3582 vsm()->dump(out);
3583 if (using_class_space()) {
3584 out->print_cr("\nClass space manager: " INTPTR_FORMAT, class_vsm());
3585 class_vsm()->dump(out);
3586 }
3587 }
3588
3589 /////////////// Unit tests ///////////////
3590
3591 #ifndef PRODUCT
3592
3593 class TestMetaspaceAuxTest : AllStatic {
3594 public:
3595 static void test_reserved() {
3596 size_t reserved = MetaspaceAux::reserved_bytes();
3597
3598 assert(reserved > 0, "assert");
3599
3600 size_t committed = MetaspaceAux::committed_bytes();
3601 assert(committed <= reserved, "assert");
3602
3603 size_t reserved_metadata = MetaspaceAux::reserved_bytes(Metaspace::NonClassType);
3604 assert(reserved_metadata > 0, "assert");
3605 assert(reserved_metadata <= reserved, "assert");
3606
3607 if (UseCompressedClassPointers) {
3608 size_t reserved_class = MetaspaceAux::reserved_bytes(Metaspace::ClassType);
3609 assert(reserved_class > 0, "assert");
3610 assert(reserved_class < reserved, "assert");
3611 }
3612 }
3613
3614 static void test_committed() {
3615 size_t committed = MetaspaceAux::committed_bytes();
3616
3617 assert(committed > 0, "assert");
3618
3619 size_t reserved = MetaspaceAux::reserved_bytes();
3620 assert(committed <= reserved, "assert");
3621
3622 size_t committed_metadata = MetaspaceAux::committed_bytes(Metaspace::NonClassType);
3623 assert(committed_metadata > 0, "assert");
3624 assert(committed_metadata <= committed, "assert");
3625
3626 if (UseCompressedClassPointers) {
3627 size_t committed_class = MetaspaceAux::committed_bytes(Metaspace::ClassType);
3628 assert(committed_class > 0, "assert");
3629 assert(committed_class < committed, "assert");
3630 }
3631 }
3632
3633 static void test_virtual_space_list_large_chunk() {
3634 VirtualSpaceList* vs_list = new VirtualSpaceList(os::vm_allocation_granularity());
3635 MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3636 // A size larger than VirtualSpaceSize (256k) and add one page to make it _not_ be
3637 // vm_allocation_granularity aligned on Windows.
3638 size_t large_size = (size_t)(2*256*K + (os::vm_page_size()/BytesPerWord));
3639 large_size += (os::vm_page_size()/BytesPerWord);
3640 vs_list->get_new_chunk(large_size, large_size, 0);
3641 }
3642
3643 static void test() {
3644 test_reserved();
3645 test_committed();
3646 test_virtual_space_list_large_chunk();
3647 }
3648 };
3649
3650 void TestMetaspaceAux_test() {
3651 TestMetaspaceAuxTest::test();
3652 }
3653
3654 class TestVirtualSpaceNodeTest {
3655 static void chunk_up(size_t words_left, size_t& num_medium_chunks,
3656 size_t& num_small_chunks,
3657 size_t& num_specialized_chunks) {
3658 num_medium_chunks = words_left / MediumChunk;
3659 words_left = words_left % MediumChunk;
3660
3661 num_small_chunks = words_left / SmallChunk;
3662 words_left = words_left % SmallChunk;
3663 // how many specialized chunks can we get?
3664 num_specialized_chunks = words_left / SpecializedChunk;
3665 assert(words_left % SpecializedChunk == 0, "should be nothing left");
3666 }
3667
3668 public:
3669 static void test() {
3670 MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3671 const size_t vsn_test_size_words = MediumChunk * 4;
3672 const size_t vsn_test_size_bytes = vsn_test_size_words * BytesPerWord;
3673
3674 // The chunk sizes must be multiples of eachother, or this will fail
3675 STATIC_ASSERT(MediumChunk % SmallChunk == 0);
3676 STATIC_ASSERT(SmallChunk % SpecializedChunk == 0);
3677
3678 { // No committed memory in VSN
3679 ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3680 VirtualSpaceNode vsn(vsn_test_size_bytes);
3681 vsn.initialize();
3682 vsn.retire(&cm);
3683 assert(cm.sum_free_chunks_count() == 0, "did not commit any memory in the VSN");
3684 }
3685
3686 { // All of VSN is committed, half is used by chunks
3687 ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3688 VirtualSpaceNode vsn(vsn_test_size_bytes);
3689 vsn.initialize();
3690 vsn.expand_by(vsn_test_size_words, vsn_test_size_words);
3691 vsn.get_chunk_vs(MediumChunk);
3692 vsn.get_chunk_vs(MediumChunk);
3693 vsn.retire(&cm);
3694 assert(cm.sum_free_chunks_count() == 2, "should have been memory left for 2 medium chunks");
3695 assert(cm.sum_free_chunks() == 2*MediumChunk, "sizes should add up");
3696 }
3697
3698 { // 4 pages of VSN is committed, some is used by chunks
3699 ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3700 VirtualSpaceNode vsn(vsn_test_size_bytes);
3701 const size_t page_chunks = 4 * (size_t)os::vm_page_size() / BytesPerWord;
3702 assert(page_chunks < MediumChunk, "Test expects medium chunks to be at least 4*page_size");
3703 vsn.initialize();
3704 vsn.expand_by(page_chunks, page_chunks);
3705 vsn.get_chunk_vs(SmallChunk);
3706 vsn.get_chunk_vs(SpecializedChunk);
3707 vsn.retire(&cm);
3708
3709 // committed - used = words left to retire
3710 const size_t words_left = page_chunks - SmallChunk - SpecializedChunk;
3711
3712 size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
3713 chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);
3714
3715 assert(num_medium_chunks == 0, "should not get any medium chunks");
3716 assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
3717 assert(cm.sum_free_chunks() == words_left, "sizes should add up");
3718 }
3719
3720 { // Half of VSN is committed, a humongous chunk is used
3721 ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3722 VirtualSpaceNode vsn(vsn_test_size_bytes);
3723 vsn.initialize();
3724 vsn.expand_by(MediumChunk * 2, MediumChunk * 2);
3725 vsn.get_chunk_vs(MediumChunk + SpecializedChunk); // Humongous chunks will be aligned up to MediumChunk + SpecializedChunk
3726 vsn.retire(&cm);
3727
3728 const size_t words_left = MediumChunk * 2 - (MediumChunk + SpecializedChunk);
3729 size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
3730 chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);
3731
3732 assert(num_medium_chunks == 0, "should not get any medium chunks");
3733 assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
3734 assert(cm.sum_free_chunks() == words_left, "sizes should add up");
3735 }
3736
3737 }
3738
3739 #define assert_is_available_positive(word_size) \
3740 assert(vsn.is_available(word_size), \
3741 err_msg(#word_size ": " PTR_FORMAT " bytes were not available in " \
3742 "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
3743 (uintptr_t)(word_size * BytesPerWord), vsn.bottom(), vsn.end()));
3744
3745 #define assert_is_available_negative(word_size) \
3746 assert(!vsn.is_available(word_size), \
3747 err_msg(#word_size ": " PTR_FORMAT " bytes should not be available in " \
3748 "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
3749 (uintptr_t)(word_size * BytesPerWord), vsn.bottom(), vsn.end()));
3750
3751 static void test_is_available_positive() {
3752 // Reserve some memory.
3753 VirtualSpaceNode vsn(os::vm_allocation_granularity());
3754 assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3755
3756 // Commit some memory.
3757 size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3758 bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
3759 assert(expanded, "Failed to commit");
3760
3761 // Check that is_available accepts the committed size.
3762 assert_is_available_positive(commit_word_size);
3763
3764 // Check that is_available accepts half the committed size.
3765 size_t expand_word_size = commit_word_size / 2;
3766 assert_is_available_positive(expand_word_size);
3767 }
3768
3769 static void test_is_available_negative() {
3770 // Reserve some memory.
3771 VirtualSpaceNode vsn(os::vm_allocation_granularity());
3772 assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3773
3774 // Commit some memory.
3775 size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3776 bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
3777 assert(expanded, "Failed to commit");
3778
3779 // Check that is_available doesn't accept a too large size.
3780 size_t two_times_commit_word_size = commit_word_size * 2;
3781 assert_is_available_negative(two_times_commit_word_size);
3782 }
3783
3784 static void test_is_available_overflow() {
3785 // Reserve some memory.
3786 VirtualSpaceNode vsn(os::vm_allocation_granularity());
3787 assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3788
3789 // Commit some memory.
3790 size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3791 bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
3792 assert(expanded, "Failed to commit");
3793
3794 // Calculate a size that will overflow the virtual space size.
3795 void* virtual_space_max = (void*)(uintptr_t)-1;
3796 size_t bottom_to_max = pointer_delta(virtual_space_max, vsn.bottom(), 1);
3797 size_t overflow_size = bottom_to_max + BytesPerWord;
3798 size_t overflow_word_size = overflow_size / BytesPerWord;
3799
3800 // Check that is_available can handle the overflow.
3801 assert_is_available_negative(overflow_word_size);
3802 }
3803
3804 static void test_is_available() {
3805 TestVirtualSpaceNodeTest::test_is_available_positive();
3806 TestVirtualSpaceNodeTest::test_is_available_negative();
3807 TestVirtualSpaceNodeTest::test_is_available_overflow();
3808 }
3809 };
3810
3811 void TestVirtualSpaceNode_test() {
3812 TestVirtualSpaceNodeTest::test();
3813 TestVirtualSpaceNodeTest::test_is_available();
3814 }
3815 #endif