1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/concurrentMarkSweep/cmsLockVerifier.hpp"
  27 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  28 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  29 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  30 #include "gc_implementation/shared/liveRange.hpp"
  31 #include "gc_implementation/shared/spaceDecorator.hpp"
  32 #include "gc_interface/collectedHeap.inline.hpp"
  33 #include "memory/allocation.inline.hpp"
  34 #include "memory/blockOffsetTable.inline.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "memory/universe.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "runtime/globals.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/init.hpp"
  41 #include "runtime/java.hpp"
  42 #include "runtime/orderAccess.inline.hpp"
  43 #include "runtime/vmThread.hpp"
  44 #include "utilities/copy.hpp"
  45 
  46 /////////////////////////////////////////////////////////////////////////
  47 //// CompactibleFreeListSpace
  48 /////////////////////////////////////////////////////////////////////////
  49 
  50 // highest ranked  free list lock rank
  51 int CompactibleFreeListSpace::_lockRank = Mutex::leaf + 3;
  52 
  53 // Defaults are 0 so things will break badly if incorrectly initialized.
  54 size_t CompactibleFreeListSpace::IndexSetStart  = 0;
  55 size_t CompactibleFreeListSpace::IndexSetStride = 0;
  56 
  57 size_t MinChunkSize = 0;
  58 
  59 void CompactibleFreeListSpace::set_cms_values() {
  60   // Set CMS global values
  61   assert(MinChunkSize == 0, "already set");
  62 
  63   // MinChunkSize should be a multiple of MinObjAlignment and be large enough
  64   // for chunks to contain a FreeChunk.
  65   size_t min_chunk_size_in_bytes = align_size_up(sizeof(FreeChunk), MinObjAlignmentInBytes);
  66   MinChunkSize = min_chunk_size_in_bytes / BytesPerWord;
  67 
  68   assert(IndexSetStart == 0 && IndexSetStride == 0, "already set");
  69   IndexSetStart  = MinChunkSize;
  70   IndexSetStride = MinObjAlignment;
  71 }
  72 
  73 // Constructor
  74 CompactibleFreeListSpace::CompactibleFreeListSpace(BlockOffsetSharedArray* bs,
  75   MemRegion mr, bool use_adaptive_freelists,
  76   FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
  77   _dictionaryChoice(dictionaryChoice),
  78   _adaptive_freelists(use_adaptive_freelists),
  79   _bt(bs, mr),
  80   // free list locks are in the range of values taken by _lockRank
  81   // This range currently is [_leaf+2, _leaf+3]
  82   // Note: this requires that CFLspace c'tors
  83   // are called serially in the order in which the locks are
  84   // are acquired in the program text. This is true today.
  85   _freelistLock(_lockRank--, "CompactibleFreeListSpace._lock", true),
  86   _parDictionaryAllocLock(Mutex::leaf - 1,  // == rank(ExpandHeap_lock) - 1
  87                           "CompactibleFreeListSpace._dict_par_lock", true),
  88   _rescan_task_size(CardTableModRefBS::card_size_in_words * BitsPerWord *
  89                     CMSRescanMultiple),
  90   _marking_task_size(CardTableModRefBS::card_size_in_words * BitsPerWord *
  91                     CMSConcMarkMultiple),
  92   _collector(NULL)
  93 {
  94   assert(sizeof(FreeChunk) / BytesPerWord <= MinChunkSize,
  95          "FreeChunk is larger than expected");
  96   _bt.set_space(this);
  97   initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
  98   // We have all of "mr", all of which we place in the dictionary
  99   // as one big chunk. We'll need to decide here which of several
 100   // possible alternative dictionary implementations to use. For
 101   // now the choice is easy, since we have only one working
 102   // implementation, namely, the simple binary tree (splaying
 103   // temporarily disabled).
 104   switch (dictionaryChoice) {
 105     case FreeBlockDictionary<FreeChunk>::dictionaryBinaryTree:
 106       _dictionary = new AFLBinaryTreeDictionary(mr);
 107       break;
 108     case FreeBlockDictionary<FreeChunk>::dictionarySplayTree:
 109     case FreeBlockDictionary<FreeChunk>::dictionarySkipList:
 110     default:
 111       warning("dictionaryChoice: selected option not understood; using"
 112               " default BinaryTreeDictionary implementation instead.");
 113   }
 114   assert(_dictionary != NULL, "CMS dictionary initialization");
 115   // The indexed free lists are initially all empty and are lazily
 116   // filled in on demand. Initialize the array elements to NULL.
 117   initializeIndexedFreeListArray();
 118 
 119   // Not using adaptive free lists assumes that allocation is first
 120   // from the linAB's.  Also a cms perm gen which can be compacted
 121   // has to have the klass's klassKlass allocated at a lower
 122   // address in the heap than the klass so that the klassKlass is
 123   // moved to its new location before the klass is moved.
 124   // Set the _refillSize for the linear allocation blocks
 125   if (!use_adaptive_freelists) {
 126     FreeChunk* fc = _dictionary->get_chunk(mr.word_size(),
 127                                            FreeBlockDictionary<FreeChunk>::atLeast);
 128     // The small linAB initially has all the space and will allocate
 129     // a chunk of any size.
 130     HeapWord* addr = (HeapWord*) fc;
 131     _smallLinearAllocBlock.set(addr, fc->size() ,
 132       1024*SmallForLinearAlloc, fc->size());
 133     // Note that _unallocated_block is not updated here.
 134     // Allocations from the linear allocation block should
 135     // update it.
 136   } else {
 137     _smallLinearAllocBlock.set(0, 0, 1024*SmallForLinearAlloc,
 138                                SmallForLinearAlloc);
 139   }
 140   // CMSIndexedFreeListReplenish should be at least 1
 141   CMSIndexedFreeListReplenish = MAX2((uintx)1, CMSIndexedFreeListReplenish);
 142   _promoInfo.setSpace(this);
 143   if (UseCMSBestFit) {
 144     _fitStrategy = FreeBlockBestFitFirst;
 145   } else {
 146     _fitStrategy = FreeBlockStrategyNone;
 147   }
 148   check_free_list_consistency();
 149 
 150   // Initialize locks for parallel case.
 151 
 152   if (CollectedHeap::use_parallel_gc_threads()) {
 153     for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
 154       _indexedFreeListParLocks[i] = new Mutex(Mutex::leaf - 1, // == ExpandHeap_lock - 1
 155                                               "a freelist par lock",
 156                                               true);
 157       DEBUG_ONLY(
 158         _indexedFreeList[i].set_protecting_lock(_indexedFreeListParLocks[i]);
 159       )
 160     }
 161     _dictionary->set_par_lock(&_parDictionaryAllocLock);
 162   }
 163 }
 164 
 165 // Like CompactibleSpace forward() but always calls cross_threshold() to
 166 // update the block offset table.  Removed initialize_threshold call because
 167 // CFLS does not use a block offset array for contiguous spaces.
 168 HeapWord* CompactibleFreeListSpace::forward(oop q, size_t size,
 169                                     CompactPoint* cp, HeapWord* compact_top) {
 170   // q is alive
 171   // First check if we should switch compaction space
 172   assert(this == cp->space, "'this' should be current compaction space.");
 173   size_t compaction_max_size = pointer_delta(end(), compact_top);
 174   assert(adjustObjectSize(size) == cp->space->adjust_object_size_v(size),
 175     "virtual adjustObjectSize_v() method is not correct");
 176   size_t adjusted_size = adjustObjectSize(size);
 177   assert(compaction_max_size >= MinChunkSize || compaction_max_size == 0,
 178          "no small fragments allowed");
 179   assert(minimum_free_block_size() == MinChunkSize,
 180          "for de-virtualized reference below");
 181   // Can't leave a nonzero size, residual fragment smaller than MinChunkSize
 182   if (adjusted_size + MinChunkSize > compaction_max_size &&
 183       adjusted_size != compaction_max_size) {
 184     do {
 185       // switch to next compaction space
 186       cp->space->set_compaction_top(compact_top);
 187       cp->space = cp->space->next_compaction_space();
 188       if (cp->space == NULL) {
 189         cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
 190         assert(cp->gen != NULL, "compaction must succeed");
 191         cp->space = cp->gen->first_compaction_space();
 192         assert(cp->space != NULL, "generation must have a first compaction space");
 193       }
 194       compact_top = cp->space->bottom();
 195       cp->space->set_compaction_top(compact_top);
 196       // The correct adjusted_size may not be the same as that for this method
 197       // (i.e., cp->space may no longer be "this" so adjust the size again.
 198       // Use the virtual method which is not used above to save the virtual
 199       // dispatch.
 200       adjusted_size = cp->space->adjust_object_size_v(size);
 201       compaction_max_size = pointer_delta(cp->space->end(), compact_top);
 202       assert(cp->space->minimum_free_block_size() == 0, "just checking");
 203     } while (adjusted_size > compaction_max_size);
 204   }
 205 
 206   // store the forwarding pointer into the mark word
 207   if ((HeapWord*)q != compact_top) {
 208     q->forward_to(oop(compact_top));
 209     assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
 210   } else {
 211     // if the object isn't moving we can just set the mark to the default
 212     // mark and handle it specially later on.
 213     q->init_mark();
 214     assert(q->forwardee() == NULL, "should be forwarded to NULL");
 215   }
 216 
 217   compact_top += adjusted_size;
 218 
 219   // we need to update the offset table so that the beginnings of objects can be
 220   // found during scavenge.  Note that we are updating the offset table based on
 221   // where the object will be once the compaction phase finishes.
 222 
 223   // Always call cross_threshold().  A contiguous space can only call it when
 224   // the compaction_top exceeds the current threshold but not for an
 225   // non-contiguous space.
 226   cp->threshold =
 227     cp->space->cross_threshold(compact_top - adjusted_size, compact_top);
 228   return compact_top;
 229 }
 230 
 231 // A modified copy of OffsetTableContigSpace::cross_threshold() with _offsets -> _bt
 232 // and use of single_block instead of alloc_block.  The name here is not really
 233 // appropriate - maybe a more general name could be invented for both the
 234 // contiguous and noncontiguous spaces.
 235 
 236 HeapWord* CompactibleFreeListSpace::cross_threshold(HeapWord* start, HeapWord* the_end) {
 237   _bt.single_block(start, the_end);
 238   return end();
 239 }
 240 
 241 // Initialize them to NULL.
 242 void CompactibleFreeListSpace::initializeIndexedFreeListArray() {
 243   for (size_t i = 0; i < IndexSetSize; i++) {
 244     // Note that on platforms where objects are double word aligned,
 245     // the odd array elements are not used.  It is convenient, however,
 246     // to map directly from the object size to the array element.
 247     _indexedFreeList[i].reset(IndexSetSize);
 248     _indexedFreeList[i].set_size(i);
 249     assert(_indexedFreeList[i].count() == 0, "reset check failed");
 250     assert(_indexedFreeList[i].head() == NULL, "reset check failed");
 251     assert(_indexedFreeList[i].tail() == NULL, "reset check failed");
 252     assert(_indexedFreeList[i].hint() == IndexSetSize, "reset check failed");
 253   }
 254 }
 255 
 256 void CompactibleFreeListSpace::resetIndexedFreeListArray() {
 257   for (size_t i = 1; i < IndexSetSize; i++) {
 258     assert(_indexedFreeList[i].size() == (size_t) i,
 259       "Indexed free list sizes are incorrect");
 260     _indexedFreeList[i].reset(IndexSetSize);
 261     assert(_indexedFreeList[i].count() == 0, "reset check failed");
 262     assert(_indexedFreeList[i].head() == NULL, "reset check failed");
 263     assert(_indexedFreeList[i].tail() == NULL, "reset check failed");
 264     assert(_indexedFreeList[i].hint() == IndexSetSize, "reset check failed");
 265   }
 266 }
 267 
 268 void CompactibleFreeListSpace::reset(MemRegion mr) {
 269   resetIndexedFreeListArray();
 270   dictionary()->reset();
 271   if (BlockOffsetArrayUseUnallocatedBlock) {
 272     assert(end() == mr.end(), "We are compacting to the bottom of CMS gen");
 273     // Everything's allocated until proven otherwise.
 274     _bt.set_unallocated_block(end());
 275   }
 276   if (!mr.is_empty()) {
 277     assert(mr.word_size() >= MinChunkSize, "Chunk size is too small");
 278     _bt.single_block(mr.start(), mr.word_size());
 279     FreeChunk* fc = (FreeChunk*) mr.start();
 280     fc->set_size(mr.word_size());
 281     if (mr.word_size() >= IndexSetSize ) {
 282       returnChunkToDictionary(fc);
 283     } else {
 284       _bt.verify_not_unallocated((HeapWord*)fc, fc->size());
 285       _indexedFreeList[mr.word_size()].return_chunk_at_head(fc);
 286     }
 287     coalBirth(mr.word_size());
 288   }
 289   _promoInfo.reset();
 290   _smallLinearAllocBlock._ptr = NULL;
 291   _smallLinearAllocBlock._word_size = 0;
 292 }
 293 
 294 void CompactibleFreeListSpace::reset_after_compaction() {
 295   // Reset the space to the new reality - one free chunk.
 296   MemRegion mr(compaction_top(), end());
 297   reset(mr);
 298   // Now refill the linear allocation block(s) if possible.
 299   if (_adaptive_freelists) {
 300     refillLinearAllocBlocksIfNeeded();
 301   } else {
 302     // Place as much of mr in the linAB as we can get,
 303     // provided it was big enough to go into the dictionary.
 304     FreeChunk* fc = dictionary()->find_largest_dict();
 305     if (fc != NULL) {
 306       assert(fc->size() == mr.word_size(),
 307              "Why was the chunk broken up?");
 308       removeChunkFromDictionary(fc);
 309       HeapWord* addr = (HeapWord*) fc;
 310       _smallLinearAllocBlock.set(addr, fc->size() ,
 311         1024*SmallForLinearAlloc, fc->size());
 312       // Note that _unallocated_block is not updated here.
 313     }
 314   }
 315 }
 316 
 317 // Walks the entire dictionary, returning a coterminal
 318 // chunk, if it exists. Use with caution since it involves
 319 // a potentially complete walk of a potentially large tree.
 320 FreeChunk* CompactibleFreeListSpace::find_chunk_at_end() {
 321 
 322   assert_lock_strong(&_freelistLock);
 323 
 324   return dictionary()->find_chunk_ends_at(end());
 325 }
 326 
 327 
 328 #ifndef PRODUCT
 329 void CompactibleFreeListSpace::initializeIndexedFreeListArrayReturnedBytes() {
 330   for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
 331     _indexedFreeList[i].allocation_stats()->set_returned_bytes(0);
 332   }
 333 }
 334 
 335 size_t CompactibleFreeListSpace::sumIndexedFreeListArrayReturnedBytes() {
 336   size_t sum = 0;
 337   for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
 338     sum += _indexedFreeList[i].allocation_stats()->returned_bytes();
 339   }
 340   return sum;
 341 }
 342 
 343 size_t CompactibleFreeListSpace::totalCountInIndexedFreeLists() const {
 344   size_t count = 0;
 345   for (size_t i = IndexSetStart; i < IndexSetSize; i++) {
 346     debug_only(
 347       ssize_t total_list_count = 0;
 348       for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
 349          fc = fc->next()) {
 350         total_list_count++;
 351       }
 352       assert(total_list_count ==  _indexedFreeList[i].count(),
 353         "Count in list is incorrect");
 354     )
 355     count += _indexedFreeList[i].count();
 356   }
 357   return count;
 358 }
 359 
 360 size_t CompactibleFreeListSpace::totalCount() {
 361   size_t num = totalCountInIndexedFreeLists();
 362   num +=  dictionary()->total_count();
 363   if (_smallLinearAllocBlock._word_size != 0) {
 364     num++;
 365   }
 366   return num;
 367 }
 368 #endif
 369 
 370 bool CompactibleFreeListSpace::is_free_block(const HeapWord* p) const {
 371   FreeChunk* fc = (FreeChunk*) p;
 372   return fc->is_free();
 373 }
 374 
 375 size_t CompactibleFreeListSpace::used() const {
 376   return capacity() - free();
 377 }
 378 
 379 size_t CompactibleFreeListSpace::free() const {
 380   // "MT-safe, but not MT-precise"(TM), if you will: i.e.
 381   // if you do this while the structures are in flux you
 382   // may get an approximate answer only; for instance
 383   // because there is concurrent allocation either
 384   // directly by mutators or for promotion during a GC.
 385   // It's "MT-safe", however, in the sense that you are guaranteed
 386   // not to crash and burn, for instance, because of walking
 387   // pointers that could disappear as you were walking them.
 388   // The approximation is because the various components
 389   // that are read below are not read atomically (and
 390   // further the computation of totalSizeInIndexedFreeLists()
 391   // is itself a non-atomic computation. The normal use of
 392   // this is during a resize operation at the end of GC
 393   // and at that time you are guaranteed to get the
 394   // correct actual value. However, for instance, this is
 395   // also read completely asynchronously by the "perf-sampler"
 396   // that supports jvmstat, and you are apt to see the values
 397   // flicker in such cases.
 398   assert(_dictionary != NULL, "No _dictionary?");
 399   return (_dictionary->total_chunk_size(DEBUG_ONLY(freelistLock())) +
 400           totalSizeInIndexedFreeLists() +
 401           _smallLinearAllocBlock._word_size) * HeapWordSize;
 402 }
 403 
 404 size_t CompactibleFreeListSpace::max_alloc_in_words() const {
 405   assert(_dictionary != NULL, "No _dictionary?");
 406   assert_locked();
 407   size_t res = _dictionary->max_chunk_size();
 408   res = MAX2(res, MIN2(_smallLinearAllocBlock._word_size,
 409                        (size_t) SmallForLinearAlloc - 1));
 410   // XXX the following could potentially be pretty slow;
 411   // should one, pessimistically for the rare cases when res
 412   // calculated above is less than IndexSetSize,
 413   // just return res calculated above? My reasoning was that
 414   // those cases will be so rare that the extra time spent doesn't
 415   // really matter....
 416   // Note: do not change the loop test i >= res + IndexSetStride
 417   // to i > res below, because i is unsigned and res may be zero.
 418   for (size_t i = IndexSetSize - 1; i >= res + IndexSetStride;
 419        i -= IndexSetStride) {
 420     if (_indexedFreeList[i].head() != NULL) {
 421       assert(_indexedFreeList[i].count() != 0, "Inconsistent FreeList");
 422       return i;
 423     }
 424   }
 425   return res;
 426 }
 427 
 428 void LinearAllocBlock::print_on(outputStream* st) const {
 429   st->print_cr(" LinearAllocBlock: ptr = " PTR_FORMAT ", word_size = " SIZE_FORMAT
 430             ", refillsize = " SIZE_FORMAT ", allocation_size_limit = " SIZE_FORMAT,
 431             p2i(_ptr), _word_size, _refillSize, _allocation_size_limit);
 432 }
 433 
 434 void CompactibleFreeListSpace::print_on(outputStream* st) const {
 435   st->print_cr("COMPACTIBLE FREELIST SPACE");
 436   st->print_cr(" Space:");
 437   Space::print_on(st);
 438 
 439   st->print_cr("promoInfo:");
 440   _promoInfo.print_on(st);
 441 
 442   st->print_cr("_smallLinearAllocBlock");
 443   _smallLinearAllocBlock.print_on(st);
 444 
 445   // dump_memory_block(_smallLinearAllocBlock->_ptr, 128);
 446 
 447   st->print_cr(" _fitStrategy = %s, _adaptive_freelists = %s",
 448                _fitStrategy?"true":"false", _adaptive_freelists?"true":"false");
 449 }
 450 
 451 void CompactibleFreeListSpace::print_indexed_free_lists(outputStream* st)
 452 const {
 453   reportIndexedFreeListStatistics();
 454   gclog_or_tty->print_cr("Layout of Indexed Freelists");
 455   gclog_or_tty->print_cr("---------------------------");
 456   AdaptiveFreeList<FreeChunk>::print_labels_on(st, "size");
 457   for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
 458     _indexedFreeList[i].print_on(gclog_or_tty);
 459     for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
 460          fc = fc->next()) {
 461       gclog_or_tty->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
 462                           p2i(fc), p2i((HeapWord*)fc + i),
 463                           fc->cantCoalesce() ? "\t CC" : "");
 464     }
 465   }
 466 }
 467 
 468 void CompactibleFreeListSpace::print_promo_info_blocks(outputStream* st)
 469 const {
 470   _promoInfo.print_on(st);
 471 }
 472 
 473 void CompactibleFreeListSpace::print_dictionary_free_lists(outputStream* st)
 474 const {
 475   _dictionary->report_statistics();
 476   st->print_cr("Layout of Freelists in Tree");
 477   st->print_cr("---------------------------");
 478   _dictionary->print_free_lists(st);
 479 }
 480 
 481 class BlkPrintingClosure: public BlkClosure {
 482   const CMSCollector*             _collector;
 483   const CompactibleFreeListSpace* _sp;
 484   const CMSBitMap*                _live_bit_map;
 485   const bool                      _post_remark;
 486   outputStream*                   _st;
 487 public:
 488   BlkPrintingClosure(const CMSCollector* collector,
 489                      const CompactibleFreeListSpace* sp,
 490                      const CMSBitMap* live_bit_map,
 491                      outputStream* st):
 492     _collector(collector),
 493     _sp(sp),
 494     _live_bit_map(live_bit_map),
 495     _post_remark(collector->abstract_state() > CMSCollector::FinalMarking),
 496     _st(st) { }
 497   size_t do_blk(HeapWord* addr);
 498 };
 499 
 500 size_t BlkPrintingClosure::do_blk(HeapWord* addr) {
 501   size_t sz = _sp->block_size_no_stall(addr, _collector);
 502   assert(sz != 0, "Should always be able to compute a size");
 503   if (_sp->block_is_obj(addr)) {
 504     const bool dead = _post_remark && !_live_bit_map->isMarked(addr);
 505     _st->print_cr(PTR_FORMAT ": %s object of size " SIZE_FORMAT "%s",
 506       p2i(addr),
 507       dead ? "dead" : "live",
 508       sz,
 509       (!dead && CMSPrintObjectsInDump) ? ":" : ".");
 510     if (CMSPrintObjectsInDump && !dead) {
 511       oop(addr)->print_on(_st);
 512       _st->print_cr("--------------------------------------");
 513     }
 514   } else { // free block
 515     _st->print_cr(PTR_FORMAT ": free block of size " SIZE_FORMAT "%s",
 516       p2i(addr), sz, CMSPrintChunksInDump ? ":" : ".");
 517     if (CMSPrintChunksInDump) {
 518       ((FreeChunk*)addr)->print_on(_st);
 519       _st->print_cr("--------------------------------------");
 520     }
 521   }
 522   return sz;
 523 }
 524 
 525 void CompactibleFreeListSpace::dump_at_safepoint_with_locks(CMSCollector* c,
 526   outputStream* st) {
 527   st->print_cr("\n=========================");
 528   st->print_cr("Block layout in CMS Heap:");
 529   st->print_cr("=========================");
 530   BlkPrintingClosure  bpcl(c, this, c->markBitMap(), st);
 531   blk_iterate(&bpcl);
 532 
 533   st->print_cr("\n=======================================");
 534   st->print_cr("Order & Layout of Promotion Info Blocks");
 535   st->print_cr("=======================================");
 536   print_promo_info_blocks(st);
 537 
 538   st->print_cr("\n===========================");
 539   st->print_cr("Order of Indexed Free Lists");
 540   st->print_cr("=========================");
 541   print_indexed_free_lists(st);
 542 
 543   st->print_cr("\n=================================");
 544   st->print_cr("Order of Free Lists in Dictionary");
 545   st->print_cr("=================================");
 546   print_dictionary_free_lists(st);
 547 }
 548 
 549 
 550 void CompactibleFreeListSpace::reportFreeListStatistics() const {
 551   assert_lock_strong(&_freelistLock);
 552   assert(PrintFLSStatistics != 0, "Reporting error");
 553   _dictionary->report_statistics();
 554   if (PrintFLSStatistics > 1) {
 555     reportIndexedFreeListStatistics();
 556     size_t total_size = totalSizeInIndexedFreeLists() +
 557                        _dictionary->total_chunk_size(DEBUG_ONLY(freelistLock()));
 558     gclog_or_tty->print(" free=" SIZE_FORMAT " frag=%1.4f\n", total_size, flsFrag());
 559   }
 560 }
 561 
 562 void CompactibleFreeListSpace::reportIndexedFreeListStatistics() const {
 563   assert_lock_strong(&_freelistLock);
 564   gclog_or_tty->print("Statistics for IndexedFreeLists:\n"
 565                       "--------------------------------\n");
 566   size_t total_size = totalSizeInIndexedFreeLists();
 567   size_t   free_blocks = numFreeBlocksInIndexedFreeLists();
 568   gclog_or_tty->print("Total Free Space: " SIZE_FORMAT "\n", total_size);
 569   gclog_or_tty->print("Max   Chunk Size: " SIZE_FORMAT "\n", maxChunkSizeInIndexedFreeLists());
 570   gclog_or_tty->print("Number of Blocks: " SIZE_FORMAT "\n", free_blocks);
 571   if (free_blocks != 0) {
 572     gclog_or_tty->print("Av.  Block  Size: " SIZE_FORMAT "\n", total_size/free_blocks);
 573   }
 574 }
 575 
 576 size_t CompactibleFreeListSpace::numFreeBlocksInIndexedFreeLists() const {
 577   size_t res = 0;
 578   for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
 579     debug_only(
 580       ssize_t recount = 0;
 581       for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
 582          fc = fc->next()) {
 583         recount += 1;
 584       }
 585       assert(recount == _indexedFreeList[i].count(),
 586         "Incorrect count in list");
 587     )
 588     res += _indexedFreeList[i].count();
 589   }
 590   return res;
 591 }
 592 
 593 size_t CompactibleFreeListSpace::maxChunkSizeInIndexedFreeLists() const {
 594   for (size_t i = IndexSetSize - 1; i != 0; i -= IndexSetStride) {
 595     if (_indexedFreeList[i].head() != NULL) {
 596       assert(_indexedFreeList[i].count() != 0, "Inconsistent FreeList");
 597       return (size_t)i;
 598     }
 599   }
 600   return 0;
 601 }
 602 
 603 void CompactibleFreeListSpace::set_end(HeapWord* value) {
 604   HeapWord* prevEnd = end();
 605   assert(prevEnd != value, "unnecessary set_end call");
 606   assert(prevEnd == NULL || !BlockOffsetArrayUseUnallocatedBlock || value >= unallocated_block(),
 607         "New end is below unallocated block");
 608   _end = value;
 609   if (prevEnd != NULL) {
 610     // Resize the underlying block offset table.
 611     _bt.resize(pointer_delta(value, bottom()));
 612     if (value <= prevEnd) {
 613       assert(!BlockOffsetArrayUseUnallocatedBlock || value >= unallocated_block(),
 614              "New end is below unallocated block");
 615     } else {
 616       // Now, take this new chunk and add it to the free blocks.
 617       // Note that the BOT has not yet been updated for this block.
 618       size_t newFcSize = pointer_delta(value, prevEnd);
 619       // XXX This is REALLY UGLY and should be fixed up. XXX
 620       if (!_adaptive_freelists && _smallLinearAllocBlock._ptr == NULL) {
 621         // Mark the boundary of the new block in BOT
 622         _bt.mark_block(prevEnd, value);
 623         // put it all in the linAB
 624         if (ParallelGCThreads == 0) {
 625           _smallLinearAllocBlock._ptr = prevEnd;
 626           _smallLinearAllocBlock._word_size = newFcSize;
 627           repairLinearAllocBlock(&_smallLinearAllocBlock);
 628         } else { // ParallelGCThreads > 0
 629           MutexLockerEx x(parDictionaryAllocLock(),
 630                           Mutex::_no_safepoint_check_flag);
 631           _smallLinearAllocBlock._ptr = prevEnd;
 632           _smallLinearAllocBlock._word_size = newFcSize;
 633           repairLinearAllocBlock(&_smallLinearAllocBlock);
 634         }
 635         // Births of chunks put into a LinAB are not recorded.  Births
 636         // of chunks as they are allocated out of a LinAB are.
 637       } else {
 638         // Add the block to the free lists, if possible coalescing it
 639         // with the last free block, and update the BOT and census data.
 640         addChunkToFreeListsAtEndRecordingStats(prevEnd, newFcSize);
 641       }
 642     }
 643   }
 644 }
 645 
 646 class FreeListSpace_DCTOC : public Filtering_DCTOC {
 647   CompactibleFreeListSpace* _cfls;
 648   CMSCollector* _collector;
 649 protected:
 650   // Override.
 651 #define walk_mem_region_with_cl_DECL(ClosureType)                       \
 652   virtual void walk_mem_region_with_cl(MemRegion mr,                    \
 653                                        HeapWord* bottom, HeapWord* top, \
 654                                        ClosureType* cl);                \
 655       void walk_mem_region_with_cl_par(MemRegion mr,                    \
 656                                        HeapWord* bottom, HeapWord* top, \
 657                                        ClosureType* cl);                \
 658     void walk_mem_region_with_cl_nopar(MemRegion mr,                    \
 659                                        HeapWord* bottom, HeapWord* top, \
 660                                        ClosureType* cl)
 661   walk_mem_region_with_cl_DECL(ExtendedOopClosure);
 662   walk_mem_region_with_cl_DECL(FilteringClosure);
 663 
 664 public:
 665   FreeListSpace_DCTOC(CompactibleFreeListSpace* sp,
 666                       CMSCollector* collector,
 667                       ExtendedOopClosure* cl,
 668                       CardTableModRefBS::PrecisionStyle precision,
 669                       HeapWord* boundary) :
 670     Filtering_DCTOC(sp, cl, precision, boundary),
 671     _cfls(sp), _collector(collector) {}
 672 };
 673 
 674 // We de-virtualize the block-related calls below, since we know that our
 675 // space is a CompactibleFreeListSpace.
 676 
 677 #define FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(ClosureType)          \
 678 void FreeListSpace_DCTOC::walk_mem_region_with_cl(MemRegion mr,                 \
 679                                                  HeapWord* bottom,              \
 680                                                  HeapWord* top,                 \
 681                                                  ClosureType* cl) {             \
 682    bool is_par = SharedHeap::heap()->n_par_threads() > 0;                       \
 683    if (is_par) {                                                                \
 684      assert(SharedHeap::heap()->n_par_threads() ==                              \
 685             SharedHeap::heap()->workers()->active_workers(), "Mismatch");       \
 686      walk_mem_region_with_cl_par(mr, bottom, top, cl);                          \
 687    } else {                                                                     \
 688      walk_mem_region_with_cl_nopar(mr, bottom, top, cl);                        \
 689    }                                                                            \
 690 }                                                                               \
 691 void FreeListSpace_DCTOC::walk_mem_region_with_cl_par(MemRegion mr,             \
 692                                                       HeapWord* bottom,         \
 693                                                       HeapWord* top,            \
 694                                                       ClosureType* cl) {        \
 695   /* Skip parts that are before "mr", in case "block_start" sent us             \
 696      back too far. */                                                           \
 697   HeapWord* mr_start = mr.start();                                              \
 698   size_t bot_size = _cfls->CompactibleFreeListSpace::block_size(bottom);        \
 699   HeapWord* next = bottom + bot_size;                                           \
 700   while (next < mr_start) {                                                     \
 701     bottom = next;                                                              \
 702     bot_size = _cfls->CompactibleFreeListSpace::block_size(bottom);             \
 703     next = bottom + bot_size;                                                   \
 704   }                                                                             \
 705                                                                                 \
 706   while (bottom < top) {                                                        \
 707     if (_cfls->CompactibleFreeListSpace::block_is_obj(bottom) &&                \
 708         !_cfls->CompactibleFreeListSpace::obj_allocated_since_save_marks(       \
 709                     oop(bottom)) &&                                             \
 710         !_collector->CMSCollector::is_dead_obj(oop(bottom))) {                  \
 711       size_t word_sz = oop(bottom)->oop_iterate(cl, mr);                        \
 712       bottom += _cfls->adjustObjectSize(word_sz);                               \
 713     } else {                                                                    \
 714       bottom += _cfls->CompactibleFreeListSpace::block_size(bottom);            \
 715     }                                                                           \
 716   }                                                                             \
 717 }                                                                               \
 718 void FreeListSpace_DCTOC::walk_mem_region_with_cl_nopar(MemRegion mr,           \
 719                                                         HeapWord* bottom,       \
 720                                                         HeapWord* top,          \
 721                                                         ClosureType* cl) {      \
 722   /* Skip parts that are before "mr", in case "block_start" sent us             \
 723      back too far. */                                                           \
 724   HeapWord* mr_start = mr.start();                                              \
 725   size_t bot_size = _cfls->CompactibleFreeListSpace::block_size_nopar(bottom);  \
 726   HeapWord* next = bottom + bot_size;                                           \
 727   while (next < mr_start) {                                                     \
 728     bottom = next;                                                              \
 729     bot_size = _cfls->CompactibleFreeListSpace::block_size_nopar(bottom);       \
 730     next = bottom + bot_size;                                                   \
 731   }                                                                             \
 732                                                                                 \
 733   while (bottom < top) {                                                        \
 734     if (_cfls->CompactibleFreeListSpace::block_is_obj_nopar(bottom) &&          \
 735         !_cfls->CompactibleFreeListSpace::obj_allocated_since_save_marks(       \
 736                     oop(bottom)) &&                                             \
 737         !_collector->CMSCollector::is_dead_obj(oop(bottom))) {                  \
 738       size_t word_sz = oop(bottom)->oop_iterate(cl, mr);                        \
 739       bottom += _cfls->adjustObjectSize(word_sz);                               \
 740     } else {                                                                    \
 741       bottom += _cfls->CompactibleFreeListSpace::block_size_nopar(bottom);      \
 742     }                                                                           \
 743   }                                                                             \
 744 }
 745 
 746 // (There are only two of these, rather than N, because the split is due
 747 // only to the introduction of the FilteringClosure, a local part of the
 748 // impl of this abstraction.)
 749 FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
 750 FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
 751 
 752 DirtyCardToOopClosure*
 753 CompactibleFreeListSpace::new_dcto_cl(ExtendedOopClosure* cl,
 754                                       CardTableModRefBS::PrecisionStyle precision,
 755                                       HeapWord* boundary) {
 756   return new FreeListSpace_DCTOC(this, _collector, cl, precision, boundary);
 757 }
 758 
 759 
 760 // Note on locking for the space iteration functions:
 761 // since the collector's iteration activities are concurrent with
 762 // allocation activities by mutators, absent a suitable mutual exclusion
 763 // mechanism the iterators may go awry. For instance a block being iterated
 764 // may suddenly be allocated or divided up and part of it allocated and
 765 // so on.
 766 
 767 // Apply the given closure to each block in the space.
 768 void CompactibleFreeListSpace::blk_iterate_careful(BlkClosureCareful* cl) {
 769   assert_lock_strong(freelistLock());
 770   HeapWord *cur, *limit;
 771   for (cur = bottom(), limit = end(); cur < limit;
 772        cur += cl->do_blk_careful(cur));
 773 }
 774 
 775 // Apply the given closure to each block in the space.
 776 void CompactibleFreeListSpace::blk_iterate(BlkClosure* cl) {
 777   assert_lock_strong(freelistLock());
 778   HeapWord *cur, *limit;
 779   for (cur = bottom(), limit = end(); cur < limit;
 780        cur += cl->do_blk(cur));
 781 }
 782 
 783 // Apply the given closure to each oop in the space.
 784 void CompactibleFreeListSpace::oop_iterate(ExtendedOopClosure* cl) {
 785   assert_lock_strong(freelistLock());
 786   HeapWord *cur, *limit;
 787   size_t curSize;
 788   for (cur = bottom(), limit = end(); cur < limit;
 789        cur += curSize) {
 790     curSize = block_size(cur);
 791     if (block_is_obj(cur)) {
 792       oop(cur)->oop_iterate(cl);
 793     }
 794   }
 795 }
 796 
 797 // NOTE: In the following methods, in order to safely be able to
 798 // apply the closure to an object, we need to be sure that the
 799 // object has been initialized. We are guaranteed that an object
 800 // is initialized if we are holding the Heap_lock with the
 801 // world stopped.
 802 void CompactibleFreeListSpace::verify_objects_initialized() const {
 803   if (is_init_completed()) {
 804     assert_locked_or_safepoint(Heap_lock);
 805     if (Universe::is_fully_initialized()) {
 806       guarantee(SafepointSynchronize::is_at_safepoint(),
 807                 "Required for objects to be initialized");
 808     }
 809   } // else make a concession at vm start-up
 810 }
 811 
 812 // Apply the given closure to each object in the space
 813 void CompactibleFreeListSpace::object_iterate(ObjectClosure* blk) {
 814   assert_lock_strong(freelistLock());
 815   NOT_PRODUCT(verify_objects_initialized());
 816   HeapWord *cur, *limit;
 817   size_t curSize;
 818   for (cur = bottom(), limit = end(); cur < limit;
 819        cur += curSize) {
 820     curSize = block_size(cur);
 821     if (block_is_obj(cur)) {
 822       blk->do_object(oop(cur));
 823     }
 824   }
 825 }
 826 
 827 // Apply the given closure to each live object in the space
 828 //   The usage of CompactibleFreeListSpace
 829 // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
 830 // objects in the space with references to objects that are no longer
 831 // valid.  For example, an object may reference another object
 832 // that has already been sweep up (collected).  This method uses
 833 // obj_is_alive() to determine whether it is safe to apply the closure to
 834 // an object.  See obj_is_alive() for details on how liveness of an
 835 // object is decided.
 836 
 837 void CompactibleFreeListSpace::safe_object_iterate(ObjectClosure* blk) {
 838   assert_lock_strong(freelistLock());
 839   NOT_PRODUCT(verify_objects_initialized());
 840   HeapWord *cur, *limit;
 841   size_t curSize;
 842   for (cur = bottom(), limit = end(); cur < limit;
 843        cur += curSize) {
 844     curSize = block_size(cur);
 845     if (block_is_obj(cur) && obj_is_alive(cur)) {
 846       blk->do_object(oop(cur));
 847     }
 848   }
 849 }
 850 
 851 void CompactibleFreeListSpace::object_iterate_mem(MemRegion mr,
 852                                                   UpwardsObjectClosure* cl) {
 853   assert_locked(freelistLock());
 854   NOT_PRODUCT(verify_objects_initialized());
 855   assert(!mr.is_empty(), "Should be non-empty");
 856   // We use MemRegion(bottom(), end()) rather than used_region() below
 857   // because the two are not necessarily equal for some kinds of
 858   // spaces, in particular, certain kinds of free list spaces.
 859   // We could use the more complicated but more precise:
 860   // MemRegion(used_region().start(), round_to(used_region().end(), CardSize))
 861   // but the slight imprecision seems acceptable in the assertion check.
 862   assert(MemRegion(bottom(), end()).contains(mr),
 863          "Should be within used space");
 864   HeapWord* prev = cl->previous();   // max address from last time
 865   if (prev >= mr.end()) { // nothing to do
 866     return;
 867   }
 868   // This assert will not work when we go from cms space to perm
 869   // space, and use same closure. Easy fix deferred for later. XXX YSR
 870   // assert(prev == NULL || contains(prev), "Should be within space");
 871 
 872   bool last_was_obj_array = false;
 873   HeapWord *blk_start_addr, *region_start_addr;
 874   if (prev > mr.start()) {
 875     region_start_addr = prev;
 876     blk_start_addr    = prev;
 877     // The previous invocation may have pushed "prev" beyond the
 878     // last allocated block yet there may be still be blocks
 879     // in this region due to a particular coalescing policy.
 880     // Relax the assertion so that the case where the unallocated
 881     // block is maintained and "prev" is beyond the unallocated
 882     // block does not cause the assertion to fire.
 883     assert((BlockOffsetArrayUseUnallocatedBlock &&
 884             (!is_in(prev))) ||
 885            (blk_start_addr == block_start(region_start_addr)), "invariant");
 886   } else {
 887     region_start_addr = mr.start();
 888     blk_start_addr    = block_start(region_start_addr);
 889   }
 890   HeapWord* region_end_addr = mr.end();
 891   MemRegion derived_mr(region_start_addr, region_end_addr);
 892   while (blk_start_addr < region_end_addr) {
 893     const size_t size = block_size(blk_start_addr);
 894     if (block_is_obj(blk_start_addr)) {
 895       last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr);
 896     } else {
 897       last_was_obj_array = false;
 898     }
 899     blk_start_addr += size;
 900   }
 901   if (!last_was_obj_array) {
 902     assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()),
 903            "Should be within (closed) used space");
 904     assert(blk_start_addr > prev, "Invariant");
 905     cl->set_previous(blk_start_addr); // min address for next time
 906   }
 907 }
 908 
 909 
 910 // Callers of this iterator beware: The closure application should
 911 // be robust in the face of uninitialized objects and should (always)
 912 // return a correct size so that the next addr + size below gives us a
 913 // valid block boundary. [See for instance,
 914 // ScanMarkedObjectsAgainCarefullyClosure::do_object_careful()
 915 // in ConcurrentMarkSweepGeneration.cpp.]
 916 HeapWord*
 917 CompactibleFreeListSpace::object_iterate_careful_m(MemRegion mr,
 918   ObjectClosureCareful* cl) {
 919   assert_lock_strong(freelistLock());
 920   // Can't use used_region() below because it may not necessarily
 921   // be the same as [bottom(),end()); although we could
 922   // use [used_region().start(),round_to(used_region().end(),CardSize)),
 923   // that appears too cumbersome, so we just do the simpler check
 924   // in the assertion below.
 925   assert(!mr.is_empty() && MemRegion(bottom(),end()).contains(mr),
 926          "mr should be non-empty and within used space");
 927   HeapWord *addr, *end;
 928   size_t size;
 929   for (addr = block_start_careful(mr.start()), end  = mr.end();
 930        addr < end; addr += size) {
 931     FreeChunk* fc = (FreeChunk*)addr;
 932     if (fc->is_free()) {
 933       // Since we hold the free list lock, which protects direct
 934       // allocation in this generation by mutators, a free object
 935       // will remain free throughout this iteration code.
 936       size = fc->size();
 937     } else {
 938       // Note that the object need not necessarily be initialized,
 939       // because (for instance) the free list lock does NOT protect
 940       // object initialization. The closure application below must
 941       // therefore be correct in the face of uninitialized objects.
 942       size = cl->do_object_careful_m(oop(addr), mr);
 943       if (size == 0) {
 944         // An unparsable object found. Signal early termination.
 945         return addr;
 946       }
 947     }
 948   }
 949   return NULL;
 950 }
 951 
 952 
 953 HeapWord* CompactibleFreeListSpace::block_start_const(const void* p) const {
 954   NOT_PRODUCT(verify_objects_initialized());
 955   return _bt.block_start(p);
 956 }
 957 
 958 HeapWord* CompactibleFreeListSpace::block_start_careful(const void* p) const {
 959   return _bt.block_start_careful(p);
 960 }
 961 
 962 size_t CompactibleFreeListSpace::block_size(const HeapWord* p) const {
 963   NOT_PRODUCT(verify_objects_initialized());
 964   // This must be volatile, or else there is a danger that the compiler
 965   // will compile the code below into a sometimes-infinite loop, by keeping
 966   // the value read the first time in a register.
 967   while (true) {
 968     // We must do this until we get a consistent view of the object.
 969     if (FreeChunk::indicatesFreeChunk(p)) {
 970       volatile FreeChunk* fc = (volatile FreeChunk*)p;
 971       size_t res = fc->size();
 972 
 973       // Bugfix for systems with weak memory model (PPC64/IA64). The
 974       // block's free bit was set and we have read the size of the
 975       // block. Acquire and check the free bit again. If the block is
 976       // still free, the read size is correct.
 977       OrderAccess::acquire();
 978 
 979       // If the object is still a free chunk, return the size, else it
 980       // has been allocated so try again.
 981       if (FreeChunk::indicatesFreeChunk(p)) {
 982         assert(res != 0, "Block size should not be 0");
 983         return res;
 984       }
 985     } else {
 986       // must read from what 'p' points to in each loop.
 987       Klass* k = ((volatile oopDesc*)p)->klass_or_null();
 988       if (k != NULL) {
 989         assert(k->is_klass(), "Should really be klass oop.");
 990         oop o = (oop)p;
 991         assert(o->is_oop(true /* ignore mark word */), "Should be an oop.");
 992 
 993         // Bugfix for systems with weak memory model (PPC64/IA64).
 994         // The object o may be an array. Acquire to make sure that the array
 995         // size (third word) is consistent.
 996         OrderAccess::acquire();
 997 
 998         size_t res = o->size_given_klass(k);
 999         res = adjustObjectSize(res);
1000         assert(res != 0, "Block size should not be 0");
1001         return res;
1002       }
1003     }
1004   }
1005 }
1006 
1007 // TODO: Now that is_parsable is gone, we should combine these two functions.
1008 // A variant of the above that uses the Printezis bits for
1009 // unparsable but allocated objects. This avoids any possible
1010 // stalls waiting for mutators to initialize objects, and is
1011 // thus potentially faster than the variant above. However,
1012 // this variant may return a zero size for a block that is
1013 // under mutation and for which a consistent size cannot be
1014 // inferred without stalling; see CMSCollector::block_size_if_printezis_bits().
1015 size_t CompactibleFreeListSpace::block_size_no_stall(HeapWord* p,
1016                                                      const CMSCollector* c)
1017 const {
1018   assert(MemRegion(bottom(), end()).contains(p), "p not in space");
1019   // This must be volatile, or else there is a danger that the compiler
1020   // will compile the code below into a sometimes-infinite loop, by keeping
1021   // the value read the first time in a register.
1022   DEBUG_ONLY(uint loops = 0;)
1023   while (true) {
1024     // We must do this until we get a consistent view of the object.
1025     if (FreeChunk::indicatesFreeChunk(p)) {
1026       volatile FreeChunk* fc = (volatile FreeChunk*)p;
1027       size_t res = fc->size();
1028 
1029       // Bugfix for systems with weak memory model (PPC64/IA64). The
1030       // free bit of the block was set and we have read the size of
1031       // the block. Acquire and check the free bit again. If the
1032       // block is still free, the read size is correct.
1033       OrderAccess::acquire();
1034 
1035       if (FreeChunk::indicatesFreeChunk(p)) {
1036         assert(res != 0, "Block size should not be 0");
1037         assert(loops == 0, "Should be 0");
1038         return res;
1039       }
1040     } else {
1041       // must read from what 'p' points to in each loop.
1042       Klass* k = ((volatile oopDesc*)p)->klass_or_null();
1043       // We trust the size of any object that has a non-NULL
1044       // klass and (for those in the perm gen) is parsable
1045       // -- irrespective of its conc_safe-ty.
1046       if (k != NULL) {
1047         assert(k->is_klass(), "Should really be klass oop.");
1048         oop o = (oop)p;
1049         assert(o->is_oop(), "Should be an oop");
1050 
1051         // Bugfix for systems with weak memory model (PPC64/IA64).
1052         // The object o may be an array. Acquire to make sure that the array
1053         // size (third word) is consistent.
1054         OrderAccess::acquire();
1055 
1056         size_t res = o->size_given_klass(k);
1057         res = adjustObjectSize(res);
1058         assert(res != 0, "Block size should not be 0");
1059         return res;
1060       } else {
1061         // May return 0 if P-bits not present.
1062         return c->block_size_if_printezis_bits(p);
1063       }
1064     }
1065     assert(loops == 0, "Can loop at most once");
1066     DEBUG_ONLY(loops++;)
1067   }
1068 }
1069 
1070 size_t CompactibleFreeListSpace::block_size_nopar(const HeapWord* p) const {
1071   NOT_PRODUCT(verify_objects_initialized());
1072   assert(MemRegion(bottom(), end()).contains(p), "p not in space");
1073   FreeChunk* fc = (FreeChunk*)p;
1074   if (fc->is_free()) {
1075     return fc->size();
1076   } else {
1077     // Ignore mark word because this may be a recently promoted
1078     // object whose mark word is used to chain together grey
1079     // objects (the last one would have a null value).
1080     assert(oop(p)->is_oop(true), "Should be an oop");
1081     return adjustObjectSize(oop(p)->size());
1082   }
1083 }
1084 
1085 // This implementation assumes that the property of "being an object" is
1086 // stable.  But being a free chunk may not be (because of parallel
1087 // promotion.)
1088 bool CompactibleFreeListSpace::block_is_obj(const HeapWord* p) const {
1089   FreeChunk* fc = (FreeChunk*)p;
1090   assert(is_in_reserved(p), "Should be in space");
1091   // When doing a mark-sweep-compact of the CMS generation, this
1092   // assertion may fail because prepare_for_compaction() uses
1093   // space that is garbage to maintain information on ranges of
1094   // live objects so that these live ranges can be moved as a whole.
1095   // Comment out this assertion until that problem can be solved
1096   // (i.e., that the block start calculation may look at objects
1097   // at address below "p" in finding the object that contains "p"
1098   // and those objects (if garbage) may have been modified to hold
1099   // live range information.
1100   // assert(CollectedHeap::use_parallel_gc_threads() || _bt.block_start(p) == p,
1101   //        "Should be a block boundary");
1102   if (FreeChunk::indicatesFreeChunk(p)) return false;
1103   Klass* k = oop(p)->klass_or_null();
1104   if (k != NULL) {
1105     // Ignore mark word because it may have been used to
1106     // chain together promoted objects (the last one
1107     // would have a null value).
1108     assert(oop(p)->is_oop(true), "Should be an oop");
1109     return true;
1110   } else {
1111     return false;  // Was not an object at the start of collection.
1112   }
1113 }
1114 
1115 // Check if the object is alive. This fact is checked either by consulting
1116 // the main marking bitmap in the sweeping phase or, if it's a permanent
1117 // generation and we're not in the sweeping phase, by checking the
1118 // perm_gen_verify_bit_map where we store the "deadness" information if
1119 // we did not sweep the perm gen in the most recent previous GC cycle.
1120 bool CompactibleFreeListSpace::obj_is_alive(const HeapWord* p) const {
1121   assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(),
1122          "Else races are possible");
1123   assert(block_is_obj(p), "The address should point to an object");
1124 
1125   // If we're sweeping, we use object liveness information from the main bit map
1126   // for both perm gen and old gen.
1127   // We don't need to lock the bitmap (live_map or dead_map below), because
1128   // EITHER we are in the middle of the sweeping phase, and the
1129   // main marking bit map (live_map below) is locked,
1130   // OR we're in other phases and perm_gen_verify_bit_map (dead_map below)
1131   // is stable, because it's mutated only in the sweeping phase.
1132   // NOTE: This method is also used by jmap where, if class unloading is
1133   // off, the results can return "false" for legitimate perm objects,
1134   // when we are not in the midst of a sweeping phase, which can result
1135   // in jmap not reporting certain perm gen objects. This will be moot
1136   // if/when the perm gen goes away in the future.
1137   if (_collector->abstract_state() == CMSCollector::Sweeping) {
1138     CMSBitMap* live_map = _collector->markBitMap();
1139     return live_map->par_isMarked((HeapWord*) p);
1140   }
1141   return true;
1142 }
1143 
1144 bool CompactibleFreeListSpace::block_is_obj_nopar(const HeapWord* p) const {
1145   FreeChunk* fc = (FreeChunk*)p;
1146   assert(is_in_reserved(p), "Should be in space");
1147   assert(_bt.block_start(p) == p, "Should be a block boundary");
1148   if (!fc->is_free()) {
1149     // Ignore mark word because it may have been used to
1150     // chain together promoted objects (the last one
1151     // would have a null value).
1152     assert(oop(p)->is_oop(true), "Should be an oop");
1153     return true;
1154   }
1155   return false;
1156 }
1157 
1158 // "MT-safe but not guaranteed MT-precise" (TM); you may get an
1159 // approximate answer if you don't hold the freelistlock when you call this.
1160 size_t CompactibleFreeListSpace::totalSizeInIndexedFreeLists() const {
1161   size_t size = 0;
1162   for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
1163     debug_only(
1164       // We may be calling here without the lock in which case we
1165       // won't do this modest sanity check.
1166       if (freelistLock()->owned_by_self()) {
1167         size_t total_list_size = 0;
1168         for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
1169           fc = fc->next()) {
1170           total_list_size += i;
1171         }
1172         assert(total_list_size == i * _indexedFreeList[i].count(),
1173                "Count in list is incorrect");
1174       }
1175     )
1176     size += i * _indexedFreeList[i].count();
1177   }
1178   return size;
1179 }
1180 
1181 HeapWord* CompactibleFreeListSpace::par_allocate(size_t size) {
1182   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
1183   return allocate(size);
1184 }
1185 
1186 HeapWord*
1187 CompactibleFreeListSpace::getChunkFromSmallLinearAllocBlockRemainder(size_t size) {
1188   return getChunkFromLinearAllocBlockRemainder(&_smallLinearAllocBlock, size);
1189 }
1190 
1191 HeapWord* CompactibleFreeListSpace::allocate(size_t size) {
1192   assert_lock_strong(freelistLock());
1193   HeapWord* res = NULL;
1194   assert(size == adjustObjectSize(size),
1195          "use adjustObjectSize() before calling into allocate()");
1196 
1197   if (_adaptive_freelists) {
1198     res = allocate_adaptive_freelists(size);
1199   } else {  // non-adaptive free lists
1200     res = allocate_non_adaptive_freelists(size);
1201   }
1202 
1203   if (res != NULL) {
1204     // check that res does lie in this space!
1205     assert(is_in_reserved(res), "Not in this space!");
1206     assert(is_aligned((void*)res), "alignment check");
1207 
1208     FreeChunk* fc = (FreeChunk*)res;
1209     fc->markNotFree();
1210     assert(!fc->is_free(), "shouldn't be marked free");
1211     assert(oop(fc)->klass_or_null() == NULL, "should look uninitialized");
1212     // Verify that the block offset table shows this to
1213     // be a single block, but not one which is unallocated.
1214     _bt.verify_single_block(res, size);
1215     _bt.verify_not_unallocated(res, size);
1216     // mangle a just allocated object with a distinct pattern.
1217     debug_only(fc->mangleAllocated(size));
1218   }
1219 
1220   return res;
1221 }
1222 
1223 HeapWord* CompactibleFreeListSpace::allocate_non_adaptive_freelists(size_t size) {
1224   HeapWord* res = NULL;
1225   // try and use linear allocation for smaller blocks
1226   if (size < _smallLinearAllocBlock._allocation_size_limit) {
1227     // if successful, the following also adjusts block offset table
1228     res = getChunkFromSmallLinearAllocBlock(size);
1229   }
1230   // Else triage to indexed lists for smaller sizes
1231   if (res == NULL) {
1232     if (size < SmallForDictionary) {
1233       res = (HeapWord*) getChunkFromIndexedFreeList(size);
1234     } else {
1235       // else get it from the big dictionary; if even this doesn't
1236       // work we are out of luck.
1237       res = (HeapWord*)getChunkFromDictionaryExact(size);
1238     }
1239   }
1240 
1241   return res;
1242 }
1243 
1244 HeapWord* CompactibleFreeListSpace::allocate_adaptive_freelists(size_t size) {
1245   assert_lock_strong(freelistLock());
1246   HeapWord* res = NULL;
1247   assert(size == adjustObjectSize(size),
1248          "use adjustObjectSize() before calling into allocate()");
1249 
1250   // Strategy
1251   //   if small
1252   //     exact size from small object indexed list if small
1253   //     small or large linear allocation block (linAB) as appropriate
1254   //     take from lists of greater sized chunks
1255   //   else
1256   //     dictionary
1257   //     small or large linear allocation block if it has the space
1258   // Try allocating exact size from indexTable first
1259   if (size < IndexSetSize) {
1260     res = (HeapWord*) getChunkFromIndexedFreeList(size);
1261     if(res != NULL) {
1262       assert(res != (HeapWord*)_indexedFreeList[size].head(),
1263         "Not removed from free list");
1264       // no block offset table adjustment is necessary on blocks in
1265       // the indexed lists.
1266 
1267     // Try allocating from the small LinAB
1268     } else if (size < _smallLinearAllocBlock._allocation_size_limit &&
1269         (res = getChunkFromSmallLinearAllocBlock(size)) != NULL) {
1270         // if successful, the above also adjusts block offset table
1271         // Note that this call will refill the LinAB to
1272         // satisfy the request.  This is different that
1273         // evm.
1274         // Don't record chunk off a LinAB?  smallSplitBirth(size);
1275     } else {
1276       // Raid the exact free lists larger than size, even if they are not
1277       // overpopulated.
1278       res = (HeapWord*) getChunkFromGreater(size);
1279     }
1280   } else {
1281     // Big objects get allocated directly from the dictionary.
1282     res = (HeapWord*) getChunkFromDictionaryExact(size);
1283     if (res == NULL) {
1284       // Try hard not to fail since an allocation failure will likely
1285       // trigger a synchronous GC.  Try to get the space from the
1286       // allocation blocks.
1287       res = getChunkFromSmallLinearAllocBlockRemainder(size);
1288     }
1289   }
1290 
1291   return res;
1292 }
1293 
1294 // A worst-case estimate of the space required (in HeapWords) to expand the heap
1295 // when promoting obj.
1296 size_t CompactibleFreeListSpace::expansionSpaceRequired(size_t obj_size) const {
1297   // Depending on the object size, expansion may require refilling either a
1298   // bigLAB or a smallLAB plus refilling a PromotionInfo object.  MinChunkSize
1299   // is added because the dictionary may over-allocate to avoid fragmentation.
1300   size_t space = obj_size;
1301   if (!_adaptive_freelists) {
1302     space = MAX2(space, _smallLinearAllocBlock._refillSize);
1303   }
1304   space += _promoInfo.refillSize() + 2 * MinChunkSize;
1305   return space;
1306 }
1307 
1308 FreeChunk* CompactibleFreeListSpace::getChunkFromGreater(size_t numWords) {
1309   FreeChunk* ret;
1310 
1311   assert(numWords >= MinChunkSize, "Size is less than minimum");
1312   assert(linearAllocationWouldFail() || bestFitFirst(),
1313     "Should not be here");
1314 
1315   size_t i;
1316   size_t currSize = numWords + MinChunkSize;
1317   assert(currSize % MinObjAlignment == 0, "currSize should be aligned");
1318   for (i = currSize; i < IndexSetSize; i += IndexSetStride) {
1319     AdaptiveFreeList<FreeChunk>* fl = &_indexedFreeList[i];
1320     if (fl->head()) {
1321       ret = getFromListGreater(fl, numWords);
1322       assert(ret == NULL || ret->is_free(), "Should be returning a free chunk");
1323       return ret;
1324     }
1325   }
1326 
1327   currSize = MAX2((size_t)SmallForDictionary,
1328                   (size_t)(numWords + MinChunkSize));
1329 
1330   /* Try to get a chunk that satisfies request, while avoiding
1331      fragmentation that can't be handled. */
1332   {
1333     ret =  dictionary()->get_chunk(currSize);
1334     if (ret != NULL) {
1335       assert(ret->size() - numWords >= MinChunkSize,
1336              "Chunk is too small");
1337       _bt.allocated((HeapWord*)ret, ret->size());
1338       /* Carve returned chunk. */
1339       (void) splitChunkAndReturnRemainder(ret, numWords);
1340       /* Label this as no longer a free chunk. */
1341       assert(ret->is_free(), "This chunk should be free");
1342       ret->link_prev(NULL);
1343     }
1344     assert(ret == NULL || ret->is_free(), "Should be returning a free chunk");
1345     return ret;
1346   }
1347   ShouldNotReachHere();
1348 }
1349 
1350 bool CompactibleFreeListSpace::verifyChunkInIndexedFreeLists(FreeChunk* fc) const {
1351   assert(fc->size() < IndexSetSize, "Size of chunk is too large");
1352   return _indexedFreeList[fc->size()].verify_chunk_in_free_list(fc);
1353 }
1354 
1355 bool CompactibleFreeListSpace::verify_chunk_is_linear_alloc_block(FreeChunk* fc) const {
1356   assert((_smallLinearAllocBlock._ptr != (HeapWord*)fc) ||
1357          (_smallLinearAllocBlock._word_size == fc->size()),
1358          "Linear allocation block shows incorrect size");
1359   return ((_smallLinearAllocBlock._ptr == (HeapWord*)fc) &&
1360           (_smallLinearAllocBlock._word_size == fc->size()));
1361 }
1362 
1363 // Check if the purported free chunk is present either as a linear
1364 // allocation block, the size-indexed table of (smaller) free blocks,
1365 // or the larger free blocks kept in the binary tree dictionary.
1366 bool CompactibleFreeListSpace::verify_chunk_in_free_list(FreeChunk* fc) const {
1367   if (verify_chunk_is_linear_alloc_block(fc)) {
1368     return true;
1369   } else if (fc->size() < IndexSetSize) {
1370     return verifyChunkInIndexedFreeLists(fc);
1371   } else {
1372     return dictionary()->verify_chunk_in_free_list(fc);
1373   }
1374 }
1375 
1376 #ifndef PRODUCT
1377 void CompactibleFreeListSpace::assert_locked() const {
1378   CMSLockVerifier::assert_locked(freelistLock(), parDictionaryAllocLock());
1379 }
1380 
1381 void CompactibleFreeListSpace::assert_locked(const Mutex* lock) const {
1382   CMSLockVerifier::assert_locked(lock);
1383 }
1384 #endif
1385 
1386 FreeChunk* CompactibleFreeListSpace::allocateScratch(size_t size) {
1387   // In the parallel case, the main thread holds the free list lock
1388   // on behalf the parallel threads.
1389   FreeChunk* fc;
1390   {
1391     // If GC is parallel, this might be called by several threads.
1392     // This should be rare enough that the locking overhead won't affect
1393     // the sequential code.
1394     MutexLockerEx x(parDictionaryAllocLock(),
1395                     Mutex::_no_safepoint_check_flag);
1396     fc = getChunkFromDictionary(size);
1397   }
1398   if (fc != NULL) {
1399     fc->dontCoalesce();
1400     assert(fc->is_free(), "Should be free, but not coalescable");
1401     // Verify that the block offset table shows this to
1402     // be a single block, but not one which is unallocated.
1403     _bt.verify_single_block((HeapWord*)fc, fc->size());
1404     _bt.verify_not_unallocated((HeapWord*)fc, fc->size());
1405   }
1406   return fc;
1407 }
1408 
1409 oop CompactibleFreeListSpace::promote(oop obj, size_t obj_size) {
1410   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1411   assert_locked();
1412 
1413   // if we are tracking promotions, then first ensure space for
1414   // promotion (including spooling space for saving header if necessary).
1415   // then allocate and copy, then track promoted info if needed.
1416   // When tracking (see PromotionInfo::track()), the mark word may
1417   // be displaced and in this case restoration of the mark word
1418   // occurs in the (oop_since_save_marks_)iterate phase.
1419   if (_promoInfo.tracking() && !_promoInfo.ensure_spooling_space()) {
1420     return NULL;
1421   }
1422   // Call the allocate(size_t, bool) form directly to avoid the
1423   // additional call through the allocate(size_t) form.  Having
1424   // the compile inline the call is problematic because allocate(size_t)
1425   // is a virtual method.
1426   HeapWord* res = allocate(adjustObjectSize(obj_size));
1427   if (res != NULL) {
1428     Copy::aligned_disjoint_words((HeapWord*)obj, res, obj_size);
1429     // if we should be tracking promotions, do so.
1430     if (_promoInfo.tracking()) {
1431         _promoInfo.track((PromotedObject*)res);
1432     }
1433   }
1434   return oop(res);
1435 }
1436 
1437 HeapWord*
1438 CompactibleFreeListSpace::getChunkFromSmallLinearAllocBlock(size_t size) {
1439   assert_locked();
1440   assert(size >= MinChunkSize, "minimum chunk size");
1441   assert(size <  _smallLinearAllocBlock._allocation_size_limit,
1442     "maximum from smallLinearAllocBlock");
1443   return getChunkFromLinearAllocBlock(&_smallLinearAllocBlock, size);
1444 }
1445 
1446 HeapWord*
1447 CompactibleFreeListSpace::getChunkFromLinearAllocBlock(LinearAllocBlock *blk,
1448                                                        size_t size) {
1449   assert_locked();
1450   assert(size >= MinChunkSize, "too small");
1451   HeapWord* res = NULL;
1452   // Try to do linear allocation from blk, making sure that
1453   if (blk->_word_size == 0) {
1454     // We have probably been unable to fill this either in the prologue or
1455     // when it was exhausted at the last linear allocation. Bail out until
1456     // next time.
1457     assert(blk->_ptr == NULL, "consistency check");
1458     return NULL;
1459   }
1460   assert(blk->_word_size != 0 && blk->_ptr != NULL, "consistency check");
1461   res = getChunkFromLinearAllocBlockRemainder(blk, size);
1462   if (res != NULL) return res;
1463 
1464   // about to exhaust this linear allocation block
1465   if (blk->_word_size == size) { // exactly satisfied
1466     res = blk->_ptr;
1467     _bt.allocated(res, blk->_word_size);
1468   } else if (size + MinChunkSize <= blk->_refillSize) {
1469     size_t sz = blk->_word_size;
1470     // Update _unallocated_block if the size is such that chunk would be
1471     // returned to the indexed free list.  All other chunks in the indexed
1472     // free lists are allocated from the dictionary so that _unallocated_block
1473     // has already been adjusted for them.  Do it here so that the cost
1474     // for all chunks added back to the indexed free lists.
1475     if (sz < SmallForDictionary) {
1476       _bt.allocated(blk->_ptr, sz);
1477     }
1478     // Return the chunk that isn't big enough, and then refill below.
1479     addChunkToFreeLists(blk->_ptr, sz);
1480     split_birth(sz);
1481     // Don't keep statistics on adding back chunk from a LinAB.
1482   } else {
1483     // A refilled block would not satisfy the request.
1484     return NULL;
1485   }
1486 
1487   blk->_ptr = NULL; blk->_word_size = 0;
1488   refillLinearAllocBlock(blk);
1489   assert(blk->_ptr == NULL || blk->_word_size >= size + MinChunkSize,
1490          "block was replenished");
1491   if (res != NULL) {
1492     split_birth(size);
1493     repairLinearAllocBlock(blk);
1494   } else if (blk->_ptr != NULL) {
1495     res = blk->_ptr;
1496     size_t blk_size = blk->_word_size;
1497     blk->_word_size -= size;
1498     blk->_ptr  += size;
1499     split_birth(size);
1500     repairLinearAllocBlock(blk);
1501     // Update BOT last so that other (parallel) GC threads see a consistent
1502     // view of the BOT and free blocks.
1503     // Above must occur before BOT is updated below.
1504     OrderAccess::storestore();
1505     _bt.split_block(res, blk_size, size);  // adjust block offset table
1506   }
1507   return res;
1508 }
1509 
1510 HeapWord*  CompactibleFreeListSpace::getChunkFromLinearAllocBlockRemainder(
1511                                         LinearAllocBlock* blk,
1512                                         size_t size) {
1513   assert_locked();
1514   assert(size >= MinChunkSize, "too small");
1515 
1516   HeapWord* res = NULL;
1517   // This is the common case.  Keep it simple.
1518   if (blk->_word_size >= size + MinChunkSize) {
1519     assert(blk->_ptr != NULL, "consistency check");
1520     res = blk->_ptr;
1521     // Note that the BOT is up-to-date for the linAB before allocation.  It
1522     // indicates the start of the linAB.  The split_block() updates the
1523     // BOT for the linAB after the allocation (indicates the start of the
1524     // next chunk to be allocated).
1525     size_t blk_size = blk->_word_size;
1526     blk->_word_size -= size;
1527     blk->_ptr  += size;
1528     split_birth(size);
1529     repairLinearAllocBlock(blk);
1530     // Update BOT last so that other (parallel) GC threads see a consistent
1531     // view of the BOT and free blocks.
1532     // Above must occur before BOT is updated below.
1533     OrderAccess::storestore();
1534     _bt.split_block(res, blk_size, size);  // adjust block offset table
1535     _bt.allocated(res, size);
1536   }
1537   return res;
1538 }
1539 
1540 FreeChunk*
1541 CompactibleFreeListSpace::getChunkFromIndexedFreeList(size_t size) {
1542   assert_locked();
1543   assert(size < SmallForDictionary, "just checking");
1544   FreeChunk* res;
1545   res = _indexedFreeList[size].get_chunk_at_head();
1546   if (res == NULL) {
1547     res = getChunkFromIndexedFreeListHelper(size);
1548   }
1549   _bt.verify_not_unallocated((HeapWord*) res, size);
1550   assert(res == NULL || res->size() == size, "Incorrect block size");
1551   return res;
1552 }
1553 
1554 FreeChunk*
1555 CompactibleFreeListSpace::getChunkFromIndexedFreeListHelper(size_t size,
1556   bool replenish) {
1557   assert_locked();
1558   FreeChunk* fc = NULL;
1559   if (size < SmallForDictionary) {
1560     assert(_indexedFreeList[size].head() == NULL ||
1561       _indexedFreeList[size].surplus() <= 0,
1562       "List for this size should be empty or under populated");
1563     // Try best fit in exact lists before replenishing the list
1564     if (!bestFitFirst() || (fc = bestFitSmall(size)) == NULL) {
1565       // Replenish list.
1566       //
1567       // Things tried that failed.
1568       //   Tried allocating out of the two LinAB's first before
1569       // replenishing lists.
1570       //   Tried small linAB of size 256 (size in indexed list)
1571       // and replenishing indexed lists from the small linAB.
1572       //
1573       FreeChunk* newFc = NULL;
1574       const size_t replenish_size = CMSIndexedFreeListReplenish * size;
1575       if (replenish_size < SmallForDictionary) {
1576         // Do not replenish from an underpopulated size.
1577         if (_indexedFreeList[replenish_size].surplus() > 0 &&
1578             _indexedFreeList[replenish_size].head() != NULL) {
1579           newFc = _indexedFreeList[replenish_size].get_chunk_at_head();
1580         } else if (bestFitFirst()) {
1581           newFc = bestFitSmall(replenish_size);
1582         }
1583       }
1584       if (newFc == NULL && replenish_size > size) {
1585         assert(CMSIndexedFreeListReplenish > 1, "ctl pt invariant");
1586         newFc = getChunkFromIndexedFreeListHelper(replenish_size, false);
1587       }
1588       // Note: The stats update re split-death of block obtained above
1589       // will be recorded below precisely when we know we are going to
1590       // be actually splitting it into more than one pieces below.
1591       if (newFc != NULL) {
1592         if  (replenish || CMSReplenishIntermediate) {
1593           // Replenish this list and return one block to caller.
1594           size_t i;
1595           FreeChunk *curFc, *nextFc;
1596           size_t num_blk = newFc->size() / size;
1597           assert(num_blk >= 1, "Smaller than requested?");
1598           assert(newFc->size() % size == 0, "Should be integral multiple of request");
1599           if (num_blk > 1) {
1600             // we are sure we will be splitting the block just obtained
1601             // into multiple pieces; record the split-death of the original
1602             splitDeath(replenish_size);
1603           }
1604           // carve up and link blocks 0, ..., num_blk - 2
1605           // The last chunk is not added to the lists but is returned as the
1606           // free chunk.
1607           for (curFc = newFc, nextFc = (FreeChunk*)((HeapWord*)curFc + size),
1608                i = 0;
1609                i < (num_blk - 1);
1610                curFc = nextFc, nextFc = (FreeChunk*)((HeapWord*)nextFc + size),
1611                i++) {
1612             curFc->set_size(size);
1613             // Don't record this as a return in order to try and
1614             // determine the "returns" from a GC.
1615             _bt.verify_not_unallocated((HeapWord*) fc, size);
1616             _indexedFreeList[size].return_chunk_at_tail(curFc, false);
1617             _bt.mark_block((HeapWord*)curFc, size);
1618             split_birth(size);
1619             // Don't record the initial population of the indexed list
1620             // as a split birth.
1621           }
1622 
1623           // check that the arithmetic was OK above
1624           assert((HeapWord*)nextFc == (HeapWord*)newFc + num_blk*size,
1625             "inconsistency in carving newFc");
1626           curFc->set_size(size);
1627           _bt.mark_block((HeapWord*)curFc, size);
1628           split_birth(size);
1629           fc = curFc;
1630         } else {
1631           // Return entire block to caller
1632           fc = newFc;
1633         }
1634       }
1635     }
1636   } else {
1637     // Get a free chunk from the free chunk dictionary to be returned to
1638     // replenish the indexed free list.
1639     fc = getChunkFromDictionaryExact(size);
1640   }
1641   // assert(fc == NULL || fc->is_free(), "Should be returning a free chunk");
1642   return fc;
1643 }
1644 
1645 FreeChunk*
1646 CompactibleFreeListSpace::getChunkFromDictionary(size_t size) {
1647   assert_locked();
1648   FreeChunk* fc = _dictionary->get_chunk(size,
1649                                          FreeBlockDictionary<FreeChunk>::atLeast);
1650   if (fc == NULL) {
1651     return NULL;
1652   }
1653   _bt.allocated((HeapWord*)fc, fc->size());
1654   if (fc->size() >= size + MinChunkSize) {
1655     fc = splitChunkAndReturnRemainder(fc, size);
1656   }
1657   assert(fc->size() >= size, "chunk too small");
1658   assert(fc->size() < size + MinChunkSize, "chunk too big");
1659   _bt.verify_single_block((HeapWord*)fc, fc->size());
1660   return fc;
1661 }
1662 
1663 FreeChunk*
1664 CompactibleFreeListSpace::getChunkFromDictionaryExact(size_t size) {
1665   assert_locked();
1666   FreeChunk* fc = _dictionary->get_chunk(size,
1667                                          FreeBlockDictionary<FreeChunk>::atLeast);
1668   if (fc == NULL) {
1669     return fc;
1670   }
1671   _bt.allocated((HeapWord*)fc, fc->size());
1672   if (fc->size() == size) {
1673     _bt.verify_single_block((HeapWord*)fc, size);
1674     return fc;
1675   }
1676   assert(fc->size() > size, "get_chunk() guarantee");
1677   if (fc->size() < size + MinChunkSize) {
1678     // Return the chunk to the dictionary and go get a bigger one.
1679     returnChunkToDictionary(fc);
1680     fc = _dictionary->get_chunk(size + MinChunkSize,
1681                                 FreeBlockDictionary<FreeChunk>::atLeast);
1682     if (fc == NULL) {
1683       return NULL;
1684     }
1685     _bt.allocated((HeapWord*)fc, fc->size());
1686   }
1687   assert(fc->size() >= size + MinChunkSize, "tautology");
1688   fc = splitChunkAndReturnRemainder(fc, size);
1689   assert(fc->size() == size, "chunk is wrong size");
1690   _bt.verify_single_block((HeapWord*)fc, size);
1691   return fc;
1692 }
1693 
1694 void
1695 CompactibleFreeListSpace::returnChunkToDictionary(FreeChunk* chunk) {
1696   assert_locked();
1697 
1698   size_t size = chunk->size();
1699   _bt.verify_single_block((HeapWord*)chunk, size);
1700   // adjust _unallocated_block downward, as necessary
1701   _bt.freed((HeapWord*)chunk, size);
1702   _dictionary->return_chunk(chunk);
1703 #ifndef PRODUCT
1704   if (CMSCollector::abstract_state() != CMSCollector::Sweeping) {
1705     TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >* tc = TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >::as_TreeChunk(chunk);
1706     TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* tl = tc->list();
1707     tl->verify_stats();
1708   }
1709 #endif // PRODUCT
1710 }
1711 
1712 void
1713 CompactibleFreeListSpace::returnChunkToFreeList(FreeChunk* fc) {
1714   assert_locked();
1715   size_t size = fc->size();
1716   _bt.verify_single_block((HeapWord*) fc, size);
1717   _bt.verify_not_unallocated((HeapWord*) fc, size);
1718   if (_adaptive_freelists) {
1719     _indexedFreeList[size].return_chunk_at_tail(fc);
1720   } else {
1721     _indexedFreeList[size].return_chunk_at_head(fc);
1722   }
1723 #ifndef PRODUCT
1724   if (CMSCollector::abstract_state() != CMSCollector::Sweeping) {
1725      _indexedFreeList[size].verify_stats();
1726   }
1727 #endif // PRODUCT
1728 }
1729 
1730 // Add chunk to end of last block -- if it's the largest
1731 // block -- and update BOT and census data. We would
1732 // of course have preferred to coalesce it with the
1733 // last block, but it's currently less expensive to find the
1734 // largest block than it is to find the last.
1735 void
1736 CompactibleFreeListSpace::addChunkToFreeListsAtEndRecordingStats(
1737   HeapWord* chunk, size_t     size) {
1738   // check that the chunk does lie in this space!
1739   assert(chunk != NULL && is_in_reserved(chunk), "Not in this space!");
1740   // One of the parallel gc task threads may be here
1741   // whilst others are allocating.
1742   Mutex* lock = NULL;
1743   if (ParallelGCThreads != 0) {
1744     lock = &_parDictionaryAllocLock;
1745   }
1746   FreeChunk* ec;
1747   {
1748     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
1749     ec = dictionary()->find_largest_dict();  // get largest block
1750     if (ec != NULL && ec->end() == (uintptr_t*) chunk) {
1751       // It's a coterminal block - we can coalesce.
1752       size_t old_size = ec->size();
1753       coalDeath(old_size);
1754       removeChunkFromDictionary(ec);
1755       size += old_size;
1756     } else {
1757       ec = (FreeChunk*)chunk;
1758     }
1759   }
1760   ec->set_size(size);
1761   debug_only(ec->mangleFreed(size));
1762   if (size < SmallForDictionary && ParallelGCThreads != 0) {
1763     lock = _indexedFreeListParLocks[size];
1764   }
1765   MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
1766   addChunkAndRepairOffsetTable((HeapWord*)ec, size, true);
1767   // record the birth under the lock since the recording involves
1768   // manipulation of the list on which the chunk lives and
1769   // if the chunk is allocated and is the last on the list,
1770   // the list can go away.
1771   coalBirth(size);
1772 }
1773 
1774 void
1775 CompactibleFreeListSpace::addChunkToFreeLists(HeapWord* chunk,
1776                                               size_t     size) {
1777   // check that the chunk does lie in this space!
1778   assert(chunk != NULL && is_in_reserved(chunk), "Not in this space!");
1779   assert_locked();
1780   _bt.verify_single_block(chunk, size);
1781 
1782   FreeChunk* fc = (FreeChunk*) chunk;
1783   fc->set_size(size);
1784   debug_only(fc->mangleFreed(size));
1785   if (size < SmallForDictionary) {
1786     returnChunkToFreeList(fc);
1787   } else {
1788     returnChunkToDictionary(fc);
1789   }
1790 }
1791 
1792 void
1793 CompactibleFreeListSpace::addChunkAndRepairOffsetTable(HeapWord* chunk,
1794   size_t size, bool coalesced) {
1795   assert_locked();
1796   assert(chunk != NULL, "null chunk");
1797   if (coalesced) {
1798     // repair BOT
1799     _bt.single_block(chunk, size);
1800   }
1801   addChunkToFreeLists(chunk, size);
1802 }
1803 
1804 // We _must_ find the purported chunk on our free lists;
1805 // we assert if we don't.
1806 void
1807 CompactibleFreeListSpace::removeFreeChunkFromFreeLists(FreeChunk* fc) {
1808   size_t size = fc->size();
1809   assert_locked();
1810   debug_only(verifyFreeLists());
1811   if (size < SmallForDictionary) {
1812     removeChunkFromIndexedFreeList(fc);
1813   } else {
1814     removeChunkFromDictionary(fc);
1815   }
1816   _bt.verify_single_block((HeapWord*)fc, size);
1817   debug_only(verifyFreeLists());
1818 }
1819 
1820 void
1821 CompactibleFreeListSpace::removeChunkFromDictionary(FreeChunk* fc) {
1822   size_t size = fc->size();
1823   assert_locked();
1824   assert(fc != NULL, "null chunk");
1825   _bt.verify_single_block((HeapWord*)fc, size);
1826   _dictionary->remove_chunk(fc);
1827   // adjust _unallocated_block upward, as necessary
1828   _bt.allocated((HeapWord*)fc, size);
1829 }
1830 
1831 void
1832 CompactibleFreeListSpace::removeChunkFromIndexedFreeList(FreeChunk* fc) {
1833   assert_locked();
1834   size_t size = fc->size();
1835   _bt.verify_single_block((HeapWord*)fc, size);
1836   NOT_PRODUCT(
1837     if (FLSVerifyIndexTable) {
1838       verifyIndexedFreeList(size);
1839     }
1840   )
1841   _indexedFreeList[size].remove_chunk(fc);
1842   NOT_PRODUCT(
1843     if (FLSVerifyIndexTable) {
1844       verifyIndexedFreeList(size);
1845     }
1846   )
1847 }
1848 
1849 FreeChunk* CompactibleFreeListSpace::bestFitSmall(size_t numWords) {
1850   /* A hint is the next larger size that has a surplus.
1851      Start search at a size large enough to guarantee that
1852      the excess is >= MIN_CHUNK. */
1853   size_t start = align_object_size(numWords + MinChunkSize);
1854   if (start < IndexSetSize) {
1855     AdaptiveFreeList<FreeChunk>* it   = _indexedFreeList;
1856     size_t    hint = _indexedFreeList[start].hint();
1857     while (hint < IndexSetSize) {
1858       assert(hint % MinObjAlignment == 0, "hint should be aligned");
1859       AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[hint];
1860       if (fl->surplus() > 0 && fl->head() != NULL) {
1861         // Found a list with surplus, reset original hint
1862         // and split out a free chunk which is returned.
1863         _indexedFreeList[start].set_hint(hint);
1864         FreeChunk* res = getFromListGreater(fl, numWords);
1865         assert(res == NULL || res->is_free(),
1866           "Should be returning a free chunk");
1867         return res;
1868       }
1869       hint = fl->hint(); /* keep looking */
1870     }
1871     /* None found. */
1872     it[start].set_hint(IndexSetSize);
1873   }
1874   return NULL;
1875 }
1876 
1877 /* Requires fl->size >= numWords + MinChunkSize */
1878 FreeChunk* CompactibleFreeListSpace::getFromListGreater(AdaptiveFreeList<FreeChunk>* fl,
1879   size_t numWords) {
1880   FreeChunk *curr = fl->head();
1881   size_t oldNumWords = curr->size();
1882   assert(numWords >= MinChunkSize, "Word size is too small");
1883   assert(curr != NULL, "List is empty");
1884   assert(oldNumWords >= numWords + MinChunkSize,
1885         "Size of chunks in the list is too small");
1886 
1887   fl->remove_chunk(curr);
1888   // recorded indirectly by splitChunkAndReturnRemainder -
1889   // smallSplit(oldNumWords, numWords);
1890   FreeChunk* new_chunk = splitChunkAndReturnRemainder(curr, numWords);
1891   // Does anything have to be done for the remainder in terms of
1892   // fixing the card table?
1893   assert(new_chunk == NULL || new_chunk->is_free(),
1894     "Should be returning a free chunk");
1895   return new_chunk;
1896 }
1897 
1898 FreeChunk*
1899 CompactibleFreeListSpace::splitChunkAndReturnRemainder(FreeChunk* chunk,
1900   size_t new_size) {
1901   assert_locked();
1902   size_t size = chunk->size();
1903   assert(size > new_size, "Split from a smaller block?");
1904   assert(is_aligned(chunk), "alignment problem");
1905   assert(size == adjustObjectSize(size), "alignment problem");
1906   size_t rem_size = size - new_size;
1907   assert(rem_size == adjustObjectSize(rem_size), "alignment problem");
1908   assert(rem_size >= MinChunkSize, "Free chunk smaller than minimum");
1909   FreeChunk* ffc = (FreeChunk*)((HeapWord*)chunk + new_size);
1910   assert(is_aligned(ffc), "alignment problem");
1911   ffc->set_size(rem_size);
1912   ffc->link_next(NULL);
1913   ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
1914   // Above must occur before BOT is updated below.
1915   // adjust block offset table
1916   OrderAccess::storestore();
1917   assert(chunk->is_free() && ffc->is_free(), "Error");
1918   _bt.split_block((HeapWord*)chunk, chunk->size(), new_size);
1919   if (rem_size < SmallForDictionary) {
1920     bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
1921     if (is_par) _indexedFreeListParLocks[rem_size]->lock();
1922     assert(!is_par ||
1923            (SharedHeap::heap()->n_par_threads() ==
1924             SharedHeap::heap()->workers()->active_workers()), "Mismatch");
1925     returnChunkToFreeList(ffc);
1926     split(size, rem_size);
1927     if (is_par) _indexedFreeListParLocks[rem_size]->unlock();
1928   } else {
1929     returnChunkToDictionary(ffc);
1930     split(size ,rem_size);
1931   }
1932   chunk->set_size(new_size);
1933   return chunk;
1934 }
1935 
1936 void
1937 CompactibleFreeListSpace::sweep_completed() {
1938   // Now that space is probably plentiful, refill linear
1939   // allocation blocks as needed.
1940   refillLinearAllocBlocksIfNeeded();
1941 }
1942 
1943 void
1944 CompactibleFreeListSpace::gc_prologue() {
1945   assert_locked();
1946   if (PrintFLSStatistics != 0) {
1947     gclog_or_tty->print("Before GC:\n");
1948     reportFreeListStatistics();
1949   }
1950   refillLinearAllocBlocksIfNeeded();
1951 }
1952 
1953 void
1954 CompactibleFreeListSpace::gc_epilogue() {
1955   assert_locked();
1956   if (PrintGCDetails && Verbose && !_adaptive_freelists) {
1957     if (_smallLinearAllocBlock._word_size == 0)
1958       warning("CompactibleFreeListSpace(epilogue):: Linear allocation failure");
1959   }
1960   assert(_promoInfo.noPromotions(), "_promoInfo inconsistency");
1961   _promoInfo.stopTrackingPromotions();
1962   repairLinearAllocationBlocks();
1963   // Print Space's stats
1964   if (PrintFLSStatistics != 0) {
1965     gclog_or_tty->print("After GC:\n");
1966     reportFreeListStatistics();
1967   }
1968 }
1969 
1970 // Iteration support, mostly delegated from a CMS generation
1971 
1972 void CompactibleFreeListSpace::save_marks() {
1973   assert(Thread::current()->is_VM_thread(),
1974          "Global variable should only be set when single-threaded");
1975   // Mark the "end" of the used space at the time of this call;
1976   // note, however, that promoted objects from this point
1977   // on are tracked in the _promoInfo below.
1978   set_saved_mark_word(unallocated_block());
1979 #ifdef ASSERT
1980   // Check the sanity of save_marks() etc.
1981   MemRegion ur    = used_region();
1982   MemRegion urasm = used_region_at_save_marks();
1983   assert(ur.contains(urasm),
1984          err_msg(" Error at save_marks(): [" PTR_FORMAT "," PTR_FORMAT ")"
1985                  " should contain [" PTR_FORMAT "," PTR_FORMAT ")",
1986                  p2i(ur.start()), p2i(ur.end()), p2i(urasm.start()), p2i(urasm.end())));
1987 #endif
1988   // inform allocator that promotions should be tracked.
1989   assert(_promoInfo.noPromotions(), "_promoInfo inconsistency");
1990   _promoInfo.startTrackingPromotions();
1991 }
1992 
1993 bool CompactibleFreeListSpace::no_allocs_since_save_marks() {
1994   assert(_promoInfo.tracking(), "No preceding save_marks?");
1995   assert(SharedHeap::heap()->n_par_threads() == 0,
1996          "Shouldn't be called if using parallel gc.");
1997   return _promoInfo.noPromotions();
1998 }
1999 
2000 #define CFLS_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)           \
2001                                                                             \
2002 void CompactibleFreeListSpace::                                             \
2003 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {              \
2004   assert(SharedHeap::heap()->n_par_threads() == 0,                          \
2005          "Shouldn't be called (yet) during parallel part of gc.");          \
2006   _promoInfo.promoted_oops_iterate##nv_suffix(blk);                         \
2007   /*                                                                        \
2008    * This also restores any displaced headers and removes the elements from \
2009    * the iteration set as they are processed, so that we have a clean slate \
2010    * at the end of the iteration. Note, thus, that if new objects are       \
2011    * promoted as a result of the iteration they are iterated over as well.  \
2012    */                                                                       \
2013   assert(_promoInfo.noPromotions(), "_promoInfo inconsistency");            \
2014 }
2015 
2016 ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DEFN)
2017 
2018 bool CompactibleFreeListSpace::linearAllocationWouldFail() const {
2019   return _smallLinearAllocBlock._word_size == 0;
2020 }
2021 
2022 void CompactibleFreeListSpace::repairLinearAllocationBlocks() {
2023   // Fix up linear allocation blocks to look like free blocks
2024   repairLinearAllocBlock(&_smallLinearAllocBlock);
2025 }
2026 
2027 void CompactibleFreeListSpace::repairLinearAllocBlock(LinearAllocBlock* blk) {
2028   assert_locked();
2029   if (blk->_ptr != NULL) {
2030     assert(blk->_word_size != 0 && blk->_word_size >= MinChunkSize,
2031            "Minimum block size requirement");
2032     FreeChunk* fc = (FreeChunk*)(blk->_ptr);
2033     fc->set_size(blk->_word_size);
2034     fc->link_prev(NULL);   // mark as free
2035     fc->dontCoalesce();
2036     assert(fc->is_free(), "just marked it free");
2037     assert(fc->cantCoalesce(), "just marked it uncoalescable");
2038   }
2039 }
2040 
2041 void CompactibleFreeListSpace::refillLinearAllocBlocksIfNeeded() {
2042   assert_locked();
2043   if (_smallLinearAllocBlock._ptr == NULL) {
2044     assert(_smallLinearAllocBlock._word_size == 0,
2045       "Size of linAB should be zero if the ptr is NULL");
2046     // Reset the linAB refill and allocation size limit.
2047     _smallLinearAllocBlock.set(0, 0, 1024*SmallForLinearAlloc, SmallForLinearAlloc);
2048   }
2049   refillLinearAllocBlockIfNeeded(&_smallLinearAllocBlock);
2050 }
2051 
2052 void
2053 CompactibleFreeListSpace::refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk) {
2054   assert_locked();
2055   assert((blk->_ptr == NULL && blk->_word_size == 0) ||
2056          (blk->_ptr != NULL && blk->_word_size >= MinChunkSize),
2057          "blk invariant");
2058   if (blk->_ptr == NULL) {
2059     refillLinearAllocBlock(blk);
2060   }
2061   if (PrintMiscellaneous && Verbose) {
2062     if (blk->_word_size == 0) {
2063       warning("CompactibleFreeListSpace(prologue):: Linear allocation failure");
2064     }
2065   }
2066 }
2067 
2068 void
2069 CompactibleFreeListSpace::refillLinearAllocBlock(LinearAllocBlock* blk) {
2070   assert_locked();
2071   assert(blk->_word_size == 0 && blk->_ptr == NULL,
2072          "linear allocation block should be empty");
2073   FreeChunk* fc;
2074   if (blk->_refillSize < SmallForDictionary &&
2075       (fc = getChunkFromIndexedFreeList(blk->_refillSize)) != NULL) {
2076     // A linAB's strategy might be to use small sizes to reduce
2077     // fragmentation but still get the benefits of allocation from a
2078     // linAB.
2079   } else {
2080     fc = getChunkFromDictionary(blk->_refillSize);
2081   }
2082   if (fc != NULL) {
2083     blk->_ptr  = (HeapWord*)fc;
2084     blk->_word_size = fc->size();
2085     fc->dontCoalesce();   // to prevent sweeper from sweeping us up
2086   }
2087 }
2088 
2089 // Support for concurrent collection policy decisions.
2090 bool CompactibleFreeListSpace::should_concurrent_collect() const {
2091   // In the future we might want to add in fragmentation stats --
2092   // including erosion of the "mountain" into this decision as well.
2093   return !adaptive_freelists() && linearAllocationWouldFail();
2094 }
2095 
2096 // Support for compaction
2097 
2098 void CompactibleFreeListSpace::prepare_for_compaction(CompactPoint* cp) {
2099   SCAN_AND_FORWARD(cp,end,block_is_obj,block_size);
2100   // Prepare_for_compaction() uses the space between live objects
2101   // so that later phase can skip dead space quickly.  So verification
2102   // of the free lists doesn't work after.
2103 }
2104 
2105 #define obj_size(q) adjustObjectSize(oop(q)->size())
2106 #define adjust_obj_size(s) adjustObjectSize(s)
2107 
2108 void CompactibleFreeListSpace::adjust_pointers() {
2109   // In other versions of adjust_pointers(), a bail out
2110   // based on the amount of live data in the generation
2111   // (i.e., if 0, bail out) may be used.
2112   // Cannot test used() == 0 here because the free lists have already
2113   // been mangled by the compaction.
2114 
2115   SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
2116   // See note about verification in prepare_for_compaction().
2117 }
2118 
2119 void CompactibleFreeListSpace::compact() {
2120   SCAN_AND_COMPACT(obj_size);
2121 }
2122 
2123 // Fragmentation metric = 1 - [sum of (fbs**2) / (sum of fbs)**2]
2124 // where fbs is free block sizes
2125 double CompactibleFreeListSpace::flsFrag() const {
2126   size_t itabFree = totalSizeInIndexedFreeLists();
2127   double frag = 0.0;
2128   size_t i;
2129 
2130   for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
2131     double sz  = i;
2132     frag      += _indexedFreeList[i].count() * (sz * sz);
2133   }
2134 
2135   double totFree = itabFree +
2136                    _dictionary->total_chunk_size(DEBUG_ONLY(freelistLock()));
2137   if (totFree > 0) {
2138     frag = ((frag + _dictionary->sum_of_squared_block_sizes()) /
2139             (totFree * totFree));
2140     frag = (double)1.0  - frag;
2141   } else {
2142     assert(frag == 0.0, "Follows from totFree == 0");
2143   }
2144   return frag;
2145 }
2146 
2147 void CompactibleFreeListSpace::beginSweepFLCensus(
2148   float inter_sweep_current,
2149   float inter_sweep_estimate,
2150   float intra_sweep_estimate) {
2151   assert_locked();
2152   size_t i;
2153   for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
2154     AdaptiveFreeList<FreeChunk>* fl    = &_indexedFreeList[i];
2155     if (PrintFLSStatistics > 1) {
2156       gclog_or_tty->print("size[" SIZE_FORMAT "] : ", i);
2157     }
2158     fl->compute_desired(inter_sweep_current, inter_sweep_estimate, intra_sweep_estimate);
2159     fl->set_coal_desired((ssize_t)((double)fl->desired() * CMSSmallCoalSurplusPercent));
2160     fl->set_before_sweep(fl->count());
2161     fl->set_bfr_surp(fl->surplus());
2162   }
2163   _dictionary->begin_sweep_dict_census(CMSLargeCoalSurplusPercent,
2164                                     inter_sweep_current,
2165                                     inter_sweep_estimate,
2166                                     intra_sweep_estimate);
2167 }
2168 
2169 void CompactibleFreeListSpace::setFLSurplus() {
2170   assert_locked();
2171   size_t i;
2172   for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
2173     AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
2174     fl->set_surplus(fl->count() -
2175                     (ssize_t)((double)fl->desired() * CMSSmallSplitSurplusPercent));
2176   }
2177 }
2178 
2179 void CompactibleFreeListSpace::setFLHints() {
2180   assert_locked();
2181   size_t i;
2182   size_t h = IndexSetSize;
2183   for (i = IndexSetSize - 1; i != 0; i -= IndexSetStride) {
2184     AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
2185     fl->set_hint(h);
2186     if (fl->surplus() > 0) {
2187       h = i;
2188     }
2189   }
2190 }
2191 
2192 void CompactibleFreeListSpace::clearFLCensus() {
2193   assert_locked();
2194   size_t i;
2195   for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
2196     AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
2197     fl->set_prev_sweep(fl->count());
2198     fl->set_coal_births(0);
2199     fl->set_coal_deaths(0);
2200     fl->set_split_births(0);
2201     fl->set_split_deaths(0);
2202   }
2203 }
2204 
2205 void CompactibleFreeListSpace::endSweepFLCensus(size_t sweep_count) {
2206   if (PrintFLSStatistics > 0) {
2207     HeapWord* largestAddr = (HeapWord*) dictionary()->find_largest_dict();
2208     gclog_or_tty->print_cr("CMS: Large block " PTR_FORMAT,
2209                            p2i(largestAddr));
2210   }
2211   setFLSurplus();
2212   setFLHints();
2213   if (PrintGC && PrintFLSCensus > 0) {
2214     printFLCensus(sweep_count);
2215   }
2216   clearFLCensus();
2217   assert_locked();
2218   _dictionary->end_sweep_dict_census(CMSLargeSplitSurplusPercent);
2219 }
2220 
2221 bool CompactibleFreeListSpace::coalOverPopulated(size_t size) {
2222   if (size < SmallForDictionary) {
2223     AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
2224     return (fl->coal_desired() < 0) ||
2225            ((int)fl->count() > fl->coal_desired());
2226   } else {
2227     return dictionary()->coal_dict_over_populated(size);
2228   }
2229 }
2230 
2231 void CompactibleFreeListSpace::smallCoalBirth(size_t size) {
2232   assert(size < SmallForDictionary, "Size too large for indexed list");
2233   AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
2234   fl->increment_coal_births();
2235   fl->increment_surplus();
2236 }
2237 
2238 void CompactibleFreeListSpace::smallCoalDeath(size_t size) {
2239   assert(size < SmallForDictionary, "Size too large for indexed list");
2240   AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
2241   fl->increment_coal_deaths();
2242   fl->decrement_surplus();
2243 }
2244 
2245 void CompactibleFreeListSpace::coalBirth(size_t size) {
2246   if (size  < SmallForDictionary) {
2247     smallCoalBirth(size);
2248   } else {
2249     dictionary()->dict_census_update(size,
2250                                    false /* split */,
2251                                    true /* birth */);
2252   }
2253 }
2254 
2255 void CompactibleFreeListSpace::coalDeath(size_t size) {
2256   if(size  < SmallForDictionary) {
2257     smallCoalDeath(size);
2258   } else {
2259     dictionary()->dict_census_update(size,
2260                                    false /* split */,
2261                                    false /* birth */);
2262   }
2263 }
2264 
2265 void CompactibleFreeListSpace::smallSplitBirth(size_t size) {
2266   assert(size < SmallForDictionary, "Size too large for indexed list");
2267   AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
2268   fl->increment_split_births();
2269   fl->increment_surplus();
2270 }
2271 
2272 void CompactibleFreeListSpace::smallSplitDeath(size_t size) {
2273   assert(size < SmallForDictionary, "Size too large for indexed list");
2274   AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
2275   fl->increment_split_deaths();
2276   fl->decrement_surplus();
2277 }
2278 
2279 void CompactibleFreeListSpace::split_birth(size_t size) {
2280   if (size  < SmallForDictionary) {
2281     smallSplitBirth(size);
2282   } else {
2283     dictionary()->dict_census_update(size,
2284                                    true /* split */,
2285                                    true /* birth */);
2286   }
2287 }
2288 
2289 void CompactibleFreeListSpace::splitDeath(size_t size) {
2290   if (size  < SmallForDictionary) {
2291     smallSplitDeath(size);
2292   } else {
2293     dictionary()->dict_census_update(size,
2294                                    true /* split */,
2295                                    false /* birth */);
2296   }
2297 }
2298 
2299 void CompactibleFreeListSpace::split(size_t from, size_t to1) {
2300   size_t to2 = from - to1;
2301   splitDeath(from);
2302   split_birth(to1);
2303   split_birth(to2);
2304 }
2305 
2306 void CompactibleFreeListSpace::print() const {
2307   print_on(tty);
2308 }
2309 
2310 void CompactibleFreeListSpace::prepare_for_verify() {
2311   assert_locked();
2312   repairLinearAllocationBlocks();
2313   // Verify that the SpoolBlocks look like free blocks of
2314   // appropriate sizes... To be done ...
2315 }
2316 
2317 class VerifyAllBlksClosure: public BlkClosure {
2318  private:
2319   const CompactibleFreeListSpace* _sp;
2320   const MemRegion                 _span;
2321   HeapWord*                       _last_addr;
2322   size_t                          _last_size;
2323   bool                            _last_was_obj;
2324   bool                            _last_was_live;
2325 
2326  public:
2327   VerifyAllBlksClosure(const CompactibleFreeListSpace* sp,
2328     MemRegion span) :  _sp(sp), _span(span),
2329                        _last_addr(NULL), _last_size(0),
2330                        _last_was_obj(false), _last_was_live(false) { }
2331 
2332   virtual size_t do_blk(HeapWord* addr) {
2333     size_t res;
2334     bool   was_obj  = false;
2335     bool   was_live = false;
2336     if (_sp->block_is_obj(addr)) {
2337       was_obj = true;
2338       oop p = oop(addr);
2339       guarantee(p->is_oop(), "Should be an oop");
2340       res = _sp->adjustObjectSize(p->size());
2341       if (_sp->obj_is_alive(addr)) {
2342         was_live = true;
2343         p->verify();
2344       }
2345     } else {
2346       FreeChunk* fc = (FreeChunk*)addr;
2347       res = fc->size();
2348       if (FLSVerifyLists && !fc->cantCoalesce()) {
2349         guarantee(_sp->verify_chunk_in_free_list(fc),
2350                   "Chunk should be on a free list");
2351       }
2352     }
2353     if (res == 0) {
2354       gclog_or_tty->print_cr("Livelock: no rank reduction!");
2355       gclog_or_tty->print_cr(
2356         " Current:  addr = " PTR_FORMAT ", size = " SIZE_FORMAT ", obj = %s, live = %s \n"
2357         " Previous: addr = " PTR_FORMAT ", size = " SIZE_FORMAT ", obj = %s, live = %s \n",
2358         p2i(addr),       res,        was_obj      ?"true":"false", was_live      ?"true":"false",
2359         p2i(_last_addr), _last_size, _last_was_obj?"true":"false", _last_was_live?"true":"false");
2360       _sp->print_on(gclog_or_tty);
2361       guarantee(false, "Seppuku!");
2362     }
2363     _last_addr = addr;
2364     _last_size = res;
2365     _last_was_obj  = was_obj;
2366     _last_was_live = was_live;
2367     return res;
2368   }
2369 };
2370 
2371 class VerifyAllOopsClosure: public OopClosure {
2372  private:
2373   const CMSCollector*             _collector;
2374   const CompactibleFreeListSpace* _sp;
2375   const MemRegion                 _span;
2376   const bool                      _past_remark;
2377   const CMSBitMap*                _bit_map;
2378 
2379  protected:
2380   void do_oop(void* p, oop obj) {
2381     if (_span.contains(obj)) { // the interior oop points into CMS heap
2382       if (!_span.contains(p)) { // reference from outside CMS heap
2383         // Should be a valid object; the first disjunct below allows
2384         // us to sidestep an assertion in block_is_obj() that insists
2385         // that p be in _sp. Note that several generations (and spaces)
2386         // are spanned by _span (CMS heap) above.
2387         guarantee(!_sp->is_in_reserved(obj) ||
2388                   _sp->block_is_obj((HeapWord*)obj),
2389                   "Should be an object");
2390         guarantee(obj->is_oop(), "Should be an oop");
2391         obj->verify();
2392         if (_past_remark) {
2393           // Remark has been completed, the object should be marked
2394           _bit_map->isMarked((HeapWord*)obj);
2395         }
2396       } else { // reference within CMS heap
2397         if (_past_remark) {
2398           // Remark has been completed -- so the referent should have
2399           // been marked, if referring object is.
2400           if (_bit_map->isMarked(_collector->block_start(p))) {
2401             guarantee(_bit_map->isMarked((HeapWord*)obj), "Marking error?");
2402           }
2403         }
2404       }
2405     } else if (_sp->is_in_reserved(p)) {
2406       // the reference is from FLS, and points out of FLS
2407       guarantee(obj->is_oop(), "Should be an oop");
2408       obj->verify();
2409     }
2410   }
2411 
2412   template <class T> void do_oop_work(T* p) {
2413     T heap_oop = oopDesc::load_heap_oop(p);
2414     if (!oopDesc::is_null(heap_oop)) {
2415       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2416       do_oop(p, obj);
2417     }
2418   }
2419 
2420  public:
2421   VerifyAllOopsClosure(const CMSCollector* collector,
2422     const CompactibleFreeListSpace* sp, MemRegion span,
2423     bool past_remark, CMSBitMap* bit_map) :
2424     _collector(collector), _sp(sp), _span(span),
2425     _past_remark(past_remark), _bit_map(bit_map) { }
2426 
2427   virtual void do_oop(oop* p)       { VerifyAllOopsClosure::do_oop_work(p); }
2428   virtual void do_oop(narrowOop* p) { VerifyAllOopsClosure::do_oop_work(p); }
2429 };
2430 
2431 void CompactibleFreeListSpace::verify() const {
2432   assert_lock_strong(&_freelistLock);
2433   verify_objects_initialized();
2434   MemRegion span = _collector->_span;
2435   bool past_remark = (_collector->abstract_state() ==
2436                       CMSCollector::Sweeping);
2437 
2438   ResourceMark rm;
2439   HandleMark  hm;
2440 
2441   // Check integrity of CFL data structures
2442   _promoInfo.verify();
2443   _dictionary->verify();
2444   if (FLSVerifyIndexTable) {
2445     verifyIndexedFreeLists();
2446   }
2447   // Check integrity of all objects and free blocks in space
2448   {
2449     VerifyAllBlksClosure cl(this, span);
2450     ((CompactibleFreeListSpace*)this)->blk_iterate(&cl);  // cast off const
2451   }
2452   // Check that all references in the heap to FLS
2453   // are to valid objects in FLS or that references in
2454   // FLS are to valid objects elsewhere in the heap
2455   if (FLSVerifyAllHeapReferences)
2456   {
2457     VerifyAllOopsClosure cl(_collector, this, span, past_remark,
2458       _collector->markBitMap());
2459     CollectedHeap* ch = Universe::heap();
2460 
2461     // Iterate over all oops in the heap. Uses the _no_header version
2462     // since we are not interested in following the klass pointers.
2463     ch->oop_iterate_no_header(&cl);
2464   }
2465 
2466   if (VerifyObjectStartArray) {
2467     // Verify the block offset table
2468     _bt.verify();
2469   }
2470 }
2471 
2472 #ifndef PRODUCT
2473 void CompactibleFreeListSpace::verifyFreeLists() const {
2474   if (FLSVerifyLists) {
2475     _dictionary->verify();
2476     verifyIndexedFreeLists();
2477   } else {
2478     if (FLSVerifyDictionary) {
2479       _dictionary->verify();
2480     }
2481     if (FLSVerifyIndexTable) {
2482       verifyIndexedFreeLists();
2483     }
2484   }
2485 }
2486 #endif
2487 
2488 void CompactibleFreeListSpace::verifyIndexedFreeLists() const {
2489   size_t i = 0;
2490   for (; i < IndexSetStart; i++) {
2491     guarantee(_indexedFreeList[i].head() == NULL, "should be NULL");
2492   }
2493   for (; i < IndexSetSize; i++) {
2494     verifyIndexedFreeList(i);
2495   }
2496 }
2497 
2498 void CompactibleFreeListSpace::verifyIndexedFreeList(size_t size) const {
2499   FreeChunk* fc   =  _indexedFreeList[size].head();
2500   FreeChunk* tail =  _indexedFreeList[size].tail();
2501   size_t    num = _indexedFreeList[size].count();
2502   size_t      n = 0;
2503   guarantee(((size >= IndexSetStart) && (size % IndexSetStride == 0)) || fc == NULL,
2504             "Slot should have been empty");
2505   for (; fc != NULL; fc = fc->next(), n++) {
2506     guarantee(fc->size() == size, "Size inconsistency");
2507     guarantee(fc->is_free(), "!free?");
2508     guarantee(fc->next() == NULL || fc->next()->prev() == fc, "Broken list");
2509     guarantee((fc->next() == NULL) == (fc == tail), "Incorrect tail");
2510   }
2511   guarantee(n == num, "Incorrect count");
2512 }
2513 
2514 #ifndef PRODUCT
2515 void CompactibleFreeListSpace::check_free_list_consistency() const {
2516   assert((TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >::min_size() <= IndexSetSize),
2517     "Some sizes can't be allocated without recourse to"
2518     " linear allocation buffers");
2519   assert((TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >::min_size()*HeapWordSize == sizeof(TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >)),
2520     "else MIN_TREE_CHUNK_SIZE is wrong");
2521   assert(IndexSetStart != 0, "IndexSetStart not initialized");
2522   assert(IndexSetStride != 0, "IndexSetStride not initialized");
2523 }
2524 #endif
2525 
2526 void CompactibleFreeListSpace::printFLCensus(size_t sweep_count) const {
2527   assert_lock_strong(&_freelistLock);
2528   AdaptiveFreeList<FreeChunk> total;
2529   gclog_or_tty->print("end sweep# " SIZE_FORMAT "\n", sweep_count);
2530   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
2531   size_t total_free = 0;
2532   for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
2533     const AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
2534     total_free += fl->count() * fl->size();
2535     if (i % (40*IndexSetStride) == 0) {
2536       AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
2537     }
2538     fl->print_on(gclog_or_tty);
2539     total.set_bfr_surp(    total.bfr_surp()     + fl->bfr_surp()    );
2540     total.set_surplus(    total.surplus()     + fl->surplus()    );
2541     total.set_desired(    total.desired()     + fl->desired()    );
2542     total.set_prev_sweep(  total.prev_sweep()   + fl->prev_sweep()  );
2543     total.set_before_sweep(total.before_sweep() + fl->before_sweep());
2544     total.set_count(      total.count()       + fl->count()      );
2545     total.set_coal_births( total.coal_births()  + fl->coal_births() );
2546     total.set_coal_deaths( total.coal_deaths()  + fl->coal_deaths() );
2547     total.set_split_births(total.split_births() + fl->split_births());
2548     total.set_split_deaths(total.split_deaths() + fl->split_deaths());
2549   }
2550   total.print_on(gclog_or_tty, "TOTAL");
2551   gclog_or_tty->print_cr("Total free in indexed lists "
2552                          SIZE_FORMAT " words", total_free);
2553   gclog_or_tty->print("growth: %8.5f  deficit: %8.5f\n",
2554     (double)(total.split_births()+total.coal_births()-total.split_deaths()-total.coal_deaths())/
2555             (total.prev_sweep() != 0 ? (double)total.prev_sweep() : 1.0),
2556     (double)(total.desired() - total.count())/(total.desired() != 0 ? (double)total.desired() : 1.0));
2557   _dictionary->print_dict_census();
2558 }
2559 
2560 ///////////////////////////////////////////////////////////////////////////
2561 // CFLS_LAB
2562 ///////////////////////////////////////////////////////////////////////////
2563 
2564 #define VECTOR_257(x)                                                                                  \
2565   /* 1  2  3  4  5  6  7  8  9 1x 11 12 13 14 15 16 17 18 19 2x 21 22 23 24 25 26 27 28 29 3x 31 32 */ \
2566   {  x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x,   \
2567      x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x,   \
2568      x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x,   \
2569      x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x,   \
2570      x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x,   \
2571      x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x,   \
2572      x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x,   \
2573      x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x,   \
2574      x }
2575 
2576 // Initialize with default setting of CMSParPromoteBlocksToClaim, _not_
2577 // OldPLABSize, whose static default is different; if overridden at the
2578 // command-line, this will get reinitialized via a call to
2579 // modify_initialization() below.
2580 AdaptiveWeightedAverage CFLS_LAB::_blocks_to_claim[]    =
2581   VECTOR_257(AdaptiveWeightedAverage(OldPLABWeight, (float)CMSParPromoteBlocksToClaim));
2582 size_t CFLS_LAB::_global_num_blocks[]  = VECTOR_257(0);
2583 uint   CFLS_LAB::_global_num_workers[] = VECTOR_257(0);
2584 
2585 CFLS_LAB::CFLS_LAB(CompactibleFreeListSpace* cfls) :
2586   _cfls(cfls)
2587 {
2588   assert(CompactibleFreeListSpace::IndexSetSize == 257, "Modify VECTOR_257() macro above");
2589   for (size_t i = CompactibleFreeListSpace::IndexSetStart;
2590        i < CompactibleFreeListSpace::IndexSetSize;
2591        i += CompactibleFreeListSpace::IndexSetStride) {
2592     _indexedFreeList[i].set_size(i);
2593     _num_blocks[i] = 0;
2594   }
2595 }
2596 
2597 static bool _CFLS_LAB_modified = false;
2598 
2599 void CFLS_LAB::modify_initialization(size_t n, unsigned wt) {
2600   assert(!_CFLS_LAB_modified, "Call only once");
2601   _CFLS_LAB_modified = true;
2602   for (size_t i = CompactibleFreeListSpace::IndexSetStart;
2603        i < CompactibleFreeListSpace::IndexSetSize;
2604        i += CompactibleFreeListSpace::IndexSetStride) {
2605     _blocks_to_claim[i].modify(n, wt, true /* force */);
2606   }
2607 }
2608 
2609 HeapWord* CFLS_LAB::alloc(size_t word_sz) {
2610   FreeChunk* res;
2611   assert(word_sz == _cfls->adjustObjectSize(word_sz), "Error");
2612   if (word_sz >=  CompactibleFreeListSpace::IndexSetSize) {
2613     // This locking manages sync with other large object allocations.
2614     MutexLockerEx x(_cfls->parDictionaryAllocLock(),
2615                     Mutex::_no_safepoint_check_flag);
2616     res = _cfls->getChunkFromDictionaryExact(word_sz);
2617     if (res == NULL) return NULL;
2618   } else {
2619     AdaptiveFreeList<FreeChunk>* fl = &_indexedFreeList[word_sz];
2620     if (fl->count() == 0) {
2621       // Attempt to refill this local free list.
2622       get_from_global_pool(word_sz, fl);
2623       // If it didn't work, give up.
2624       if (fl->count() == 0) return NULL;
2625     }
2626     res = fl->get_chunk_at_head();
2627     assert(res != NULL, "Why was count non-zero?");
2628   }
2629   res->markNotFree();
2630   assert(!res->is_free(), "shouldn't be marked free");
2631   assert(oop(res)->klass_or_null() == NULL, "should look uninitialized");
2632   // mangle a just allocated object with a distinct pattern.
2633   debug_only(res->mangleAllocated(word_sz));
2634   return (HeapWord*)res;
2635 }
2636 
2637 // Get a chunk of blocks of the right size and update related
2638 // book-keeping stats
2639 void CFLS_LAB::get_from_global_pool(size_t word_sz, AdaptiveFreeList<FreeChunk>* fl) {
2640   // Get the #blocks we want to claim
2641   size_t n_blks = (size_t)_blocks_to_claim[word_sz].average();
2642   assert(n_blks > 0, "Error");
2643   assert(ResizePLAB || n_blks == OldPLABSize, "Error");
2644   // In some cases, when the application has a phase change,
2645   // there may be a sudden and sharp shift in the object survival
2646   // profile, and updating the counts at the end of a scavenge
2647   // may not be quick enough, giving rise to large scavenge pauses
2648   // during these phase changes. It is beneficial to detect such
2649   // changes on-the-fly during a scavenge and avoid such a phase-change
2650   // pothole. The following code is a heuristic attempt to do that.
2651   // It is protected by a product flag until we have gained
2652   // enough experience with this heuristic and fine-tuned its behavior.
2653   // WARNING: This might increase fragmentation if we overreact to
2654   // small spikes, so some kind of historical smoothing based on
2655   // previous experience with the greater reactivity might be useful.
2656   // Lacking sufficient experience, CMSOldPLABResizeQuicker is disabled by
2657   // default.
2658   if (ResizeOldPLAB && CMSOldPLABResizeQuicker) {
2659     size_t multiple = _num_blocks[word_sz]/(CMSOldPLABToleranceFactor*CMSOldPLABNumRefills*n_blks);
2660     n_blks +=  CMSOldPLABReactivityFactor*multiple*n_blks;
2661     n_blks = MIN2(n_blks, CMSOldPLABMax);
2662   }
2663   assert(n_blks > 0, "Error");
2664   _cfls->par_get_chunk_of_blocks(word_sz, n_blks, fl);
2665   // Update stats table entry for this block size
2666   _num_blocks[word_sz] += fl->count();
2667 }
2668 
2669 void CFLS_LAB::compute_desired_plab_size() {
2670   for (size_t i =  CompactibleFreeListSpace::IndexSetStart;
2671        i < CompactibleFreeListSpace::IndexSetSize;
2672        i += CompactibleFreeListSpace::IndexSetStride) {
2673     assert((_global_num_workers[i] == 0) == (_global_num_blocks[i] == 0),
2674            "Counter inconsistency");
2675     if (_global_num_workers[i] > 0) {
2676       // Need to smooth wrt historical average
2677       if (ResizeOldPLAB) {
2678         _blocks_to_claim[i].sample(
2679           MAX2((size_t)CMSOldPLABMin,
2680           MIN2((size_t)CMSOldPLABMax,
2681                _global_num_blocks[i]/(_global_num_workers[i]*CMSOldPLABNumRefills))));
2682       }
2683       // Reset counters for next round
2684       _global_num_workers[i] = 0;
2685       _global_num_blocks[i] = 0;
2686       if (PrintOldPLAB) {
2687         gclog_or_tty->print_cr("[" SIZE_FORMAT "]: " SIZE_FORMAT,
2688                                i, (size_t)_blocks_to_claim[i].average());
2689       }
2690     }
2691   }
2692 }
2693 
2694 // If this is changed in the future to allow parallel
2695 // access, one would need to take the FL locks and,
2696 // depending on how it is used, stagger access from
2697 // parallel threads to reduce contention.
2698 void CFLS_LAB::retire(int tid) {
2699   // We run this single threaded with the world stopped;
2700   // so no need for locks and such.
2701   NOT_PRODUCT(Thread* t = Thread::current();)
2702   assert(Thread::current()->is_VM_thread(), "Error");
2703   for (size_t i =  CompactibleFreeListSpace::IndexSetStart;
2704        i < CompactibleFreeListSpace::IndexSetSize;
2705        i += CompactibleFreeListSpace::IndexSetStride) {
2706     assert(_num_blocks[i] >= (size_t)_indexedFreeList[i].count(),
2707            "Can't retire more than what we obtained");
2708     if (_num_blocks[i] > 0) {
2709       size_t num_retire =  _indexedFreeList[i].count();
2710       assert(_num_blocks[i] > num_retire, "Should have used at least one");
2711       {
2712         // MutexLockerEx x(_cfls->_indexedFreeListParLocks[i],
2713         //                Mutex::_no_safepoint_check_flag);
2714 
2715         // Update globals stats for num_blocks used
2716         _global_num_blocks[i] += (_num_blocks[i] - num_retire);
2717         _global_num_workers[i]++;
2718         assert(_global_num_workers[i] <= ParallelGCThreads, "Too big");
2719         if (num_retire > 0) {
2720           _cfls->_indexedFreeList[i].prepend(&_indexedFreeList[i]);
2721           // Reset this list.
2722           _indexedFreeList[i] = AdaptiveFreeList<FreeChunk>();
2723           _indexedFreeList[i].set_size(i);
2724         }
2725       }
2726       if (PrintOldPLAB) {
2727         gclog_or_tty->print_cr("%d[" SIZE_FORMAT "]: " SIZE_FORMAT "/" SIZE_FORMAT "/" SIZE_FORMAT,
2728                                tid, i, num_retire, _num_blocks[i], (size_t)_blocks_to_claim[i].average());
2729       }
2730       // Reset stats for next round
2731       _num_blocks[i]         = 0;
2732     }
2733   }
2734 }
2735 
2736 void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl) {
2737   assert(fl->count() == 0, "Precondition.");
2738   assert(word_sz < CompactibleFreeListSpace::IndexSetSize,
2739          "Precondition");
2740 
2741   // We'll try all multiples of word_sz in the indexed set, starting with
2742   // word_sz itself and, if CMSSplitIndexedFreeListBlocks, try larger multiples,
2743   // then try getting a big chunk and splitting it.
2744   {
2745     bool found;
2746     int  k;
2747     size_t cur_sz;
2748     for (k = 1, cur_sz = k * word_sz, found = false;
2749          (cur_sz < CompactibleFreeListSpace::IndexSetSize) &&
2750          (CMSSplitIndexedFreeListBlocks || k <= 1);
2751          k++, cur_sz = k * word_sz) {
2752       AdaptiveFreeList<FreeChunk> fl_for_cur_sz;  // Empty.
2753       fl_for_cur_sz.set_size(cur_sz);
2754       {
2755         MutexLockerEx x(_indexedFreeListParLocks[cur_sz],
2756                         Mutex::_no_safepoint_check_flag);
2757         AdaptiveFreeList<FreeChunk>* gfl = &_indexedFreeList[cur_sz];
2758         if (gfl->count() != 0) {
2759           // nn is the number of chunks of size cur_sz that
2760           // we'd need to split k-ways each, in order to create
2761           // "n" chunks of size word_sz each.
2762           const size_t nn = MAX2(n/k, (size_t)1);
2763           gfl->getFirstNChunksFromList(nn, &fl_for_cur_sz);
2764           found = true;
2765           if (k > 1) {
2766             // Update split death stats for the cur_sz-size blocks list:
2767             // we increment the split death count by the number of blocks
2768             // we just took from the cur_sz-size blocks list and which
2769             // we will be splitting below.
2770             ssize_t deaths = gfl->split_deaths() +
2771                              fl_for_cur_sz.count();
2772             gfl->set_split_deaths(deaths);
2773           }
2774         }
2775       }
2776       // Now transfer fl_for_cur_sz to fl.  Common case, we hope, is k = 1.
2777       if (found) {
2778         if (k == 1) {
2779           fl->prepend(&fl_for_cur_sz);
2780         } else {
2781           // Divide each block on fl_for_cur_sz up k ways.
2782           FreeChunk* fc;
2783           while ((fc = fl_for_cur_sz.get_chunk_at_head()) != NULL) {
2784             // Must do this in reverse order, so that anybody attempting to
2785             // access the main chunk sees it as a single free block until we
2786             // change it.
2787             size_t fc_size = fc->size();
2788             assert(fc->is_free(), "Error");
2789             for (int i = k-1; i >= 0; i--) {
2790               FreeChunk* ffc = (FreeChunk*)((HeapWord*)fc + i * word_sz);
2791               assert((i != 0) ||
2792                         ((fc == ffc) && ffc->is_free() &&
2793                          (ffc->size() == k*word_sz) && (fc_size == word_sz)),
2794                         "Counting error");
2795               ffc->set_size(word_sz);
2796               ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
2797               ffc->link_next(NULL);
2798               // Above must occur before BOT is updated below.
2799               OrderAccess::storestore();
2800               // splitting from the right, fc_size == i * word_sz
2801               _bt.mark_block((HeapWord*)ffc, word_sz, true /* reducing */);
2802               fc_size -= word_sz;
2803               assert(fc_size == i*word_sz, "Error");
2804               _bt.verify_not_unallocated((HeapWord*)ffc, word_sz);
2805               _bt.verify_single_block((HeapWord*)fc, fc_size);
2806               _bt.verify_single_block((HeapWord*)ffc, word_sz);
2807               // Push this on "fl".
2808               fl->return_chunk_at_head(ffc);
2809             }
2810             // TRAP
2811             assert(fl->tail()->next() == NULL, "List invariant.");
2812           }
2813         }
2814         // Update birth stats for this block size.
2815         size_t num = fl->count();
2816         MutexLockerEx x(_indexedFreeListParLocks[word_sz],
2817                         Mutex::_no_safepoint_check_flag);
2818         ssize_t births = _indexedFreeList[word_sz].split_births() + num;
2819         _indexedFreeList[word_sz].set_split_births(births);
2820         return;
2821       }
2822     }
2823   }
2824   // Otherwise, we'll split a block from the dictionary.
2825   FreeChunk* fc = NULL;
2826   FreeChunk* rem_fc = NULL;
2827   size_t rem;
2828   {
2829     MutexLockerEx x(parDictionaryAllocLock(),
2830                     Mutex::_no_safepoint_check_flag);
2831     while (n > 0) {
2832       fc = dictionary()->get_chunk(MAX2(n * word_sz, _dictionary->min_size()),
2833                                   FreeBlockDictionary<FreeChunk>::atLeast);
2834       if (fc != NULL) {
2835         _bt.allocated((HeapWord*)fc, fc->size(), true /* reducing */);  // update _unallocated_blk
2836         dictionary()->dict_census_update(fc->size(),
2837                                        true /*split*/,
2838                                        false /*birth*/);
2839         break;
2840       } else {
2841         n--;
2842       }
2843     }
2844     if (fc == NULL) return;
2845     // Otherwise, split up that block.
2846     assert((ssize_t)n >= 1, "Control point invariant");
2847     assert(fc->is_free(), "Error: should be a free block");
2848     _bt.verify_single_block((HeapWord*)fc, fc->size());
2849     const size_t nn = fc->size() / word_sz;
2850     n = MIN2(nn, n);
2851     assert((ssize_t)n >= 1, "Control point invariant");
2852     rem = fc->size() - n * word_sz;
2853     // If there is a remainder, and it's too small, allocate one fewer.
2854     if (rem > 0 && rem < MinChunkSize) {
2855       n--; rem += word_sz;
2856     }
2857     // Note that at this point we may have n == 0.
2858     assert((ssize_t)n >= 0, "Control point invariant");
2859 
2860     // If n is 0, the chunk fc that was found is not large
2861     // enough to leave a viable remainder.  We are unable to
2862     // allocate even one block.  Return fc to the
2863     // dictionary and return, leaving "fl" empty.
2864     if (n == 0) {
2865       returnChunkToDictionary(fc);
2866       assert(fl->count() == 0, "We never allocated any blocks");
2867       return;
2868     }
2869 
2870     // First return the remainder, if any.
2871     // Note that we hold the lock until we decide if we're going to give
2872     // back the remainder to the dictionary, since a concurrent allocation
2873     // may otherwise see the heap as empty.  (We're willing to take that
2874     // hit if the block is a small block.)
2875     if (rem > 0) {
2876       size_t prefix_size = n * word_sz;
2877       rem_fc = (FreeChunk*)((HeapWord*)fc + prefix_size);
2878       rem_fc->set_size(rem);
2879       rem_fc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
2880       rem_fc->link_next(NULL);
2881       // Above must occur before BOT is updated below.
2882       assert((ssize_t)n > 0 && prefix_size > 0 && rem_fc > fc, "Error");
2883       OrderAccess::storestore();
2884       _bt.split_block((HeapWord*)fc, fc->size(), prefix_size);
2885       assert(fc->is_free(), "Error");
2886       fc->set_size(prefix_size);
2887       if (rem >= IndexSetSize) {
2888         returnChunkToDictionary(rem_fc);
2889         dictionary()->dict_census_update(rem, true /*split*/, true /*birth*/);
2890         rem_fc = NULL;
2891       }
2892       // Otherwise, return it to the small list below.
2893     }
2894   }
2895   if (rem_fc != NULL) {
2896     MutexLockerEx x(_indexedFreeListParLocks[rem],
2897                     Mutex::_no_safepoint_check_flag);
2898     _bt.verify_not_unallocated((HeapWord*)rem_fc, rem_fc->size());
2899     _indexedFreeList[rem].return_chunk_at_head(rem_fc);
2900     smallSplitBirth(rem);
2901   }
2902   assert((ssize_t)n > 0 && fc != NULL, "Consistency");
2903   // Now do the splitting up.
2904   // Must do this in reverse order, so that anybody attempting to
2905   // access the main chunk sees it as a single free block until we
2906   // change it.
2907   size_t fc_size = n * word_sz;
2908   // All but first chunk in this loop
2909   for (ssize_t i = n-1; i > 0; i--) {
2910     FreeChunk* ffc = (FreeChunk*)((HeapWord*)fc + i * word_sz);
2911     ffc->set_size(word_sz);
2912     ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
2913     ffc->link_next(NULL);
2914     // Above must occur before BOT is updated below.
2915     OrderAccess::storestore();
2916     // splitting from the right, fc_size == (n - i + 1) * wordsize
2917     _bt.mark_block((HeapWord*)ffc, word_sz, true /* reducing */);
2918     fc_size -= word_sz;
2919     _bt.verify_not_unallocated((HeapWord*)ffc, ffc->size());
2920     _bt.verify_single_block((HeapWord*)ffc, ffc->size());
2921     _bt.verify_single_block((HeapWord*)fc, fc_size);
2922     // Push this on "fl".
2923     fl->return_chunk_at_head(ffc);
2924   }
2925   // First chunk
2926   assert(fc->is_free() && fc->size() == n*word_sz, "Error: should still be a free block");
2927   // The blocks above should show their new sizes before the first block below
2928   fc->set_size(word_sz);
2929   fc->link_prev(NULL);    // idempotent wrt free-ness, see assert above
2930   fc->link_next(NULL);
2931   _bt.verify_not_unallocated((HeapWord*)fc, fc->size());
2932   _bt.verify_single_block((HeapWord*)fc, fc->size());
2933   fl->return_chunk_at_head(fc);
2934 
2935   assert((ssize_t)n > 0 && (ssize_t)n == fl->count(), "Incorrect number of blocks");
2936   {
2937     // Update the stats for this block size.
2938     MutexLockerEx x(_indexedFreeListParLocks[word_sz],
2939                     Mutex::_no_safepoint_check_flag);
2940     const ssize_t births = _indexedFreeList[word_sz].split_births() + n;
2941     _indexedFreeList[word_sz].set_split_births(births);
2942     // ssize_t new_surplus = _indexedFreeList[word_sz].surplus() + n;
2943     // _indexedFreeList[word_sz].set_surplus(new_surplus);
2944   }
2945 
2946   // TRAP
2947   assert(fl->tail()->next() == NULL, "List invariant.");
2948 }
2949 
2950 // Set up the space's par_seq_tasks structure for work claiming
2951 // for parallel rescan. See CMSParRemarkTask where this is currently used.
2952 // XXX Need to suitably abstract and generalize this and the next
2953 // method into one.
2954 void
2955 CompactibleFreeListSpace::
2956 initialize_sequential_subtasks_for_rescan(int n_threads) {
2957   // The "size" of each task is fixed according to rescan_task_size.
2958   assert(n_threads > 0, "Unexpected n_threads argument");
2959   const size_t task_size = rescan_task_size();
2960   size_t n_tasks = (used_region().word_size() + task_size - 1)/task_size;
2961   assert((n_tasks == 0) == used_region().is_empty(), "n_tasks incorrect");
2962   assert(n_tasks == 0 ||
2963          ((used_region().start() + (n_tasks - 1)*task_size < used_region().end()) &&
2964           (used_region().start() + n_tasks*task_size >= used_region().end())),
2965          "n_tasks calculation incorrect");
2966   SequentialSubTasksDone* pst = conc_par_seq_tasks();
2967   assert(!pst->valid(), "Clobbering existing data?");
2968   // Sets the condition for completion of the subtask (how many threads
2969   // need to finish in order to be done).
2970   pst->set_n_threads(n_threads);
2971   pst->set_n_tasks((int)n_tasks);
2972 }
2973 
2974 // Set up the space's par_seq_tasks structure for work claiming
2975 // for parallel concurrent marking. See CMSConcMarkTask where this is currently used.
2976 void
2977 CompactibleFreeListSpace::
2978 initialize_sequential_subtasks_for_marking(int n_threads,
2979                                            HeapWord* low) {
2980   // The "size" of each task is fixed according to rescan_task_size.
2981   assert(n_threads > 0, "Unexpected n_threads argument");
2982   const size_t task_size = marking_task_size();
2983   assert(task_size > CardTableModRefBS::card_size_in_words &&
2984          (task_size %  CardTableModRefBS::card_size_in_words == 0),
2985          "Otherwise arithmetic below would be incorrect");
2986   MemRegion span = _gen->reserved();
2987   if (low != NULL) {
2988     if (span.contains(low)) {
2989       // Align low down to  a card boundary so that
2990       // we can use block_offset_careful() on span boundaries.
2991       HeapWord* aligned_low = (HeapWord*)align_size_down((uintptr_t)low,
2992                                  CardTableModRefBS::card_size);
2993       // Clip span prefix at aligned_low
2994       span = span.intersection(MemRegion(aligned_low, span.end()));
2995     } else if (low > span.end()) {
2996       span = MemRegion(low, low);  // Null region
2997     } // else use entire span
2998   }
2999   assert(span.is_empty() ||
3000          ((uintptr_t)span.start() %  CardTableModRefBS::card_size == 0),
3001         "span should start at a card boundary");
3002   size_t n_tasks = (span.word_size() + task_size - 1)/task_size;
3003   assert((n_tasks == 0) == span.is_empty(), "Inconsistency");
3004   assert(n_tasks == 0 ||
3005          ((span.start() + (n_tasks - 1)*task_size < span.end()) &&
3006           (span.start() + n_tasks*task_size >= span.end())),
3007          "n_tasks calculation incorrect");
3008   SequentialSubTasksDone* pst = conc_par_seq_tasks();
3009   assert(!pst->valid(), "Clobbering existing data?");
3010   // Sets the condition for completion of the subtask (how many threads
3011   // need to finish in order to be done).
3012   pst->set_n_threads(n_threads);
3013   pst->set_n_tasks((int)n_tasks);
3014 }