1 /* 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoaderData.hpp" 27 #include "classfile/stringTable.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "code/codeCache.hpp" 30 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp" 31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp" 32 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp" 33 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp" 34 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp" 35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp" 36 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp" 37 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp" 38 #include "gc_implementation/parNew/parNewGeneration.hpp" 39 #include "gc_implementation/shared/collectorCounters.hpp" 40 #include "gc_implementation/shared/gcTimer.hpp" 41 #include "gc_implementation/shared/gcTrace.hpp" 42 #include "gc_implementation/shared/gcTraceTime.hpp" 43 #include "gc_implementation/shared/isGCActiveMark.hpp" 44 #include "gc_interface/collectedHeap.inline.hpp" 45 #include "memory/allocation.hpp" 46 #include "memory/cardTableRS.hpp" 47 #include "memory/collectorPolicy.hpp" 48 #include "memory/gcLocker.inline.hpp" 49 #include "memory/genCollectedHeap.hpp" 50 #include "memory/genMarkSweep.hpp" 51 #include "memory/genOopClosures.inline.hpp" 52 #include "memory/iterator.hpp" 53 #include "memory/padded.hpp" 54 #include "memory/referencePolicy.hpp" 55 #include "memory/resourceArea.hpp" 56 #include "memory/tenuredGeneration.hpp" 57 #include "oops/oop.inline.hpp" 58 #include "prims/jvmtiExport.hpp" 59 #include "runtime/globals_extension.hpp" 60 #include "runtime/handles.inline.hpp" 61 #include "runtime/java.hpp" 62 #include "runtime/orderAccess.inline.hpp" 63 #include "runtime/vmThread.hpp" 64 #include "services/memoryService.hpp" 65 #include "services/runtimeService.hpp" 66 67 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC 68 69 // statics 70 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL; 71 bool CMSCollector::_full_gc_requested = false; 72 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc; 73 74 ////////////////////////////////////////////////////////////////// 75 // In support of CMS/VM thread synchronization 76 ////////////////////////////////////////////////////////////////// 77 // We split use of the CGC_lock into 2 "levels". 78 // The low-level locking is of the usual CGC_lock monitor. We introduce 79 // a higher level "token" (hereafter "CMS token") built on top of the 80 // low level monitor (hereafter "CGC lock"). 81 // The token-passing protocol gives priority to the VM thread. The 82 // CMS-lock doesn't provide any fairness guarantees, but clients 83 // should ensure that it is only held for very short, bounded 84 // durations. 85 // 86 // When either of the CMS thread or the VM thread is involved in 87 // collection operations during which it does not want the other 88 // thread to interfere, it obtains the CMS token. 89 // 90 // If either thread tries to get the token while the other has 91 // it, that thread waits. However, if the VM thread and CMS thread 92 // both want the token, then the VM thread gets priority while the 93 // CMS thread waits. This ensures, for instance, that the "concurrent" 94 // phases of the CMS thread's work do not block out the VM thread 95 // for long periods of time as the CMS thread continues to hog 96 // the token. (See bug 4616232). 97 // 98 // The baton-passing functions are, however, controlled by the 99 // flags _foregroundGCShouldWait and _foregroundGCIsActive, 100 // and here the low-level CMS lock, not the high level token, 101 // ensures mutual exclusion. 102 // 103 // Two important conditions that we have to satisfy: 104 // 1. if a thread does a low-level wait on the CMS lock, then it 105 // relinquishes the CMS token if it were holding that token 106 // when it acquired the low-level CMS lock. 107 // 2. any low-level notifications on the low-level lock 108 // should only be sent when a thread has relinquished the token. 109 // 110 // In the absence of either property, we'd have potential deadlock. 111 // 112 // We protect each of the CMS (concurrent and sequential) phases 113 // with the CMS _token_, not the CMS _lock_. 114 // 115 // The only code protected by CMS lock is the token acquisition code 116 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the 117 // baton-passing code. 118 // 119 // Unfortunately, i couldn't come up with a good abstraction to factor and 120 // hide the naked CGC_lock manipulation in the baton-passing code 121 // further below. That's something we should try to do. Also, the proof 122 // of correctness of this 2-level locking scheme is far from obvious, 123 // and potentially quite slippery. We have an uneasy suspicion, for instance, 124 // that there may be a theoretical possibility of delay/starvation in the 125 // low-level lock/wait/notify scheme used for the baton-passing because of 126 // potential interference with the priority scheme embodied in the 127 // CMS-token-passing protocol. See related comments at a CGC_lock->wait() 128 // invocation further below and marked with "XXX 20011219YSR". 129 // Indeed, as we note elsewhere, this may become yet more slippery 130 // in the presence of multiple CMS and/or multiple VM threads. XXX 131 132 class CMSTokenSync: public StackObj { 133 private: 134 bool _is_cms_thread; 135 public: 136 CMSTokenSync(bool is_cms_thread): 137 _is_cms_thread(is_cms_thread) { 138 assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(), 139 "Incorrect argument to constructor"); 140 ConcurrentMarkSweepThread::synchronize(_is_cms_thread); 141 } 142 143 ~CMSTokenSync() { 144 assert(_is_cms_thread ? 145 ConcurrentMarkSweepThread::cms_thread_has_cms_token() : 146 ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 147 "Incorrect state"); 148 ConcurrentMarkSweepThread::desynchronize(_is_cms_thread); 149 } 150 }; 151 152 // Convenience class that does a CMSTokenSync, and then acquires 153 // upto three locks. 154 class CMSTokenSyncWithLocks: public CMSTokenSync { 155 private: 156 // Note: locks are acquired in textual declaration order 157 // and released in the opposite order 158 MutexLockerEx _locker1, _locker2, _locker3; 159 public: 160 CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1, 161 Mutex* mutex2 = NULL, Mutex* mutex3 = NULL): 162 CMSTokenSync(is_cms_thread), 163 _locker1(mutex1, Mutex::_no_safepoint_check_flag), 164 _locker2(mutex2, Mutex::_no_safepoint_check_flag), 165 _locker3(mutex3, Mutex::_no_safepoint_check_flag) 166 { } 167 }; 168 169 170 // Wrapper class to temporarily disable icms during a foreground cms collection. 171 class ICMSDisabler: public StackObj { 172 public: 173 // The ctor disables icms and wakes up the thread so it notices the change; 174 // the dtor re-enables icms. Note that the CMSCollector methods will check 175 // CMSIncrementalMode. 176 ICMSDisabler() { CMSCollector::disable_icms(); CMSCollector::start_icms(); } 177 ~ICMSDisabler() { CMSCollector::enable_icms(); } 178 }; 179 180 ////////////////////////////////////////////////////////////////// 181 // Concurrent Mark-Sweep Generation ///////////////////////////// 182 ////////////////////////////////////////////////////////////////// 183 184 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;) 185 186 // This struct contains per-thread things necessary to support parallel 187 // young-gen collection. 188 class CMSParGCThreadState: public CHeapObj<mtGC> { 189 public: 190 CFLS_LAB lab; 191 PromotionInfo promo; 192 193 // Constructor. 194 CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) { 195 promo.setSpace(cfls); 196 } 197 }; 198 199 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration( 200 ReservedSpace rs, size_t initial_byte_size, int level, 201 CardTableRS* ct, bool use_adaptive_freelists, 202 FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) : 203 CardGeneration(rs, initial_byte_size, level, ct), 204 _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))), 205 _debug_collection_type(Concurrent_collection_type), 206 _did_compact(false) 207 { 208 HeapWord* bottom = (HeapWord*) _virtual_space.low(); 209 HeapWord* end = (HeapWord*) _virtual_space.high(); 210 211 _direct_allocated_words = 0; 212 NOT_PRODUCT( 213 _numObjectsPromoted = 0; 214 _numWordsPromoted = 0; 215 _numObjectsAllocated = 0; 216 _numWordsAllocated = 0; 217 ) 218 219 _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end), 220 use_adaptive_freelists, 221 dictionaryChoice); 222 NOT_PRODUCT(debug_cms_space = _cmsSpace;) 223 if (_cmsSpace == NULL) { 224 vm_exit_during_initialization( 225 "CompactibleFreeListSpace allocation failure"); 226 } 227 _cmsSpace->_gen = this; 228 229 _gc_stats = new CMSGCStats(); 230 231 // Verify the assumption that FreeChunk::_prev and OopDesc::_klass 232 // offsets match. The ability to tell free chunks from objects 233 // depends on this property. 234 debug_only( 235 FreeChunk* junk = NULL; 236 assert(UseCompressedClassPointers || 237 junk->prev_addr() == (void*)(oop(junk)->klass_addr()), 238 "Offset of FreeChunk::_prev within FreeChunk must match" 239 " that of OopDesc::_klass within OopDesc"); 240 ) 241 if (CollectedHeap::use_parallel_gc_threads()) { 242 typedef CMSParGCThreadState* CMSParGCThreadStatePtr; 243 _par_gc_thread_states = 244 NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC); 245 if (_par_gc_thread_states == NULL) { 246 vm_exit_during_initialization("Could not allocate par gc structs"); 247 } 248 for (uint i = 0; i < ParallelGCThreads; i++) { 249 _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace()); 250 if (_par_gc_thread_states[i] == NULL) { 251 vm_exit_during_initialization("Could not allocate par gc structs"); 252 } 253 } 254 } else { 255 _par_gc_thread_states = NULL; 256 } 257 _incremental_collection_failed = false; 258 // The "dilatation_factor" is the expansion that can occur on 259 // account of the fact that the minimum object size in the CMS 260 // generation may be larger than that in, say, a contiguous young 261 // generation. 262 // Ideally, in the calculation below, we'd compute the dilatation 263 // factor as: MinChunkSize/(promoting_gen's min object size) 264 // Since we do not have such a general query interface for the 265 // promoting generation, we'll instead just use the minimum 266 // object size (which today is a header's worth of space); 267 // note that all arithmetic is in units of HeapWords. 268 assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking"); 269 assert(_dilatation_factor >= 1.0, "from previous assert"); 270 } 271 272 273 // The field "_initiating_occupancy" represents the occupancy percentage 274 // at which we trigger a new collection cycle. Unless explicitly specified 275 // via CMSInitiatingOccupancyFraction (argument "io" below), it 276 // is calculated by: 277 // 278 // Let "f" be MinHeapFreeRatio in 279 // 280 // _initiating_occupancy = 100-f + 281 // f * (CMSTriggerRatio/100) 282 // where CMSTriggerRatio is the argument "tr" below. 283 // 284 // That is, if we assume the heap is at its desired maximum occupancy at the 285 // end of a collection, we let CMSTriggerRatio of the (purported) free 286 // space be allocated before initiating a new collection cycle. 287 // 288 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) { 289 assert(io <= 100 && tr <= 100, "Check the arguments"); 290 if (io >= 0) { 291 _initiating_occupancy = (double)io / 100.0; 292 } else { 293 _initiating_occupancy = ((100 - MinHeapFreeRatio) + 294 (double)(tr * MinHeapFreeRatio) / 100.0) 295 / 100.0; 296 } 297 } 298 299 void ConcurrentMarkSweepGeneration::ref_processor_init() { 300 assert(collector() != NULL, "no collector"); 301 collector()->ref_processor_init(); 302 } 303 304 void CMSCollector::ref_processor_init() { 305 if (_ref_processor == NULL) { 306 // Allocate and initialize a reference processor 307 _ref_processor = 308 new ReferenceProcessor(_span, // span 309 (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing 310 (int) ParallelGCThreads, // mt processing degree 311 _cmsGen->refs_discovery_is_mt(), // mt discovery 312 (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree 313 _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic 314 &_is_alive_closure, // closure for liveness info 315 false); // next field updates do not need write barrier 316 // Initialize the _ref_processor field of CMSGen 317 _cmsGen->set_ref_processor(_ref_processor); 318 319 } 320 } 321 322 CMSAdaptiveSizePolicy* CMSCollector::size_policy() { 323 GenCollectedHeap* gch = GenCollectedHeap::heap(); 324 assert(gch->kind() == CollectedHeap::GenCollectedHeap, 325 "Wrong type of heap"); 326 CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*) 327 gch->gen_policy()->size_policy(); 328 assert(sp->is_gc_cms_adaptive_size_policy(), 329 "Wrong type of size policy"); 330 return sp; 331 } 332 333 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() { 334 CMSGCAdaptivePolicyCounters* results = 335 (CMSGCAdaptivePolicyCounters*) collector_policy()->counters(); 336 assert( 337 results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind, 338 "Wrong gc policy counter kind"); 339 return results; 340 } 341 342 343 void ConcurrentMarkSweepGeneration::initialize_performance_counters() { 344 345 const char* gen_name = "old"; 346 347 // Generation Counters - generation 1, 1 subspace 348 _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space); 349 350 _space_counters = new GSpaceCounters(gen_name, 0, 351 _virtual_space.reserved_size(), 352 this, _gen_counters); 353 } 354 355 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha): 356 _cms_gen(cms_gen) 357 { 358 assert(alpha <= 100, "bad value"); 359 _saved_alpha = alpha; 360 361 // Initialize the alphas to the bootstrap value of 100. 362 _gc0_alpha = _cms_alpha = 100; 363 364 _cms_begin_time.update(); 365 _cms_end_time.update(); 366 367 _gc0_duration = 0.0; 368 _gc0_period = 0.0; 369 _gc0_promoted = 0; 370 371 _cms_duration = 0.0; 372 _cms_period = 0.0; 373 _cms_allocated = 0; 374 375 _cms_used_at_gc0_begin = 0; 376 _cms_used_at_gc0_end = 0; 377 _allow_duty_cycle_reduction = false; 378 _valid_bits = 0; 379 _icms_duty_cycle = CMSIncrementalDutyCycle; 380 } 381 382 double CMSStats::cms_free_adjustment_factor(size_t free) const { 383 // TBD: CR 6909490 384 return 1.0; 385 } 386 387 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) { 388 } 389 390 // If promotion failure handling is on use 391 // the padded average size of the promotion for each 392 // young generation collection. 393 double CMSStats::time_until_cms_gen_full() const { 394 size_t cms_free = _cms_gen->cmsSpace()->free(); 395 GenCollectedHeap* gch = GenCollectedHeap::heap(); 396 size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(), 397 (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average()); 398 if (cms_free > expected_promotion) { 399 // Start a cms collection if there isn't enough space to promote 400 // for the next minor collection. Use the padded average as 401 // a safety factor. 402 cms_free -= expected_promotion; 403 404 // Adjust by the safety factor. 405 double cms_free_dbl = (double)cms_free; 406 double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0; 407 // Apply a further correction factor which tries to adjust 408 // for recent occurance of concurrent mode failures. 409 cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free); 410 cms_free_dbl = cms_free_dbl * cms_adjustment; 411 412 if (PrintGCDetails && Verbose) { 413 gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free " 414 SIZE_FORMAT " expected_promotion " SIZE_FORMAT, 415 cms_free, expected_promotion); 416 gclog_or_tty->print_cr(" cms_free_dbl %f cms_consumption_rate %f", 417 cms_free_dbl, cms_consumption_rate() + 1.0); 418 } 419 // Add 1 in case the consumption rate goes to zero. 420 return cms_free_dbl / (cms_consumption_rate() + 1.0); 421 } 422 return 0.0; 423 } 424 425 // Compare the duration of the cms collection to the 426 // time remaining before the cms generation is empty. 427 // Note that the time from the start of the cms collection 428 // to the start of the cms sweep (less than the total 429 // duration of the cms collection) can be used. This 430 // has been tried and some applications experienced 431 // promotion failures early in execution. This was 432 // possibly because the averages were not accurate 433 // enough at the beginning. 434 double CMSStats::time_until_cms_start() const { 435 // We add "gc0_period" to the "work" calculation 436 // below because this query is done (mostly) at the 437 // end of a scavenge, so we need to conservatively 438 // account for that much possible delay 439 // in the query so as to avoid concurrent mode failures 440 // due to starting the collection just a wee bit too 441 // late. 442 double work = cms_duration() + gc0_period(); 443 double deadline = time_until_cms_gen_full(); 444 // If a concurrent mode failure occurred recently, we want to be 445 // more conservative and halve our expected time_until_cms_gen_full() 446 if (work > deadline) { 447 if (Verbose && PrintGCDetails) { 448 gclog_or_tty->print( 449 " CMSCollector: collect because of anticipated promotion " 450 "before full %3.7f + %3.7f > %3.7f ", cms_duration(), 451 gc0_period(), time_until_cms_gen_full()); 452 } 453 return 0.0; 454 } 455 return work - deadline; 456 } 457 458 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the 459 // amount of change to prevent wild oscillation. 460 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle, 461 unsigned int new_duty_cycle) { 462 assert(old_duty_cycle <= 100, "bad input value"); 463 assert(new_duty_cycle <= 100, "bad input value"); 464 465 // Note: use subtraction with caution since it may underflow (values are 466 // unsigned). Addition is safe since we're in the range 0-100. 467 unsigned int damped_duty_cycle = new_duty_cycle; 468 if (new_duty_cycle < old_duty_cycle) { 469 const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U); 470 if (new_duty_cycle + largest_delta < old_duty_cycle) { 471 damped_duty_cycle = old_duty_cycle - largest_delta; 472 } 473 } else if (new_duty_cycle > old_duty_cycle) { 474 const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U); 475 if (new_duty_cycle > old_duty_cycle + largest_delta) { 476 damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U); 477 } 478 } 479 assert(damped_duty_cycle <= 100, "invalid duty cycle computed"); 480 481 if (CMSTraceIncrementalPacing) { 482 gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ", 483 old_duty_cycle, new_duty_cycle, damped_duty_cycle); 484 } 485 return damped_duty_cycle; 486 } 487 488 unsigned int CMSStats::icms_update_duty_cycle_impl() { 489 assert(CMSIncrementalPacing && valid(), 490 "should be handled in icms_update_duty_cycle()"); 491 492 double cms_time_so_far = cms_timer().seconds(); 493 double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M; 494 double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far); 495 496 // Avoid division by 0. 497 double time_until_full = MAX2(time_until_cms_gen_full(), 0.01); 498 double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full; 499 500 unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U); 501 if (new_duty_cycle > _icms_duty_cycle) { 502 // Avoid very small duty cycles (1 or 2); 0 is allowed. 503 if (new_duty_cycle > 2) { 504 _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, 505 new_duty_cycle); 506 } 507 } else if (_allow_duty_cycle_reduction) { 508 // The duty cycle is reduced only once per cms cycle (see record_cms_end()). 509 new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle); 510 // Respect the minimum duty cycle. 511 unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin; 512 _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle); 513 } 514 515 if (PrintGCDetails || CMSTraceIncrementalPacing) { 516 gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle); 517 } 518 519 _allow_duty_cycle_reduction = false; 520 return _icms_duty_cycle; 521 } 522 523 #ifndef PRODUCT 524 void CMSStats::print_on(outputStream *st) const { 525 st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha); 526 st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT, 527 gc0_duration(), gc0_period(), gc0_promoted()); 528 st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT, 529 cms_duration(), cms_duration_per_mb(), 530 cms_period(), cms_allocated()); 531 st->print(",cms_since_beg=%g,cms_since_end=%g", 532 cms_time_since_begin(), cms_time_since_end()); 533 st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT, 534 _cms_used_at_gc0_begin, _cms_used_at_gc0_end); 535 if (CMSIncrementalMode) { 536 st->print(",dc=%d", icms_duty_cycle()); 537 } 538 539 if (valid()) { 540 st->print(",promo_rate=%g,cms_alloc_rate=%g", 541 promotion_rate(), cms_allocation_rate()); 542 st->print(",cms_consumption_rate=%g,time_until_full=%g", 543 cms_consumption_rate(), time_until_cms_gen_full()); 544 } 545 st->print(" "); 546 } 547 #endif // #ifndef PRODUCT 548 549 CMSCollector::CollectorState CMSCollector::_collectorState = 550 CMSCollector::Idling; 551 bool CMSCollector::_foregroundGCIsActive = false; 552 bool CMSCollector::_foregroundGCShouldWait = false; 553 554 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen, 555 CardTableRS* ct, 556 ConcurrentMarkSweepPolicy* cp): 557 _cmsGen(cmsGen), 558 _ct(ct), 559 _ref_processor(NULL), // will be set later 560 _conc_workers(NULL), // may be set later 561 _abort_preclean(false), 562 _start_sampling(false), 563 _between_prologue_and_epilogue(false), 564 _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"), 565 _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize), 566 -1 /* lock-free */, "No_lock" /* dummy */), 567 _modUnionClosure(&_modUnionTable), 568 _modUnionClosurePar(&_modUnionTable), 569 // Adjust my span to cover old (cms) gen 570 _span(cmsGen->reserved()), 571 // Construct the is_alive_closure with _span & markBitMap 572 _is_alive_closure(_span, &_markBitMap), 573 _restart_addr(NULL), 574 _overflow_list(NULL), 575 _stats(cmsGen), 576 _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true)), 577 _eden_chunk_array(NULL), // may be set in ctor body 578 _eden_chunk_capacity(0), // -- ditto -- 579 _eden_chunk_index(0), // -- ditto -- 580 _survivor_plab_array(NULL), // -- ditto -- 581 _survivor_chunk_array(NULL), // -- ditto -- 582 _survivor_chunk_capacity(0), // -- ditto -- 583 _survivor_chunk_index(0), // -- ditto -- 584 _ser_pmc_preclean_ovflw(0), 585 _ser_kac_preclean_ovflw(0), 586 _ser_pmc_remark_ovflw(0), 587 _par_pmc_remark_ovflw(0), 588 _ser_kac_ovflw(0), 589 _par_kac_ovflw(0), 590 #ifndef PRODUCT 591 _num_par_pushes(0), 592 #endif 593 _collection_count_start(0), 594 _verifying(false), 595 _icms_start_limit(NULL), 596 _icms_stop_limit(NULL), 597 _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"), 598 _completed_initialization(false), 599 _collector_policy(cp), 600 _should_unload_classes(CMSClassUnloadingEnabled), 601 _concurrent_cycles_since_last_unload(0), 602 _roots_scanning_options(SharedHeap::SO_None), 603 _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding), 604 _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding), 605 _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()), 606 _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), 607 _cms_start_registered(false) 608 { 609 if (ExplicitGCInvokesConcurrentAndUnloadsClasses) { 610 ExplicitGCInvokesConcurrent = true; 611 } 612 // Now expand the span and allocate the collection support structures 613 // (MUT, marking bit map etc.) to cover both generations subject to 614 // collection. 615 616 // For use by dirty card to oop closures. 617 _cmsGen->cmsSpace()->set_collector(this); 618 619 // Allocate MUT and marking bit map 620 { 621 MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag); 622 if (!_markBitMap.allocate(_span)) { 623 warning("Failed to allocate CMS Bit Map"); 624 return; 625 } 626 assert(_markBitMap.covers(_span), "_markBitMap inconsistency?"); 627 } 628 { 629 _modUnionTable.allocate(_span); 630 assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?"); 631 } 632 633 if (!_markStack.allocate(MarkStackSize)) { 634 warning("Failed to allocate CMS Marking Stack"); 635 return; 636 } 637 638 // Support for multi-threaded concurrent phases 639 if (CMSConcurrentMTEnabled) { 640 if (FLAG_IS_DEFAULT(ConcGCThreads)) { 641 // just for now 642 FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4); 643 } 644 if (ConcGCThreads > 1) { 645 _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads", 646 ConcGCThreads, true); 647 if (_conc_workers == NULL) { 648 warning("GC/CMS: _conc_workers allocation failure: " 649 "forcing -CMSConcurrentMTEnabled"); 650 CMSConcurrentMTEnabled = false; 651 } else { 652 _conc_workers->initialize_workers(); 653 } 654 } else { 655 CMSConcurrentMTEnabled = false; 656 } 657 } 658 if (!CMSConcurrentMTEnabled) { 659 ConcGCThreads = 0; 660 } else { 661 // Turn off CMSCleanOnEnter optimization temporarily for 662 // the MT case where it's not fixed yet; see 6178663. 663 CMSCleanOnEnter = false; 664 } 665 assert((_conc_workers != NULL) == (ConcGCThreads > 1), 666 "Inconsistency"); 667 668 // Parallel task queues; these are shared for the 669 // concurrent and stop-world phases of CMS, but 670 // are not shared with parallel scavenge (ParNew). 671 { 672 uint i; 673 uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads); 674 675 if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled 676 || ParallelRefProcEnabled) 677 && num_queues > 0) { 678 _task_queues = new OopTaskQueueSet(num_queues); 679 if (_task_queues == NULL) { 680 warning("task_queues allocation failure."); 681 return; 682 } 683 _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC); 684 if (_hash_seed == NULL) { 685 warning("_hash_seed array allocation failure"); 686 return; 687 } 688 689 typedef Padded<OopTaskQueue> PaddedOopTaskQueue; 690 for (i = 0; i < num_queues; i++) { 691 PaddedOopTaskQueue *q = new PaddedOopTaskQueue(); 692 if (q == NULL) { 693 warning("work_queue allocation failure."); 694 return; 695 } 696 _task_queues->register_queue(i, q); 697 } 698 for (i = 0; i < num_queues; i++) { 699 _task_queues->queue(i)->initialize(); 700 _hash_seed[i] = 17; // copied from ParNew 701 } 702 } 703 } 704 705 _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio); 706 707 // Clip CMSBootstrapOccupancy between 0 and 100. 708 _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100; 709 710 _full_gcs_since_conc_gc = 0; 711 712 // Now tell CMS generations the identity of their collector 713 ConcurrentMarkSweepGeneration::set_collector(this); 714 715 // Create & start a CMS thread for this CMS collector 716 _cmsThread = ConcurrentMarkSweepThread::start(this); 717 assert(cmsThread() != NULL, "CMS Thread should have been created"); 718 assert(cmsThread()->collector() == this, 719 "CMS Thread should refer to this gen"); 720 assert(CGC_lock != NULL, "Where's the CGC_lock?"); 721 722 // Support for parallelizing young gen rescan 723 GenCollectedHeap* gch = GenCollectedHeap::heap(); 724 _young_gen = gch->prev_gen(_cmsGen); 725 if (gch->supports_inline_contig_alloc()) { 726 _top_addr = gch->top_addr(); 727 _end_addr = gch->end_addr(); 728 assert(_young_gen != NULL, "no _young_gen"); 729 _eden_chunk_index = 0; 730 _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain; 731 _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC); 732 if (_eden_chunk_array == NULL) { 733 _eden_chunk_capacity = 0; 734 warning("GC/CMS: _eden_chunk_array allocation failure"); 735 } 736 } 737 assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error"); 738 739 // Support for parallelizing survivor space rescan 740 if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) { 741 const size_t max_plab_samples = 742 ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize; 743 744 _survivor_plab_array = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC); 745 _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC); 746 _cursor = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC); 747 if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL 748 || _cursor == NULL) { 749 warning("Failed to allocate survivor plab/chunk array"); 750 if (_survivor_plab_array != NULL) { 751 FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC); 752 _survivor_plab_array = NULL; 753 } 754 if (_survivor_chunk_array != NULL) { 755 FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC); 756 _survivor_chunk_array = NULL; 757 } 758 if (_cursor != NULL) { 759 FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC); 760 _cursor = NULL; 761 } 762 } else { 763 _survivor_chunk_capacity = 2*max_plab_samples; 764 for (uint i = 0; i < ParallelGCThreads; i++) { 765 HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC); 766 if (vec == NULL) { 767 warning("Failed to allocate survivor plab array"); 768 for (int j = i; j > 0; j--) { 769 FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC); 770 } 771 FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC); 772 FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC); 773 _survivor_plab_array = NULL; 774 _survivor_chunk_array = NULL; 775 _survivor_chunk_capacity = 0; 776 break; 777 } else { 778 ChunkArray* cur = 779 ::new (&_survivor_plab_array[i]) ChunkArray(vec, 780 max_plab_samples); 781 assert(cur->end() == 0, "Should be 0"); 782 assert(cur->array() == vec, "Should be vec"); 783 assert(cur->capacity() == max_plab_samples, "Error"); 784 } 785 } 786 } 787 } 788 assert( ( _survivor_plab_array != NULL 789 && _survivor_chunk_array != NULL) 790 || ( _survivor_chunk_capacity == 0 791 && _survivor_chunk_index == 0), 792 "Error"); 793 794 NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;) 795 _gc_counters = new CollectorCounters("CMS", 1); 796 _completed_initialization = true; 797 _inter_sweep_timer.start(); // start of time 798 } 799 800 const char* ConcurrentMarkSweepGeneration::name() const { 801 return "concurrent mark-sweep generation"; 802 } 803 void ConcurrentMarkSweepGeneration::update_counters() { 804 if (UsePerfData) { 805 _space_counters->update_all(); 806 _gen_counters->update_all(); 807 } 808 } 809 810 // this is an optimized version of update_counters(). it takes the 811 // used value as a parameter rather than computing it. 812 // 813 void ConcurrentMarkSweepGeneration::update_counters(size_t used) { 814 if (UsePerfData) { 815 _space_counters->update_used(used); 816 _space_counters->update_capacity(); 817 _gen_counters->update_all(); 818 } 819 } 820 821 void ConcurrentMarkSweepGeneration::print() const { 822 Generation::print(); 823 cmsSpace()->print(); 824 } 825 826 #ifndef PRODUCT 827 void ConcurrentMarkSweepGeneration::print_statistics() { 828 cmsSpace()->printFLCensus(0); 829 } 830 #endif 831 832 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) { 833 GenCollectedHeap* gch = GenCollectedHeap::heap(); 834 if (PrintGCDetails) { 835 if (Verbose) { 836 gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]", 837 level(), short_name(), s, used(), capacity()); 838 } else { 839 gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]", 840 level(), short_name(), s, used() / K, capacity() / K); 841 } 842 } 843 if (Verbose) { 844 gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")", 845 gch->used(), gch->capacity()); 846 } else { 847 gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)", 848 gch->used() / K, gch->capacity() / K); 849 } 850 } 851 852 size_t 853 ConcurrentMarkSweepGeneration::contiguous_available() const { 854 // dld proposes an improvement in precision here. If the committed 855 // part of the space ends in a free block we should add that to 856 // uncommitted size in the calculation below. Will make this 857 // change later, staying with the approximation below for the 858 // time being. -- ysr. 859 return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc()); 860 } 861 862 size_t 863 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const { 864 return _cmsSpace->max_alloc_in_words() * HeapWordSize; 865 } 866 867 size_t ConcurrentMarkSweepGeneration::max_available() const { 868 return free() + _virtual_space.uncommitted_size(); 869 } 870 871 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const { 872 size_t available = max_available(); 873 size_t av_promo = (size_t)gc_stats()->avg_promoted()->padded_average(); 874 bool res = (available >= av_promo) || (available >= max_promotion_in_bytes); 875 if (Verbose && PrintGCDetails) { 876 gclog_or_tty->print_cr( 877 "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT")," 878 "max_promo("SIZE_FORMAT")", 879 res? "":" not", available, res? ">=":"<", 880 av_promo, max_promotion_in_bytes); 881 } 882 return res; 883 } 884 885 // At a promotion failure dump information on block layout in heap 886 // (cms old generation). 887 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() { 888 if (CMSDumpAtPromotionFailure) { 889 cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty); 890 } 891 } 892 893 CompactibleSpace* 894 ConcurrentMarkSweepGeneration::first_compaction_space() const { 895 return _cmsSpace; 896 } 897 898 void ConcurrentMarkSweepGeneration::reset_after_compaction() { 899 // Clear the promotion information. These pointers can be adjusted 900 // along with all the other pointers into the heap but 901 // compaction is expected to be a rare event with 902 // a heap using cms so don't do it without seeing the need. 903 if (CollectedHeap::use_parallel_gc_threads()) { 904 for (uint i = 0; i < ParallelGCThreads; i++) { 905 _par_gc_thread_states[i]->promo.reset(); 906 } 907 } 908 } 909 910 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) { 911 blk->do_space(_cmsSpace); 912 } 913 914 void ConcurrentMarkSweepGeneration::compute_new_size() { 915 assert_locked_or_safepoint(Heap_lock); 916 917 // If incremental collection failed, we just want to expand 918 // to the limit. 919 if (incremental_collection_failed()) { 920 clear_incremental_collection_failed(); 921 grow_to_reserved(); 922 return; 923 } 924 925 // The heap has been compacted but not reset yet. 926 // Any metric such as free() or used() will be incorrect. 927 928 CardGeneration::compute_new_size(); 929 930 // Reset again after a possible resizing 931 if (did_compact()) { 932 cmsSpace()->reset_after_compaction(); 933 } 934 } 935 936 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() { 937 assert_locked_or_safepoint(Heap_lock); 938 939 // If incremental collection failed, we just want to expand 940 // to the limit. 941 if (incremental_collection_failed()) { 942 clear_incremental_collection_failed(); 943 grow_to_reserved(); 944 return; 945 } 946 947 double free_percentage = ((double) free()) / capacity(); 948 double desired_free_percentage = (double) MinHeapFreeRatio / 100; 949 double maximum_free_percentage = (double) MaxHeapFreeRatio / 100; 950 951 // compute expansion delta needed for reaching desired free percentage 952 if (free_percentage < desired_free_percentage) { 953 size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); 954 assert(desired_capacity >= capacity(), "invalid expansion size"); 955 size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes); 956 if (PrintGCDetails && Verbose) { 957 size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); 958 gclog_or_tty->print_cr("\nFrom compute_new_size: "); 959 gclog_or_tty->print_cr(" Free fraction %f", free_percentage); 960 gclog_or_tty->print_cr(" Desired free fraction %f", 961 desired_free_percentage); 962 gclog_or_tty->print_cr(" Maximum free fraction %f", 963 maximum_free_percentage); 964 gclog_or_tty->print_cr(" Capacity "SIZE_FORMAT, capacity()/1000); 965 gclog_or_tty->print_cr(" Desired capacity "SIZE_FORMAT, 966 desired_capacity/1000); 967 int prev_level = level() - 1; 968 if (prev_level >= 0) { 969 size_t prev_size = 0; 970 GenCollectedHeap* gch = GenCollectedHeap::heap(); 971 Generation* prev_gen = gch->_gens[prev_level]; 972 prev_size = prev_gen->capacity(); 973 gclog_or_tty->print_cr(" Younger gen size "SIZE_FORMAT, 974 prev_size/1000); 975 } 976 gclog_or_tty->print_cr(" unsafe_max_alloc_nogc "SIZE_FORMAT, 977 unsafe_max_alloc_nogc()/1000); 978 gclog_or_tty->print_cr(" contiguous available "SIZE_FORMAT, 979 contiguous_available()/1000); 980 gclog_or_tty->print_cr(" Expand by "SIZE_FORMAT" (bytes)", 981 expand_bytes); 982 } 983 // safe if expansion fails 984 expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio); 985 if (PrintGCDetails && Verbose) { 986 gclog_or_tty->print_cr(" Expanded free fraction %f", 987 ((double) free()) / capacity()); 988 } 989 } else { 990 size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); 991 assert(desired_capacity <= capacity(), "invalid expansion size"); 992 size_t shrink_bytes = capacity() - desired_capacity; 993 // Don't shrink unless the delta is greater than the minimum shrink we want 994 if (shrink_bytes >= MinHeapDeltaBytes) { 995 shrink_free_list_by(shrink_bytes); 996 } 997 } 998 } 999 1000 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const { 1001 return cmsSpace()->freelistLock(); 1002 } 1003 1004 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, 1005 bool tlab) { 1006 CMSSynchronousYieldRequest yr; 1007 MutexLockerEx x(freelistLock(), 1008 Mutex::_no_safepoint_check_flag); 1009 return have_lock_and_allocate(size, tlab); 1010 } 1011 1012 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size, 1013 bool tlab /* ignored */) { 1014 assert_lock_strong(freelistLock()); 1015 size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size); 1016 HeapWord* res = cmsSpace()->allocate(adjustedSize); 1017 // Allocate the object live (grey) if the background collector has 1018 // started marking. This is necessary because the marker may 1019 // have passed this address and consequently this object will 1020 // not otherwise be greyed and would be incorrectly swept up. 1021 // Note that if this object contains references, the writing 1022 // of those references will dirty the card containing this object 1023 // allowing the object to be blackened (and its references scanned) 1024 // either during a preclean phase or at the final checkpoint. 1025 if (res != NULL) { 1026 // We may block here with an uninitialized object with 1027 // its mark-bit or P-bits not yet set. Such objects need 1028 // to be safely navigable by block_start(). 1029 assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here."); 1030 assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size"); 1031 collector()->direct_allocated(res, adjustedSize); 1032 _direct_allocated_words += adjustedSize; 1033 // allocation counters 1034 NOT_PRODUCT( 1035 _numObjectsAllocated++; 1036 _numWordsAllocated += (int)adjustedSize; 1037 ) 1038 } 1039 return res; 1040 } 1041 1042 // In the case of direct allocation by mutators in a generation that 1043 // is being concurrently collected, the object must be allocated 1044 // live (grey) if the background collector has started marking. 1045 // This is necessary because the marker may 1046 // have passed this address and consequently this object will 1047 // not otherwise be greyed and would be incorrectly swept up. 1048 // Note that if this object contains references, the writing 1049 // of those references will dirty the card containing this object 1050 // allowing the object to be blackened (and its references scanned) 1051 // either during a preclean phase or at the final checkpoint. 1052 void CMSCollector::direct_allocated(HeapWord* start, size_t size) { 1053 assert(_markBitMap.covers(start, size), "Out of bounds"); 1054 if (_collectorState >= Marking) { 1055 MutexLockerEx y(_markBitMap.lock(), 1056 Mutex::_no_safepoint_check_flag); 1057 // [see comments preceding SweepClosure::do_blk() below for details] 1058 // 1059 // Can the P-bits be deleted now? JJJ 1060 // 1061 // 1. need to mark the object as live so it isn't collected 1062 // 2. need to mark the 2nd bit to indicate the object may be uninitialized 1063 // 3. need to mark the end of the object so marking, precleaning or sweeping 1064 // can skip over uninitialized or unparsable objects. An allocated 1065 // object is considered uninitialized for our purposes as long as 1066 // its klass word is NULL. All old gen objects are parsable 1067 // as soon as they are initialized.) 1068 _markBitMap.mark(start); // object is live 1069 _markBitMap.mark(start + 1); // object is potentially uninitialized? 1070 _markBitMap.mark(start + size - 1); 1071 // mark end of object 1072 } 1073 // check that oop looks uninitialized 1074 assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL"); 1075 } 1076 1077 void CMSCollector::promoted(bool par, HeapWord* start, 1078 bool is_obj_array, size_t obj_size) { 1079 assert(_markBitMap.covers(start), "Out of bounds"); 1080 // See comment in direct_allocated() about when objects should 1081 // be allocated live. 1082 if (_collectorState >= Marking) { 1083 // we already hold the marking bit map lock, taken in 1084 // the prologue 1085 if (par) { 1086 _markBitMap.par_mark(start); 1087 } else { 1088 _markBitMap.mark(start); 1089 } 1090 // We don't need to mark the object as uninitialized (as 1091 // in direct_allocated above) because this is being done with the 1092 // world stopped and the object will be initialized by the 1093 // time the marking, precleaning or sweeping get to look at it. 1094 // But see the code for copying objects into the CMS generation, 1095 // where we need to ensure that concurrent readers of the 1096 // block offset table are able to safely navigate a block that 1097 // is in flux from being free to being allocated (and in 1098 // transition while being copied into) and subsequently 1099 // becoming a bona-fide object when the copy/promotion is complete. 1100 assert(SafepointSynchronize::is_at_safepoint(), 1101 "expect promotion only at safepoints"); 1102 1103 if (_collectorState < Sweeping) { 1104 // Mark the appropriate cards in the modUnionTable, so that 1105 // this object gets scanned before the sweep. If this is 1106 // not done, CMS generation references in the object might 1107 // not get marked. 1108 // For the case of arrays, which are otherwise precisely 1109 // marked, we need to dirty the entire array, not just its head. 1110 if (is_obj_array) { 1111 // The [par_]mark_range() method expects mr.end() below to 1112 // be aligned to the granularity of a bit's representation 1113 // in the heap. In the case of the MUT below, that's a 1114 // card size. 1115 MemRegion mr(start, 1116 (HeapWord*)round_to((intptr_t)(start + obj_size), 1117 CardTableModRefBS::card_size /* bytes */)); 1118 if (par) { 1119 _modUnionTable.par_mark_range(mr); 1120 } else { 1121 _modUnionTable.mark_range(mr); 1122 } 1123 } else { // not an obj array; we can just mark the head 1124 if (par) { 1125 _modUnionTable.par_mark(start); 1126 } else { 1127 _modUnionTable.mark(start); 1128 } 1129 } 1130 } 1131 } 1132 } 1133 1134 static inline size_t percent_of_space(Space* space, HeapWord* addr) 1135 { 1136 size_t delta = pointer_delta(addr, space->bottom()); 1137 return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize)); 1138 } 1139 1140 void CMSCollector::icms_update_allocation_limits() 1141 { 1142 Generation* gen0 = GenCollectedHeap::heap()->get_gen(0); 1143 EdenSpace* eden = gen0->as_DefNewGeneration()->eden(); 1144 1145 const unsigned int duty_cycle = stats().icms_update_duty_cycle(); 1146 if (CMSTraceIncrementalPacing) { 1147 stats().print(); 1148 } 1149 1150 assert(duty_cycle <= 100, "invalid duty cycle"); 1151 if (duty_cycle != 0) { 1152 // The duty_cycle is a percentage between 0 and 100; convert to words and 1153 // then compute the offset from the endpoints of the space. 1154 size_t free_words = eden->free() / HeapWordSize; 1155 double free_words_dbl = (double)free_words; 1156 size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0); 1157 size_t offset_words = (free_words - duty_cycle_words) / 2; 1158 1159 _icms_start_limit = eden->top() + offset_words; 1160 _icms_stop_limit = eden->end() - offset_words; 1161 1162 // The limits may be adjusted (shifted to the right) by 1163 // CMSIncrementalOffset, to allow the application more mutator time after a 1164 // young gen gc (when all mutators were stopped) and before CMS starts and 1165 // takes away one or more cpus. 1166 if (CMSIncrementalOffset != 0) { 1167 double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0; 1168 size_t adjustment = (size_t)adjustment_dbl; 1169 HeapWord* tmp_stop = _icms_stop_limit + adjustment; 1170 if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) { 1171 _icms_start_limit += adjustment; 1172 _icms_stop_limit = tmp_stop; 1173 } 1174 } 1175 } 1176 if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) { 1177 _icms_start_limit = _icms_stop_limit = eden->end(); 1178 } 1179 1180 // Install the new start limit. 1181 eden->set_soft_end(_icms_start_limit); 1182 1183 if (CMSTraceIncrementalMode) { 1184 gclog_or_tty->print(" icms alloc limits: " 1185 PTR_FORMAT "," PTR_FORMAT 1186 " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ", 1187 p2i(_icms_start_limit), p2i(_icms_stop_limit), 1188 percent_of_space(eden, _icms_start_limit), 1189 percent_of_space(eden, _icms_stop_limit)); 1190 if (Verbose) { 1191 gclog_or_tty->print("eden: "); 1192 eden->print_on(gclog_or_tty); 1193 } 1194 } 1195 } 1196 1197 // Any changes here should try to maintain the invariant 1198 // that if this method is called with _icms_start_limit 1199 // and _icms_stop_limit both NULL, then it should return NULL 1200 // and not notify the icms thread. 1201 HeapWord* 1202 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top, 1203 size_t word_size) 1204 { 1205 // A start_limit equal to end() means the duty cycle is 0, so treat that as a 1206 // nop. 1207 if (CMSIncrementalMode && _icms_start_limit != space->end()) { 1208 if (top <= _icms_start_limit) { 1209 if (CMSTraceIncrementalMode) { 1210 space->print_on(gclog_or_tty); 1211 gclog_or_tty->stamp(); 1212 gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT 1213 ", new limit=" PTR_FORMAT 1214 " (" SIZE_FORMAT "%%)", 1215 p2i(top), p2i(_icms_stop_limit), 1216 percent_of_space(space, _icms_stop_limit)); 1217 } 1218 ConcurrentMarkSweepThread::start_icms(); 1219 assert(top < _icms_stop_limit, "Tautology"); 1220 if (word_size < pointer_delta(_icms_stop_limit, top)) { 1221 return _icms_stop_limit; 1222 } 1223 1224 // The allocation will cross both the _start and _stop limits, so do the 1225 // stop notification also and return end(). 1226 if (CMSTraceIncrementalMode) { 1227 space->print_on(gclog_or_tty); 1228 gclog_or_tty->stamp(); 1229 gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT 1230 ", new limit=" PTR_FORMAT 1231 " (" SIZE_FORMAT "%%)", 1232 p2i(top), p2i(space->end()), 1233 percent_of_space(space, space->end())); 1234 } 1235 ConcurrentMarkSweepThread::stop_icms(); 1236 return space->end(); 1237 } 1238 1239 if (top <= _icms_stop_limit) { 1240 if (CMSTraceIncrementalMode) { 1241 space->print_on(gclog_or_tty); 1242 gclog_or_tty->stamp(); 1243 gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT 1244 ", new limit=" PTR_FORMAT 1245 " (" SIZE_FORMAT "%%)", 1246 top, space->end(), 1247 percent_of_space(space, space->end())); 1248 } 1249 ConcurrentMarkSweepThread::stop_icms(); 1250 return space->end(); 1251 } 1252 1253 if (CMSTraceIncrementalMode) { 1254 space->print_on(gclog_or_tty); 1255 gclog_or_tty->stamp(); 1256 gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT 1257 ", new limit=" PTR_FORMAT, 1258 top, NULL); 1259 } 1260 } 1261 1262 return NULL; 1263 } 1264 1265 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) { 1266 assert(obj_size == (size_t)obj->size(), "bad obj_size passed in"); 1267 // allocate, copy and if necessary update promoinfo -- 1268 // delegate to underlying space. 1269 assert_lock_strong(freelistLock()); 1270 1271 #ifndef PRODUCT 1272 if (Universe::heap()->promotion_should_fail()) { 1273 return NULL; 1274 } 1275 #endif // #ifndef PRODUCT 1276 1277 oop res = _cmsSpace->promote(obj, obj_size); 1278 if (res == NULL) { 1279 // expand and retry 1280 size_t s = _cmsSpace->expansionSpaceRequired(obj_size); // HeapWords 1281 expand(s*HeapWordSize, MinHeapDeltaBytes, 1282 CMSExpansionCause::_satisfy_promotion); 1283 // Since there's currently no next generation, we don't try to promote 1284 // into a more senior generation. 1285 assert(next_gen() == NULL, "assumption, based upon which no attempt " 1286 "is made to pass on a possibly failing " 1287 "promotion to next generation"); 1288 res = _cmsSpace->promote(obj, obj_size); 1289 } 1290 if (res != NULL) { 1291 // See comment in allocate() about when objects should 1292 // be allocated live. 1293 assert(obj->is_oop(), "Will dereference klass pointer below"); 1294 collector()->promoted(false, // Not parallel 1295 (HeapWord*)res, obj->is_objArray(), obj_size); 1296 // promotion counters 1297 NOT_PRODUCT( 1298 _numObjectsPromoted++; 1299 _numWordsPromoted += 1300 (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size())); 1301 ) 1302 } 1303 return res; 1304 } 1305 1306 1307 HeapWord* 1308 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space, 1309 HeapWord* top, 1310 size_t word_sz) 1311 { 1312 return collector()->allocation_limit_reached(space, top, word_sz); 1313 } 1314 1315 // IMPORTANT: Notes on object size recognition in CMS. 1316 // --------------------------------------------------- 1317 // A block of storage in the CMS generation is always in 1318 // one of three states. A free block (FREE), an allocated 1319 // object (OBJECT) whose size() method reports the correct size, 1320 // and an intermediate state (TRANSIENT) in which its size cannot 1321 // be accurately determined. 1322 // STATE IDENTIFICATION: (32 bit and 64 bit w/o COOPS) 1323 // ----------------------------------------------------- 1324 // FREE: klass_word & 1 == 1; mark_word holds block size 1325 // 1326 // OBJECT: klass_word installed; klass_word != 0 && klass_word & 1 == 0; 1327 // obj->size() computes correct size 1328 // 1329 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT 1330 // 1331 // STATE IDENTIFICATION: (64 bit+COOPS) 1332 // ------------------------------------ 1333 // FREE: mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size 1334 // 1335 // OBJECT: klass_word installed; klass_word != 0; 1336 // obj->size() computes correct size 1337 // 1338 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT 1339 // 1340 // 1341 // STATE TRANSITION DIAGRAM 1342 // 1343 // mut / parnew mut / parnew 1344 // FREE --------------------> TRANSIENT ---------------------> OBJECT --| 1345 // ^ | 1346 // |------------------------ DEAD <------------------------------------| 1347 // sweep mut 1348 // 1349 // While a block is in TRANSIENT state its size cannot be determined 1350 // so readers will either need to come back later or stall until 1351 // the size can be determined. Note that for the case of direct 1352 // allocation, P-bits, when available, may be used to determine the 1353 // size of an object that may not yet have been initialized. 1354 1355 // Things to support parallel young-gen collection. 1356 oop 1357 ConcurrentMarkSweepGeneration::par_promote(int thread_num, 1358 oop old, markOop m, 1359 size_t word_sz) { 1360 #ifndef PRODUCT 1361 if (Universe::heap()->promotion_should_fail()) { 1362 return NULL; 1363 } 1364 #endif // #ifndef PRODUCT 1365 1366 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1367 PromotionInfo* promoInfo = &ps->promo; 1368 // if we are tracking promotions, then first ensure space for 1369 // promotion (including spooling space for saving header if necessary). 1370 // then allocate and copy, then track promoted info if needed. 1371 // When tracking (see PromotionInfo::track()), the mark word may 1372 // be displaced and in this case restoration of the mark word 1373 // occurs in the (oop_since_save_marks_)iterate phase. 1374 if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) { 1375 // Out of space for allocating spooling buffers; 1376 // try expanding and allocating spooling buffers. 1377 if (!expand_and_ensure_spooling_space(promoInfo)) { 1378 return NULL; 1379 } 1380 } 1381 assert(promoInfo->has_spooling_space(), "Control point invariant"); 1382 const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz); 1383 HeapWord* obj_ptr = ps->lab.alloc(alloc_sz); 1384 if (obj_ptr == NULL) { 1385 obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz); 1386 if (obj_ptr == NULL) { 1387 return NULL; 1388 } 1389 } 1390 oop obj = oop(obj_ptr); 1391 OrderAccess::storestore(); 1392 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1393 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1394 // IMPORTANT: See note on object initialization for CMS above. 1395 // Otherwise, copy the object. Here we must be careful to insert the 1396 // klass pointer last, since this marks the block as an allocated object. 1397 // Except with compressed oops it's the mark word. 1398 HeapWord* old_ptr = (HeapWord*)old; 1399 // Restore the mark word copied above. 1400 obj->set_mark(m); 1401 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1402 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1403 OrderAccess::storestore(); 1404 1405 if (UseCompressedClassPointers) { 1406 // Copy gap missed by (aligned) header size calculation below 1407 obj->set_klass_gap(old->klass_gap()); 1408 } 1409 if (word_sz > (size_t)oopDesc::header_size()) { 1410 Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(), 1411 obj_ptr + oopDesc::header_size(), 1412 word_sz - oopDesc::header_size()); 1413 } 1414 1415 // Now we can track the promoted object, if necessary. We take care 1416 // to delay the transition from uninitialized to full object 1417 // (i.e., insertion of klass pointer) until after, so that it 1418 // atomically becomes a promoted object. 1419 if (promoInfo->tracking()) { 1420 promoInfo->track((PromotedObject*)obj, old->klass()); 1421 } 1422 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1423 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1424 assert(old->is_oop(), "Will use and dereference old klass ptr below"); 1425 1426 // Finally, install the klass pointer (this should be volatile). 1427 OrderAccess::storestore(); 1428 obj->set_klass(old->klass()); 1429 // We should now be able to calculate the right size for this object 1430 assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object"); 1431 1432 collector()->promoted(true, // parallel 1433 obj_ptr, old->is_objArray(), word_sz); 1434 1435 NOT_PRODUCT( 1436 Atomic::inc_ptr(&_numObjectsPromoted); 1437 Atomic::add_ptr(alloc_sz, &_numWordsPromoted); 1438 ) 1439 1440 return obj; 1441 } 1442 1443 void 1444 ConcurrentMarkSweepGeneration:: 1445 par_promote_alloc_undo(int thread_num, 1446 HeapWord* obj, size_t word_sz) { 1447 // CMS does not support promotion undo. 1448 ShouldNotReachHere(); 1449 } 1450 1451 void 1452 ConcurrentMarkSweepGeneration:: 1453 par_promote_alloc_done(int thread_num) { 1454 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1455 ps->lab.retire(thread_num); 1456 } 1457 1458 void 1459 ConcurrentMarkSweepGeneration:: 1460 par_oop_since_save_marks_iterate_done(int thread_num) { 1461 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1462 ParScanWithoutBarrierClosure* dummy_cl = NULL; 1463 ps->promo.promoted_oops_iterate_nv(dummy_cl); 1464 } 1465 1466 bool ConcurrentMarkSweepGeneration::should_collect(bool full, 1467 size_t size, 1468 bool tlab) 1469 { 1470 // We allow a STW collection only if a full 1471 // collection was requested. 1472 return full || should_allocate(size, tlab); // FIX ME !!! 1473 // This and promotion failure handling are connected at the 1474 // hip and should be fixed by untying them. 1475 } 1476 1477 bool CMSCollector::shouldConcurrentCollect() { 1478 if (_full_gc_requested) { 1479 if (Verbose && PrintGCDetails) { 1480 gclog_or_tty->print_cr("CMSCollector: collect because of explicit " 1481 " gc request (or gc_locker)"); 1482 } 1483 return true; 1484 } 1485 1486 // For debugging purposes, change the type of collection. 1487 // If the rotation is not on the concurrent collection 1488 // type, don't start a concurrent collection. 1489 NOT_PRODUCT( 1490 if (RotateCMSCollectionTypes && 1491 (_cmsGen->debug_collection_type() != 1492 ConcurrentMarkSweepGeneration::Concurrent_collection_type)) { 1493 assert(_cmsGen->debug_collection_type() != 1494 ConcurrentMarkSweepGeneration::Unknown_collection_type, 1495 "Bad cms collection type"); 1496 return false; 1497 } 1498 ) 1499 1500 FreelistLocker x(this); 1501 // ------------------------------------------------------------------ 1502 // Print out lots of information which affects the initiation of 1503 // a collection. 1504 if (PrintCMSInitiationStatistics && stats().valid()) { 1505 gclog_or_tty->print("CMSCollector shouldConcurrentCollect: "); 1506 gclog_or_tty->stamp(); 1507 gclog_or_tty->cr(); 1508 stats().print_on(gclog_or_tty); 1509 gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f", 1510 stats().time_until_cms_gen_full()); 1511 gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free()); 1512 gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT, 1513 _cmsGen->contiguous_available()); 1514 gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate()); 1515 gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate()); 1516 gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy()); 1517 gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy()); 1518 gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin()); 1519 gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end()); 1520 gclog_or_tty->print_cr("metadata initialized %d", 1521 MetaspaceGC::should_concurrent_collect()); 1522 } 1523 // ------------------------------------------------------------------ 1524 1525 // If the estimated time to complete a cms collection (cms_duration()) 1526 // is less than the estimated time remaining until the cms generation 1527 // is full, start a collection. 1528 if (!UseCMSInitiatingOccupancyOnly) { 1529 if (stats().valid()) { 1530 if (stats().time_until_cms_start() == 0.0) { 1531 return true; 1532 } 1533 } else { 1534 // We want to conservatively collect somewhat early in order 1535 // to try and "bootstrap" our CMS/promotion statistics; 1536 // this branch will not fire after the first successful CMS 1537 // collection because the stats should then be valid. 1538 if (_cmsGen->occupancy() >= _bootstrap_occupancy) { 1539 if (Verbose && PrintGCDetails) { 1540 gclog_or_tty->print_cr( 1541 " CMSCollector: collect for bootstrapping statistics:" 1542 " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(), 1543 _bootstrap_occupancy); 1544 } 1545 return true; 1546 } 1547 } 1548 } 1549 1550 // Otherwise, we start a collection cycle if 1551 // old gen want a collection cycle started. Each may use 1552 // an appropriate criterion for making this decision. 1553 // XXX We need to make sure that the gen expansion 1554 // criterion dovetails well with this. XXX NEED TO FIX THIS 1555 if (_cmsGen->should_concurrent_collect()) { 1556 if (Verbose && PrintGCDetails) { 1557 gclog_or_tty->print_cr("CMS old gen initiated"); 1558 } 1559 return true; 1560 } 1561 1562 // We start a collection if we believe an incremental collection may fail; 1563 // this is not likely to be productive in practice because it's probably too 1564 // late anyway. 1565 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1566 assert(gch->collector_policy()->is_generation_policy(), 1567 "You may want to check the correctness of the following"); 1568 if (gch->incremental_collection_will_fail(true /* consult_young */)) { 1569 if (Verbose && PrintGCDetails) { 1570 gclog_or_tty->print("CMSCollector: collect because incremental collection will fail "); 1571 } 1572 return true; 1573 } 1574 1575 if (MetaspaceGC::should_concurrent_collect()) { 1576 if (Verbose && PrintGCDetails) { 1577 gclog_or_tty->print("CMSCollector: collect for metadata allocation "); 1578 } 1579 return true; 1580 } 1581 1582 // CMSTriggerInterval starts a CMS cycle if enough time has passed. 1583 if (CMSTriggerInterval >= 0) { 1584 if (CMSTriggerInterval == 0) { 1585 // Trigger always 1586 return true; 1587 } 1588 1589 // Check the CMS time since begin (we do not check the stats validity 1590 // as we want to be able to trigger the first CMS cycle as well) 1591 if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) { 1592 if (Verbose && PrintGCDetails) { 1593 if (stats().valid()) { 1594 gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)", 1595 stats().cms_time_since_begin()); 1596 } else { 1597 gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)"); 1598 } 1599 } 1600 return true; 1601 } 1602 } 1603 1604 return false; 1605 } 1606 1607 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); } 1608 1609 // Clear _expansion_cause fields of constituent generations 1610 void CMSCollector::clear_expansion_cause() { 1611 _cmsGen->clear_expansion_cause(); 1612 } 1613 1614 // We should be conservative in starting a collection cycle. To 1615 // start too eagerly runs the risk of collecting too often in the 1616 // extreme. To collect too rarely falls back on full collections, 1617 // which works, even if not optimum in terms of concurrent work. 1618 // As a work around for too eagerly collecting, use the flag 1619 // UseCMSInitiatingOccupancyOnly. This also has the advantage of 1620 // giving the user an easily understandable way of controlling the 1621 // collections. 1622 // We want to start a new collection cycle if any of the following 1623 // conditions hold: 1624 // . our current occupancy exceeds the configured initiating occupancy 1625 // for this generation, or 1626 // . we recently needed to expand this space and have not, since that 1627 // expansion, done a collection of this generation, or 1628 // . the underlying space believes that it may be a good idea to initiate 1629 // a concurrent collection (this may be based on criteria such as the 1630 // following: the space uses linear allocation and linear allocation is 1631 // going to fail, or there is believed to be excessive fragmentation in 1632 // the generation, etc... or ... 1633 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for 1634 // the case of the old generation; see CR 6543076): 1635 // we may be approaching a point at which allocation requests may fail because 1636 // we will be out of sufficient free space given allocation rate estimates.] 1637 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const { 1638 1639 assert_lock_strong(freelistLock()); 1640 if (occupancy() > initiating_occupancy()) { 1641 if (PrintGCDetails && Verbose) { 1642 gclog_or_tty->print(" %s: collect because of occupancy %f / %f ", 1643 short_name(), occupancy(), initiating_occupancy()); 1644 } 1645 return true; 1646 } 1647 if (UseCMSInitiatingOccupancyOnly) { 1648 return false; 1649 } 1650 if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) { 1651 if (PrintGCDetails && Verbose) { 1652 gclog_or_tty->print(" %s: collect because expanded for allocation ", 1653 short_name()); 1654 } 1655 return true; 1656 } 1657 if (_cmsSpace->should_concurrent_collect()) { 1658 if (PrintGCDetails && Verbose) { 1659 gclog_or_tty->print(" %s: collect because cmsSpace says so ", 1660 short_name()); 1661 } 1662 return true; 1663 } 1664 return false; 1665 } 1666 1667 void ConcurrentMarkSweepGeneration::collect(bool full, 1668 bool clear_all_soft_refs, 1669 size_t size, 1670 bool tlab) 1671 { 1672 collector()->collect(full, clear_all_soft_refs, size, tlab); 1673 } 1674 1675 void CMSCollector::collect(bool full, 1676 bool clear_all_soft_refs, 1677 size_t size, 1678 bool tlab) 1679 { 1680 if (!UseCMSCollectionPassing && _collectorState > Idling) { 1681 // For debugging purposes skip the collection if the state 1682 // is not currently idle 1683 if (TraceCMSState) { 1684 gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d", 1685 Thread::current(), full, _collectorState); 1686 } 1687 return; 1688 } 1689 1690 // The following "if" branch is present for defensive reasons. 1691 // In the current uses of this interface, it can be replaced with: 1692 // assert(!GC_locker.is_active(), "Can't be called otherwise"); 1693 // But I am not placing that assert here to allow future 1694 // generality in invoking this interface. 1695 if (GC_locker::is_active()) { 1696 // A consistency test for GC_locker 1697 assert(GC_locker::needs_gc(), "Should have been set already"); 1698 // Skip this foreground collection, instead 1699 // expanding the heap if necessary. 1700 // Need the free list locks for the call to free() in compute_new_size() 1701 compute_new_size(); 1702 return; 1703 } 1704 acquire_control_and_collect(full, clear_all_soft_refs); 1705 _full_gcs_since_conc_gc++; 1706 } 1707 1708 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) { 1709 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1710 unsigned int gc_count = gch->total_full_collections(); 1711 if (gc_count == full_gc_count) { 1712 MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag); 1713 _full_gc_requested = true; 1714 _full_gc_cause = cause; 1715 CGC_lock->notify(); // nudge CMS thread 1716 } else { 1717 assert(gc_count > full_gc_count, "Error: causal loop"); 1718 } 1719 } 1720 1721 bool CMSCollector::is_external_interruption() { 1722 GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause(); 1723 return GCCause::is_user_requested_gc(cause) || 1724 GCCause::is_serviceability_requested_gc(cause); 1725 } 1726 1727 void CMSCollector::report_concurrent_mode_interruption() { 1728 if (is_external_interruption()) { 1729 if (PrintGCDetails) { 1730 gclog_or_tty->print(" (concurrent mode interrupted)"); 1731 } 1732 } else { 1733 if (PrintGCDetails) { 1734 gclog_or_tty->print(" (concurrent mode failure)"); 1735 } 1736 _gc_tracer_cm->report_concurrent_mode_failure(); 1737 } 1738 } 1739 1740 1741 // The foreground and background collectors need to coordinate in order 1742 // to make sure that they do not mutually interfere with CMS collections. 1743 // When a background collection is active, 1744 // the foreground collector may need to take over (preempt) and 1745 // synchronously complete an ongoing collection. Depending on the 1746 // frequency of the background collections and the heap usage 1747 // of the application, this preemption can be seldom or frequent. 1748 // There are only certain 1749 // points in the background collection that the "collection-baton" 1750 // can be passed to the foreground collector. 1751 // 1752 // The foreground collector will wait for the baton before 1753 // starting any part of the collection. The foreground collector 1754 // will only wait at one location. 1755 // 1756 // The background collector will yield the baton before starting a new 1757 // phase of the collection (e.g., before initial marking, marking from roots, 1758 // precleaning, final re-mark, sweep etc.) This is normally done at the head 1759 // of the loop which switches the phases. The background collector does some 1760 // of the phases (initial mark, final re-mark) with the world stopped. 1761 // Because of locking involved in stopping the world, 1762 // the foreground collector should not block waiting for the background 1763 // collector when it is doing a stop-the-world phase. The background 1764 // collector will yield the baton at an additional point just before 1765 // it enters a stop-the-world phase. Once the world is stopped, the 1766 // background collector checks the phase of the collection. If the 1767 // phase has not changed, it proceeds with the collection. If the 1768 // phase has changed, it skips that phase of the collection. See 1769 // the comments on the use of the Heap_lock in collect_in_background(). 1770 // 1771 // Variable used in baton passing. 1772 // _foregroundGCIsActive - Set to true by the foreground collector when 1773 // it wants the baton. The foreground clears it when it has finished 1774 // the collection. 1775 // _foregroundGCShouldWait - Set to true by the background collector 1776 // when it is running. The foreground collector waits while 1777 // _foregroundGCShouldWait is true. 1778 // CGC_lock - monitor used to protect access to the above variables 1779 // and to notify the foreground and background collectors. 1780 // _collectorState - current state of the CMS collection. 1781 // 1782 // The foreground collector 1783 // acquires the CGC_lock 1784 // sets _foregroundGCIsActive 1785 // waits on the CGC_lock for _foregroundGCShouldWait to be false 1786 // various locks acquired in preparation for the collection 1787 // are released so as not to block the background collector 1788 // that is in the midst of a collection 1789 // proceeds with the collection 1790 // clears _foregroundGCIsActive 1791 // returns 1792 // 1793 // The background collector in a loop iterating on the phases of the 1794 // collection 1795 // acquires the CGC_lock 1796 // sets _foregroundGCShouldWait 1797 // if _foregroundGCIsActive is set 1798 // clears _foregroundGCShouldWait, notifies _CGC_lock 1799 // waits on _CGC_lock for _foregroundGCIsActive to become false 1800 // and exits the loop. 1801 // otherwise 1802 // proceed with that phase of the collection 1803 // if the phase is a stop-the-world phase, 1804 // yield the baton once more just before enqueueing 1805 // the stop-world CMS operation (executed by the VM thread). 1806 // returns after all phases of the collection are done 1807 // 1808 1809 void CMSCollector::acquire_control_and_collect(bool full, 1810 bool clear_all_soft_refs) { 1811 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); 1812 assert(!Thread::current()->is_ConcurrentGC_thread(), 1813 "shouldn't try to acquire control from self!"); 1814 1815 // Start the protocol for acquiring control of the 1816 // collection from the background collector (aka CMS thread). 1817 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 1818 "VM thread should have CMS token"); 1819 // Remember the possibly interrupted state of an ongoing 1820 // concurrent collection 1821 CollectorState first_state = _collectorState; 1822 1823 // Signal to a possibly ongoing concurrent collection that 1824 // we want to do a foreground collection. 1825 _foregroundGCIsActive = true; 1826 1827 // Disable incremental mode during a foreground collection. 1828 ICMSDisabler icms_disabler; 1829 1830 // release locks and wait for a notify from the background collector 1831 // releasing the locks in only necessary for phases which 1832 // do yields to improve the granularity of the collection. 1833 assert_lock_strong(bitMapLock()); 1834 // We need to lock the Free list lock for the space that we are 1835 // currently collecting. 1836 assert(haveFreelistLocks(), "Must be holding free list locks"); 1837 bitMapLock()->unlock(); 1838 releaseFreelistLocks(); 1839 { 1840 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 1841 if (_foregroundGCShouldWait) { 1842 // We are going to be waiting for action for the CMS thread; 1843 // it had better not be gone (for instance at shutdown)! 1844 assert(ConcurrentMarkSweepThread::cmst() != NULL, 1845 "CMS thread must be running"); 1846 // Wait here until the background collector gives us the go-ahead 1847 ConcurrentMarkSweepThread::clear_CMS_flag( 1848 ConcurrentMarkSweepThread::CMS_vm_has_token); // release token 1849 // Get a possibly blocked CMS thread going: 1850 // Note that we set _foregroundGCIsActive true above, 1851 // without protection of the CGC_lock. 1852 CGC_lock->notify(); 1853 assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(), 1854 "Possible deadlock"); 1855 while (_foregroundGCShouldWait) { 1856 // wait for notification 1857 CGC_lock->wait(Mutex::_no_safepoint_check_flag); 1858 // Possibility of delay/starvation here, since CMS token does 1859 // not know to give priority to VM thread? Actually, i think 1860 // there wouldn't be any delay/starvation, but the proof of 1861 // that "fact" (?) appears non-trivial. XXX 20011219YSR 1862 } 1863 ConcurrentMarkSweepThread::set_CMS_flag( 1864 ConcurrentMarkSweepThread::CMS_vm_has_token); 1865 } 1866 } 1867 // The CMS_token is already held. Get back the other locks. 1868 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 1869 "VM thread should have CMS token"); 1870 getFreelistLocks(); 1871 bitMapLock()->lock_without_safepoint_check(); 1872 if (TraceCMSState) { 1873 gclog_or_tty->print_cr("CMS foreground collector has asked for control " 1874 INTPTR_FORMAT " with first state %d", Thread::current(), first_state); 1875 gclog_or_tty->print_cr(" gets control with state %d", _collectorState); 1876 } 1877 1878 // Check if we need to do a compaction, or if not, whether 1879 // we need to start the mark-sweep from scratch. 1880 bool should_compact = false; 1881 bool should_start_over = false; 1882 decide_foreground_collection_type(clear_all_soft_refs, 1883 &should_compact, &should_start_over); 1884 1885 NOT_PRODUCT( 1886 if (RotateCMSCollectionTypes) { 1887 if (_cmsGen->debug_collection_type() == 1888 ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) { 1889 should_compact = true; 1890 } else if (_cmsGen->debug_collection_type() == 1891 ConcurrentMarkSweepGeneration::MS_foreground_collection_type) { 1892 should_compact = false; 1893 } 1894 } 1895 ) 1896 1897 if (first_state > Idling) { 1898 report_concurrent_mode_interruption(); 1899 } 1900 1901 set_did_compact(should_compact); 1902 if (should_compact) { 1903 // If the collection is being acquired from the background 1904 // collector, there may be references on the discovered 1905 // references lists that have NULL referents (being those 1906 // that were concurrently cleared by a mutator) or 1907 // that are no longer active (having been enqueued concurrently 1908 // by the mutator). 1909 // Scrub the list of those references because Mark-Sweep-Compact 1910 // code assumes referents are not NULL and that all discovered 1911 // Reference objects are active. 1912 ref_processor()->clean_up_discovered_references(); 1913 1914 if (first_state > Idling) { 1915 save_heap_summary(); 1916 } 1917 1918 do_compaction_work(clear_all_soft_refs); 1919 1920 // Has the GC time limit been exceeded? 1921 DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration(); 1922 size_t max_eden_size = young_gen->max_capacity() - 1923 young_gen->to()->capacity() - 1924 young_gen->from()->capacity(); 1925 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1926 GCCause::Cause gc_cause = gch->gc_cause(); 1927 size_policy()->check_gc_overhead_limit(_young_gen->used(), 1928 young_gen->eden()->used(), 1929 _cmsGen->max_capacity(), 1930 max_eden_size, 1931 full, 1932 gc_cause, 1933 gch->collector_policy()); 1934 } else { 1935 do_mark_sweep_work(clear_all_soft_refs, first_state, 1936 should_start_over); 1937 } 1938 // Reset the expansion cause, now that we just completed 1939 // a collection cycle. 1940 clear_expansion_cause(); 1941 _foregroundGCIsActive = false; 1942 return; 1943 } 1944 1945 // Resize the tenured generation 1946 // after obtaining the free list locks for the 1947 // two generations. 1948 void CMSCollector::compute_new_size() { 1949 assert_locked_or_safepoint(Heap_lock); 1950 FreelistLocker z(this); 1951 MetaspaceGC::compute_new_size(); 1952 _cmsGen->compute_new_size_free_list(); 1953 } 1954 1955 // A work method used by foreground collection to determine 1956 // what type of collection (compacting or not, continuing or fresh) 1957 // it should do. 1958 // NOTE: the intent is to make UseCMSCompactAtFullCollection 1959 // and CMSCompactWhenClearAllSoftRefs the default in the future 1960 // and do away with the flags after a suitable period. 1961 void CMSCollector::decide_foreground_collection_type( 1962 bool clear_all_soft_refs, bool* should_compact, 1963 bool* should_start_over) { 1964 // Normally, we'll compact only if the UseCMSCompactAtFullCollection 1965 // flag is set, and we have either requested a System.gc() or 1966 // the number of full gc's since the last concurrent cycle 1967 // has exceeded the threshold set by CMSFullGCsBeforeCompaction, 1968 // or if an incremental collection has failed 1969 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1970 assert(gch->collector_policy()->is_generation_policy(), 1971 "You may want to check the correctness of the following"); 1972 // Inform cms gen if this was due to partial collection failing. 1973 // The CMS gen may use this fact to determine its expansion policy. 1974 if (gch->incremental_collection_will_fail(false /* don't consult_young */)) { 1975 assert(!_cmsGen->incremental_collection_failed(), 1976 "Should have been noticed, reacted to and cleared"); 1977 _cmsGen->set_incremental_collection_failed(); 1978 } 1979 *should_compact = 1980 UseCMSCompactAtFullCollection && 1981 ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) || 1982 GCCause::is_user_requested_gc(gch->gc_cause()) || 1983 gch->incremental_collection_will_fail(true /* consult_young */)); 1984 *should_start_over = false; 1985 if (clear_all_soft_refs && !*should_compact) { 1986 // We are about to do a last ditch collection attempt 1987 // so it would normally make sense to do a compaction 1988 // to reclaim as much space as possible. 1989 if (CMSCompactWhenClearAllSoftRefs) { 1990 // Default: The rationale is that in this case either 1991 // we are past the final marking phase, in which case 1992 // we'd have to start over, or so little has been done 1993 // that there's little point in saving that work. Compaction 1994 // appears to be the sensible choice in either case. 1995 *should_compact = true; 1996 } else { 1997 // We have been asked to clear all soft refs, but not to 1998 // compact. Make sure that we aren't past the final checkpoint 1999 // phase, for that is where we process soft refs. If we are already 2000 // past that phase, we'll need to redo the refs discovery phase and 2001 // if necessary clear soft refs that weren't previously 2002 // cleared. We do so by remembering the phase in which 2003 // we came in, and if we are past the refs processing 2004 // phase, we'll choose to just redo the mark-sweep 2005 // collection from scratch. 2006 if (_collectorState > FinalMarking) { 2007 // We are past the refs processing phase; 2008 // start over and do a fresh synchronous CMS cycle 2009 _collectorState = Resetting; // skip to reset to start new cycle 2010 reset(false /* == !asynch */); 2011 *should_start_over = true; 2012 } // else we can continue a possibly ongoing current cycle 2013 } 2014 } 2015 } 2016 2017 // A work method used by the foreground collector to do 2018 // a mark-sweep-compact. 2019 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) { 2020 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2021 2022 STWGCTimer* gc_timer = GenMarkSweep::gc_timer(); 2023 gc_timer->register_gc_start(); 2024 2025 SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer(); 2026 gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start()); 2027 2028 GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL); 2029 if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) { 2030 gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d " 2031 "collections passed to foreground collector", _full_gcs_since_conc_gc); 2032 } 2033 2034 // Sample collection interval time and reset for collection pause. 2035 if (UseAdaptiveSizePolicy) { 2036 size_policy()->msc_collection_begin(); 2037 } 2038 2039 // Temporarily widen the span of the weak reference processing to 2040 // the entire heap. 2041 MemRegion new_span(GenCollectedHeap::heap()->reserved_region()); 2042 ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span); 2043 // Temporarily, clear the "is_alive_non_header" field of the 2044 // reference processor. 2045 ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL); 2046 // Temporarily make reference _processing_ single threaded (non-MT). 2047 ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false); 2048 // Temporarily make refs discovery atomic 2049 ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true); 2050 // Temporarily make reference _discovery_ single threaded (non-MT) 2051 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false); 2052 2053 ref_processor()->set_enqueuing_is_done(false); 2054 ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/); 2055 ref_processor()->setup_policy(clear_all_soft_refs); 2056 // If an asynchronous collection finishes, the _modUnionTable is 2057 // all clear. If we are assuming the collection from an asynchronous 2058 // collection, clear the _modUnionTable. 2059 assert(_collectorState != Idling || _modUnionTable.isAllClear(), 2060 "_modUnionTable should be clear if the baton was not passed"); 2061 _modUnionTable.clear_all(); 2062 assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(), 2063 "mod union for klasses should be clear if the baton was passed"); 2064 _ct->klass_rem_set()->clear_mod_union(); 2065 2066 // We must adjust the allocation statistics being maintained 2067 // in the free list space. We do so by reading and clearing 2068 // the sweep timer and updating the block flux rate estimates below. 2069 assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive"); 2070 if (_inter_sweep_timer.is_active()) { 2071 _inter_sweep_timer.stop(); 2072 // Note that we do not use this sample to update the _inter_sweep_estimate. 2073 _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()), 2074 _inter_sweep_estimate.padded_average(), 2075 _intra_sweep_estimate.padded_average()); 2076 } 2077 2078 GenMarkSweep::invoke_at_safepoint(_cmsGen->level(), 2079 ref_processor(), clear_all_soft_refs); 2080 #ifdef ASSERT 2081 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 2082 size_t free_size = cms_space->free(); 2083 assert(free_size == 2084 pointer_delta(cms_space->end(), cms_space->compaction_top()) 2085 * HeapWordSize, 2086 "All the free space should be compacted into one chunk at top"); 2087 assert(cms_space->dictionary()->total_chunk_size( 2088 debug_only(cms_space->freelistLock())) == 0 || 2089 cms_space->totalSizeInIndexedFreeLists() == 0, 2090 "All the free space should be in a single chunk"); 2091 size_t num = cms_space->totalCount(); 2092 assert((free_size == 0 && num == 0) || 2093 (free_size > 0 && (num == 1 || num == 2)), 2094 "There should be at most 2 free chunks after compaction"); 2095 #endif // ASSERT 2096 _collectorState = Resetting; 2097 assert(_restart_addr == NULL, 2098 "Should have been NULL'd before baton was passed"); 2099 reset(false /* == !asynch */); 2100 _cmsGen->reset_after_compaction(); 2101 _concurrent_cycles_since_last_unload = 0; 2102 2103 // Clear any data recorded in the PLAB chunk arrays. 2104 if (_survivor_plab_array != NULL) { 2105 reset_survivor_plab_arrays(); 2106 } 2107 2108 // Adjust the per-size allocation stats for the next epoch. 2109 _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */); 2110 // Restart the "inter sweep timer" for the next epoch. 2111 _inter_sweep_timer.reset(); 2112 _inter_sweep_timer.start(); 2113 2114 // Sample collection pause time and reset for collection interval. 2115 if (UseAdaptiveSizePolicy) { 2116 size_policy()->msc_collection_end(gch->gc_cause()); 2117 } 2118 2119 gc_timer->register_gc_end(); 2120 2121 gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions()); 2122 2123 // For a mark-sweep-compact, compute_new_size() will be called 2124 // in the heap's do_collection() method. 2125 } 2126 2127 // A work method used by the foreground collector to do 2128 // a mark-sweep, after taking over from a possibly on-going 2129 // concurrent mark-sweep collection. 2130 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs, 2131 CollectorState first_state, bool should_start_over) { 2132 if (PrintGC && Verbose) { 2133 gclog_or_tty->print_cr("Pass concurrent collection to foreground " 2134 "collector with count %d", 2135 _full_gcs_since_conc_gc); 2136 } 2137 switch (_collectorState) { 2138 case Idling: 2139 if (first_state == Idling || should_start_over) { 2140 // The background GC was not active, or should 2141 // restarted from scratch; start the cycle. 2142 _collectorState = InitialMarking; 2143 } 2144 // If first_state was not Idling, then a background GC 2145 // was in progress and has now finished. No need to do it 2146 // again. Leave the state as Idling. 2147 break; 2148 case Precleaning: 2149 // In the foreground case don't do the precleaning since 2150 // it is not done concurrently and there is extra work 2151 // required. 2152 _collectorState = FinalMarking; 2153 } 2154 collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause()); 2155 2156 // For a mark-sweep, compute_new_size() will be called 2157 // in the heap's do_collection() method. 2158 } 2159 2160 2161 void CMSCollector::print_eden_and_survivor_chunk_arrays() { 2162 DefNewGeneration* dng = _young_gen->as_DefNewGeneration(); 2163 EdenSpace* eden_space = dng->eden(); 2164 ContiguousSpace* from_space = dng->from(); 2165 ContiguousSpace* to_space = dng->to(); 2166 // Eden 2167 if (_eden_chunk_array != NULL) { 2168 gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")", 2169 eden_space->bottom(), eden_space->top(), 2170 eden_space->end(), eden_space->capacity()); 2171 gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", " 2172 "_eden_chunk_capacity=" SIZE_FORMAT, 2173 _eden_chunk_index, _eden_chunk_capacity); 2174 for (size_t i = 0; i < _eden_chunk_index; i++) { 2175 gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, 2176 i, _eden_chunk_array[i]); 2177 } 2178 } 2179 // Survivor 2180 if (_survivor_chunk_array != NULL) { 2181 gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")", 2182 from_space->bottom(), from_space->top(), 2183 from_space->end(), from_space->capacity()); 2184 gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", " 2185 "_survivor_chunk_capacity=" SIZE_FORMAT, 2186 _survivor_chunk_index, _survivor_chunk_capacity); 2187 for (size_t i = 0; i < _survivor_chunk_index; i++) { 2188 gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, 2189 i, _survivor_chunk_array[i]); 2190 } 2191 } 2192 } 2193 2194 void CMSCollector::getFreelistLocks() const { 2195 // Get locks for all free lists in all generations that this 2196 // collector is responsible for 2197 _cmsGen->freelistLock()->lock_without_safepoint_check(); 2198 } 2199 2200 void CMSCollector::releaseFreelistLocks() const { 2201 // Release locks for all free lists in all generations that this 2202 // collector is responsible for 2203 _cmsGen->freelistLock()->unlock(); 2204 } 2205 2206 bool CMSCollector::haveFreelistLocks() const { 2207 // Check locks for all free lists in all generations that this 2208 // collector is responsible for 2209 assert_lock_strong(_cmsGen->freelistLock()); 2210 PRODUCT_ONLY(ShouldNotReachHere()); 2211 return true; 2212 } 2213 2214 // A utility class that is used by the CMS collector to 2215 // temporarily "release" the foreground collector from its 2216 // usual obligation to wait for the background collector to 2217 // complete an ongoing phase before proceeding. 2218 class ReleaseForegroundGC: public StackObj { 2219 private: 2220 CMSCollector* _c; 2221 public: 2222 ReleaseForegroundGC(CMSCollector* c) : _c(c) { 2223 assert(_c->_foregroundGCShouldWait, "Else should not need to call"); 2224 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2225 // allow a potentially blocked foreground collector to proceed 2226 _c->_foregroundGCShouldWait = false; 2227 if (_c->_foregroundGCIsActive) { 2228 CGC_lock->notify(); 2229 } 2230 assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 2231 "Possible deadlock"); 2232 } 2233 2234 ~ReleaseForegroundGC() { 2235 assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?"); 2236 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2237 _c->_foregroundGCShouldWait = true; 2238 } 2239 }; 2240 2241 // There are separate collect_in_background and collect_in_foreground because of 2242 // the different locking requirements of the background collector and the 2243 // foreground collector. There was originally an attempt to share 2244 // one "collect" method between the background collector and the foreground 2245 // collector but the if-then-else required made it cleaner to have 2246 // separate methods. 2247 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) { 2248 assert(Thread::current()->is_ConcurrentGC_thread(), 2249 "A CMS asynchronous collection is only allowed on a CMS thread."); 2250 2251 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2252 { 2253 bool safepoint_check = Mutex::_no_safepoint_check_flag; 2254 MutexLockerEx hl(Heap_lock, safepoint_check); 2255 FreelistLocker fll(this); 2256 MutexLockerEx x(CGC_lock, safepoint_check); 2257 if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) { 2258 // The foreground collector is active or we're 2259 // not using asynchronous collections. Skip this 2260 // background collection. 2261 assert(!_foregroundGCShouldWait, "Should be clear"); 2262 return; 2263 } else { 2264 assert(_collectorState == Idling, "Should be idling before start."); 2265 _collectorState = InitialMarking; 2266 register_gc_start(cause); 2267 // Reset the expansion cause, now that we are about to begin 2268 // a new cycle. 2269 clear_expansion_cause(); 2270 2271 // Clear the MetaspaceGC flag since a concurrent collection 2272 // is starting but also clear it after the collection. 2273 MetaspaceGC::set_should_concurrent_collect(false); 2274 } 2275 // Decide if we want to enable class unloading as part of the 2276 // ensuing concurrent GC cycle. 2277 update_should_unload_classes(); 2278 _full_gc_requested = false; // acks all outstanding full gc requests 2279 _full_gc_cause = GCCause::_no_gc; 2280 // Signal that we are about to start a collection 2281 gch->increment_total_full_collections(); // ... starting a collection cycle 2282 _collection_count_start = gch->total_full_collections(); 2283 } 2284 2285 // Used for PrintGC 2286 size_t prev_used; 2287 if (PrintGC && Verbose) { 2288 prev_used = _cmsGen->used(); // XXXPERM 2289 } 2290 2291 // The change of the collection state is normally done at this level; 2292 // the exceptions are phases that are executed while the world is 2293 // stopped. For those phases the change of state is done while the 2294 // world is stopped. For baton passing purposes this allows the 2295 // background collector to finish the phase and change state atomically. 2296 // The foreground collector cannot wait on a phase that is done 2297 // while the world is stopped because the foreground collector already 2298 // has the world stopped and would deadlock. 2299 while (_collectorState != Idling) { 2300 if (TraceCMSState) { 2301 gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d", 2302 Thread::current(), _collectorState); 2303 } 2304 // The foreground collector 2305 // holds the Heap_lock throughout its collection. 2306 // holds the CMS token (but not the lock) 2307 // except while it is waiting for the background collector to yield. 2308 // 2309 // The foreground collector should be blocked (not for long) 2310 // if the background collector is about to start a phase 2311 // executed with world stopped. If the background 2312 // collector has already started such a phase, the 2313 // foreground collector is blocked waiting for the 2314 // Heap_lock. The stop-world phases (InitialMarking and FinalMarking) 2315 // are executed in the VM thread. 2316 // 2317 // The locking order is 2318 // PendingListLock (PLL) -- if applicable (FinalMarking) 2319 // Heap_lock (both this & PLL locked in VM_CMS_Operation::prologue()) 2320 // CMS token (claimed in 2321 // stop_world_and_do() --> 2322 // safepoint_synchronize() --> 2323 // CMSThread::synchronize()) 2324 2325 { 2326 // Check if the FG collector wants us to yield. 2327 CMSTokenSync x(true); // is cms thread 2328 if (waitForForegroundGC()) { 2329 // We yielded to a foreground GC, nothing more to be 2330 // done this round. 2331 assert(_foregroundGCShouldWait == false, "We set it to false in " 2332 "waitForForegroundGC()"); 2333 if (TraceCMSState) { 2334 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT 2335 " exiting collection CMS state %d", 2336 Thread::current(), _collectorState); 2337 } 2338 return; 2339 } else { 2340 // The background collector can run but check to see if the 2341 // foreground collector has done a collection while the 2342 // background collector was waiting to get the CGC_lock 2343 // above. If yes, break so that _foregroundGCShouldWait 2344 // is cleared before returning. 2345 if (_collectorState == Idling) { 2346 break; 2347 } 2348 } 2349 } 2350 2351 assert(_foregroundGCShouldWait, "Foreground collector, if active, " 2352 "should be waiting"); 2353 2354 switch (_collectorState) { 2355 case InitialMarking: 2356 { 2357 ReleaseForegroundGC x(this); 2358 stats().record_cms_begin(); 2359 VM_CMS_Initial_Mark initial_mark_op(this); 2360 VMThread::execute(&initial_mark_op); 2361 } 2362 // The collector state may be any legal state at this point 2363 // since the background collector may have yielded to the 2364 // foreground collector. 2365 break; 2366 case Marking: 2367 // initial marking in checkpointRootsInitialWork has been completed 2368 if (markFromRoots(true)) { // we were successful 2369 assert(_collectorState == Precleaning, "Collector state should " 2370 "have changed"); 2371 } else { 2372 assert(_foregroundGCIsActive, "Internal state inconsistency"); 2373 } 2374 break; 2375 case Precleaning: 2376 if (UseAdaptiveSizePolicy) { 2377 size_policy()->concurrent_precleaning_begin(); 2378 } 2379 // marking from roots in markFromRoots has been completed 2380 preclean(); 2381 if (UseAdaptiveSizePolicy) { 2382 size_policy()->concurrent_precleaning_end(); 2383 } 2384 assert(_collectorState == AbortablePreclean || 2385 _collectorState == FinalMarking, 2386 "Collector state should have changed"); 2387 break; 2388 case AbortablePreclean: 2389 if (UseAdaptiveSizePolicy) { 2390 size_policy()->concurrent_phases_resume(); 2391 } 2392 abortable_preclean(); 2393 if (UseAdaptiveSizePolicy) { 2394 size_policy()->concurrent_precleaning_end(); 2395 } 2396 assert(_collectorState == FinalMarking, "Collector state should " 2397 "have changed"); 2398 break; 2399 case FinalMarking: 2400 { 2401 ReleaseForegroundGC x(this); 2402 2403 VM_CMS_Final_Remark final_remark_op(this); 2404 VMThread::execute(&final_remark_op); 2405 } 2406 assert(_foregroundGCShouldWait, "block post-condition"); 2407 break; 2408 case Sweeping: 2409 if (UseAdaptiveSizePolicy) { 2410 size_policy()->concurrent_sweeping_begin(); 2411 } 2412 // final marking in checkpointRootsFinal has been completed 2413 sweep(true); 2414 assert(_collectorState == Resizing, "Collector state change " 2415 "to Resizing must be done under the free_list_lock"); 2416 _full_gcs_since_conc_gc = 0; 2417 2418 // Stop the timers for adaptive size policy for the concurrent phases 2419 if (UseAdaptiveSizePolicy) { 2420 size_policy()->concurrent_sweeping_end(); 2421 size_policy()->concurrent_phases_end(gch->gc_cause(), 2422 gch->prev_gen(_cmsGen)->capacity(), 2423 _cmsGen->free()); 2424 } 2425 2426 case Resizing: { 2427 // Sweeping has been completed... 2428 // At this point the background collection has completed. 2429 // Don't move the call to compute_new_size() down 2430 // into code that might be executed if the background 2431 // collection was preempted. 2432 { 2433 ReleaseForegroundGC x(this); // unblock FG collection 2434 MutexLockerEx y(Heap_lock, Mutex::_no_safepoint_check_flag); 2435 CMSTokenSync z(true); // not strictly needed. 2436 if (_collectorState == Resizing) { 2437 compute_new_size(); 2438 save_heap_summary(); 2439 _collectorState = Resetting; 2440 } else { 2441 assert(_collectorState == Idling, "The state should only change" 2442 " because the foreground collector has finished the collection"); 2443 } 2444 } 2445 break; 2446 } 2447 case Resetting: 2448 // CMS heap resizing has been completed 2449 reset(true); 2450 assert(_collectorState == Idling, "Collector state should " 2451 "have changed"); 2452 2453 MetaspaceGC::set_should_concurrent_collect(false); 2454 2455 stats().record_cms_end(); 2456 // Don't move the concurrent_phases_end() and compute_new_size() 2457 // calls to here because a preempted background collection 2458 // has it's state set to "Resetting". 2459 break; 2460 case Idling: 2461 default: 2462 ShouldNotReachHere(); 2463 break; 2464 } 2465 if (TraceCMSState) { 2466 gclog_or_tty->print_cr(" Thread " INTPTR_FORMAT " done - next CMS state %d", 2467 Thread::current(), _collectorState); 2468 } 2469 assert(_foregroundGCShouldWait, "block post-condition"); 2470 } 2471 2472 // Should this be in gc_epilogue? 2473 collector_policy()->counters()->update_counters(); 2474 2475 { 2476 // Clear _foregroundGCShouldWait and, in the event that the 2477 // foreground collector is waiting, notify it, before 2478 // returning. 2479 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2480 _foregroundGCShouldWait = false; 2481 if (_foregroundGCIsActive) { 2482 CGC_lock->notify(); 2483 } 2484 assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 2485 "Possible deadlock"); 2486 } 2487 if (TraceCMSState) { 2488 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT 2489 " exiting collection CMS state %d", 2490 Thread::current(), _collectorState); 2491 } 2492 if (PrintGC && Verbose) { 2493 _cmsGen->print_heap_change(prev_used); 2494 } 2495 } 2496 2497 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) { 2498 if (!_cms_start_registered) { 2499 register_gc_start(cause); 2500 } 2501 } 2502 2503 void CMSCollector::register_gc_start(GCCause::Cause cause) { 2504 _cms_start_registered = true; 2505 _gc_timer_cm->register_gc_start(); 2506 _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start()); 2507 } 2508 2509 void CMSCollector::register_gc_end() { 2510 if (_cms_start_registered) { 2511 report_heap_summary(GCWhen::AfterGC); 2512 2513 _gc_timer_cm->register_gc_end(); 2514 _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions()); 2515 _cms_start_registered = false; 2516 } 2517 } 2518 2519 void CMSCollector::save_heap_summary() { 2520 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2521 _last_heap_summary = gch->create_heap_summary(); 2522 _last_metaspace_summary = gch->create_metaspace_summary(); 2523 } 2524 2525 void CMSCollector::report_heap_summary(GCWhen::Type when) { 2526 _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary); 2527 _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary); 2528 } 2529 2530 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) { 2531 assert(_foregroundGCIsActive && !_foregroundGCShouldWait, 2532 "Foreground collector should be waiting, not executing"); 2533 assert(Thread::current()->is_VM_thread(), "A foreground collection" 2534 "may only be done by the VM Thread with the world stopped"); 2535 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 2536 "VM thread should have CMS token"); 2537 2538 NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose, 2539 true, NULL);) 2540 if (UseAdaptiveSizePolicy) { 2541 size_policy()->ms_collection_begin(); 2542 } 2543 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact); 2544 2545 HandleMark hm; // Discard invalid handles created during verification 2546 2547 if (VerifyBeforeGC && 2548 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2549 Universe::verify(); 2550 } 2551 2552 // Snapshot the soft reference policy to be used in this collection cycle. 2553 ref_processor()->setup_policy(clear_all_soft_refs); 2554 2555 // Decide if class unloading should be done 2556 update_should_unload_classes(); 2557 2558 bool init_mark_was_synchronous = false; // until proven otherwise 2559 while (_collectorState != Idling) { 2560 if (TraceCMSState) { 2561 gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d", 2562 Thread::current(), _collectorState); 2563 } 2564 switch (_collectorState) { 2565 case InitialMarking: 2566 register_foreground_gc_start(cause); 2567 init_mark_was_synchronous = true; // fact to be exploited in re-mark 2568 checkpointRootsInitial(false); 2569 assert(_collectorState == Marking, "Collector state should have changed" 2570 " within checkpointRootsInitial()"); 2571 break; 2572 case Marking: 2573 // initial marking in checkpointRootsInitialWork has been completed 2574 if (VerifyDuringGC && 2575 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2576 Universe::verify("Verify before initial mark: "); 2577 } 2578 { 2579 bool res = markFromRoots(false); 2580 assert(res && _collectorState == FinalMarking, "Collector state should " 2581 "have changed"); 2582 break; 2583 } 2584 case FinalMarking: 2585 if (VerifyDuringGC && 2586 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2587 Universe::verify("Verify before re-mark: "); 2588 } 2589 checkpointRootsFinal(false, clear_all_soft_refs, 2590 init_mark_was_synchronous); 2591 assert(_collectorState == Sweeping, "Collector state should not " 2592 "have changed within checkpointRootsFinal()"); 2593 break; 2594 case Sweeping: 2595 // final marking in checkpointRootsFinal has been completed 2596 if (VerifyDuringGC && 2597 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2598 Universe::verify("Verify before sweep: "); 2599 } 2600 sweep(false); 2601 assert(_collectorState == Resizing, "Incorrect state"); 2602 break; 2603 case Resizing: { 2604 // Sweeping has been completed; the actual resize in this case 2605 // is done separately; nothing to be done in this state. 2606 _collectorState = Resetting; 2607 break; 2608 } 2609 case Resetting: 2610 // The heap has been resized. 2611 if (VerifyDuringGC && 2612 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2613 Universe::verify("Verify before reset: "); 2614 } 2615 save_heap_summary(); 2616 reset(false); 2617 assert(_collectorState == Idling, "Collector state should " 2618 "have changed"); 2619 break; 2620 case Precleaning: 2621 case AbortablePreclean: 2622 // Elide the preclean phase 2623 _collectorState = FinalMarking; 2624 break; 2625 default: 2626 ShouldNotReachHere(); 2627 } 2628 if (TraceCMSState) { 2629 gclog_or_tty->print_cr(" Thread " INTPTR_FORMAT " done - next CMS state %d", 2630 Thread::current(), _collectorState); 2631 } 2632 } 2633 2634 if (UseAdaptiveSizePolicy) { 2635 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2636 size_policy()->ms_collection_end(gch->gc_cause()); 2637 } 2638 2639 if (VerifyAfterGC && 2640 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2641 Universe::verify(); 2642 } 2643 if (TraceCMSState) { 2644 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT 2645 " exiting collection CMS state %d", 2646 Thread::current(), _collectorState); 2647 } 2648 } 2649 2650 bool CMSCollector::waitForForegroundGC() { 2651 bool res = false; 2652 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 2653 "CMS thread should have CMS token"); 2654 // Block the foreground collector until the 2655 // background collectors decides whether to 2656 // yield. 2657 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2658 _foregroundGCShouldWait = true; 2659 if (_foregroundGCIsActive) { 2660 // The background collector yields to the 2661 // foreground collector and returns a value 2662 // indicating that it has yielded. The foreground 2663 // collector can proceed. 2664 res = true; 2665 _foregroundGCShouldWait = false; 2666 ConcurrentMarkSweepThread::clear_CMS_flag( 2667 ConcurrentMarkSweepThread::CMS_cms_has_token); 2668 ConcurrentMarkSweepThread::set_CMS_flag( 2669 ConcurrentMarkSweepThread::CMS_cms_wants_token); 2670 // Get a possibly blocked foreground thread going 2671 CGC_lock->notify(); 2672 if (TraceCMSState) { 2673 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d", 2674 Thread::current(), _collectorState); 2675 } 2676 while (_foregroundGCIsActive) { 2677 CGC_lock->wait(Mutex::_no_safepoint_check_flag); 2678 } 2679 ConcurrentMarkSweepThread::set_CMS_flag( 2680 ConcurrentMarkSweepThread::CMS_cms_has_token); 2681 ConcurrentMarkSweepThread::clear_CMS_flag( 2682 ConcurrentMarkSweepThread::CMS_cms_wants_token); 2683 } 2684 if (TraceCMSState) { 2685 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d", 2686 Thread::current(), _collectorState); 2687 } 2688 return res; 2689 } 2690 2691 // Because of the need to lock the free lists and other structures in 2692 // the collector, common to all the generations that the collector is 2693 // collecting, we need the gc_prologues of individual CMS generations 2694 // delegate to their collector. It may have been simpler had the 2695 // current infrastructure allowed one to call a prologue on a 2696 // collector. In the absence of that we have the generation's 2697 // prologue delegate to the collector, which delegates back 2698 // some "local" work to a worker method in the individual generations 2699 // that it's responsible for collecting, while itself doing any 2700 // work common to all generations it's responsible for. A similar 2701 // comment applies to the gc_epilogue()'s. 2702 // The role of the variable _between_prologue_and_epilogue is to 2703 // enforce the invocation protocol. 2704 void CMSCollector::gc_prologue(bool full) { 2705 // Call gc_prologue_work() for the CMSGen 2706 // we are responsible for. 2707 2708 // The following locking discipline assumes that we are only called 2709 // when the world is stopped. 2710 assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption"); 2711 2712 // The CMSCollector prologue must call the gc_prologues for the 2713 // "generations" that it's responsible 2714 // for. 2715 2716 assert( Thread::current()->is_VM_thread() 2717 || ( CMSScavengeBeforeRemark 2718 && Thread::current()->is_ConcurrentGC_thread()), 2719 "Incorrect thread type for prologue execution"); 2720 2721 if (_between_prologue_and_epilogue) { 2722 // We have already been invoked; this is a gc_prologue delegation 2723 // from yet another CMS generation that we are responsible for, just 2724 // ignore it since all relevant work has already been done. 2725 return; 2726 } 2727 2728 // set a bit saying prologue has been called; cleared in epilogue 2729 _between_prologue_and_epilogue = true; 2730 // Claim locks for common data structures, then call gc_prologue_work() 2731 // for each CMSGen. 2732 2733 getFreelistLocks(); // gets free list locks on constituent spaces 2734 bitMapLock()->lock_without_safepoint_check(); 2735 2736 // Should call gc_prologue_work() for all cms gens we are responsible for 2737 bool duringMarking = _collectorState >= Marking 2738 && _collectorState < Sweeping; 2739 2740 // The young collections clear the modified oops state, which tells if 2741 // there are any modified oops in the class. The remark phase also needs 2742 // that information. Tell the young collection to save the union of all 2743 // modified klasses. 2744 if (duringMarking) { 2745 _ct->klass_rem_set()->set_accumulate_modified_oops(true); 2746 } 2747 2748 bool registerClosure = duringMarking; 2749 2750 ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ? 2751 &_modUnionClosurePar 2752 : &_modUnionClosure; 2753 _cmsGen->gc_prologue_work(full, registerClosure, muc); 2754 2755 if (!full) { 2756 stats().record_gc0_begin(); 2757 } 2758 } 2759 2760 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) { 2761 2762 _capacity_at_prologue = capacity(); 2763 _used_at_prologue = used(); 2764 2765 // Delegate to CMScollector which knows how to coordinate between 2766 // this and any other CMS generations that it is responsible for 2767 // collecting. 2768 collector()->gc_prologue(full); 2769 } 2770 2771 // This is a "private" interface for use by this generation's CMSCollector. 2772 // Not to be called directly by any other entity (for instance, 2773 // GenCollectedHeap, which calls the "public" gc_prologue method above). 2774 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full, 2775 bool registerClosure, ModUnionClosure* modUnionClosure) { 2776 assert(!incremental_collection_failed(), "Shouldn't be set yet"); 2777 assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL, 2778 "Should be NULL"); 2779 if (registerClosure) { 2780 cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure); 2781 } 2782 cmsSpace()->gc_prologue(); 2783 // Clear stat counters 2784 NOT_PRODUCT( 2785 assert(_numObjectsPromoted == 0, "check"); 2786 assert(_numWordsPromoted == 0, "check"); 2787 if (Verbose && PrintGC) { 2788 gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, " 2789 SIZE_FORMAT" bytes concurrently", 2790 _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord)); 2791 } 2792 _numObjectsAllocated = 0; 2793 _numWordsAllocated = 0; 2794 ) 2795 } 2796 2797 void CMSCollector::gc_epilogue(bool full) { 2798 // The following locking discipline assumes that we are only called 2799 // when the world is stopped. 2800 assert(SafepointSynchronize::is_at_safepoint(), 2801 "world is stopped assumption"); 2802 2803 // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks 2804 // if linear allocation blocks need to be appropriately marked to allow the 2805 // the blocks to be parsable. We also check here whether we need to nudge the 2806 // CMS collector thread to start a new cycle (if it's not already active). 2807 assert( Thread::current()->is_VM_thread() 2808 || ( CMSScavengeBeforeRemark 2809 && Thread::current()->is_ConcurrentGC_thread()), 2810 "Incorrect thread type for epilogue execution"); 2811 2812 if (!_between_prologue_and_epilogue) { 2813 // We have already been invoked; this is a gc_epilogue delegation 2814 // from yet another CMS generation that we are responsible for, just 2815 // ignore it since all relevant work has already been done. 2816 return; 2817 } 2818 assert(haveFreelistLocks(), "must have freelist locks"); 2819 assert_lock_strong(bitMapLock()); 2820 2821 _ct->klass_rem_set()->set_accumulate_modified_oops(false); 2822 2823 _cmsGen->gc_epilogue_work(full); 2824 2825 if (_collectorState == AbortablePreclean || _collectorState == Precleaning) { 2826 // in case sampling was not already enabled, enable it 2827 _start_sampling = true; 2828 } 2829 // reset _eden_chunk_array so sampling starts afresh 2830 _eden_chunk_index = 0; 2831 2832 size_t cms_used = _cmsGen->cmsSpace()->used(); 2833 2834 // update performance counters - this uses a special version of 2835 // update_counters() that allows the utilization to be passed as a 2836 // parameter, avoiding multiple calls to used(). 2837 // 2838 _cmsGen->update_counters(cms_used); 2839 2840 if (CMSIncrementalMode) { 2841 icms_update_allocation_limits(); 2842 } 2843 2844 bitMapLock()->unlock(); 2845 releaseFreelistLocks(); 2846 2847 if (!CleanChunkPoolAsync) { 2848 Chunk::clean_chunk_pool(); 2849 } 2850 2851 set_did_compact(false); 2852 _between_prologue_and_epilogue = false; // ready for next cycle 2853 } 2854 2855 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) { 2856 collector()->gc_epilogue(full); 2857 2858 // Also reset promotion tracking in par gc thread states. 2859 if (CollectedHeap::use_parallel_gc_threads()) { 2860 for (uint i = 0; i < ParallelGCThreads; i++) { 2861 _par_gc_thread_states[i]->promo.stopTrackingPromotions(i); 2862 } 2863 } 2864 } 2865 2866 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) { 2867 assert(!incremental_collection_failed(), "Should have been cleared"); 2868 cmsSpace()->setPreconsumptionDirtyCardClosure(NULL); 2869 cmsSpace()->gc_epilogue(); 2870 // Print stat counters 2871 NOT_PRODUCT( 2872 assert(_numObjectsAllocated == 0, "check"); 2873 assert(_numWordsAllocated == 0, "check"); 2874 if (Verbose && PrintGC) { 2875 gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, " 2876 SIZE_FORMAT" bytes", 2877 _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord)); 2878 } 2879 _numObjectsPromoted = 0; 2880 _numWordsPromoted = 0; 2881 ) 2882 2883 if (PrintGC && Verbose) { 2884 // Call down the chain in contiguous_available needs the freelistLock 2885 // so print this out before releasing the freeListLock. 2886 gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ", 2887 contiguous_available()); 2888 } 2889 } 2890 2891 #ifndef PRODUCT 2892 bool CMSCollector::have_cms_token() { 2893 Thread* thr = Thread::current(); 2894 if (thr->is_VM_thread()) { 2895 return ConcurrentMarkSweepThread::vm_thread_has_cms_token(); 2896 } else if (thr->is_ConcurrentGC_thread()) { 2897 return ConcurrentMarkSweepThread::cms_thread_has_cms_token(); 2898 } else if (thr->is_GC_task_thread()) { 2899 return ConcurrentMarkSweepThread::vm_thread_has_cms_token() && 2900 ParGCRareEvent_lock->owned_by_self(); 2901 } 2902 return false; 2903 } 2904 #endif 2905 2906 // Check reachability of the given heap address in CMS generation, 2907 // treating all other generations as roots. 2908 bool CMSCollector::is_cms_reachable(HeapWord* addr) { 2909 // We could "guarantee" below, rather than assert, but I'll 2910 // leave these as "asserts" so that an adventurous debugger 2911 // could try this in the product build provided some subset of 2912 // the conditions were met, provided they were interested in the 2913 // results and knew that the computation below wouldn't interfere 2914 // with other concurrent computations mutating the structures 2915 // being read or written. 2916 assert(SafepointSynchronize::is_at_safepoint(), 2917 "Else mutations in object graph will make answer suspect"); 2918 assert(have_cms_token(), "Should hold cms token"); 2919 assert(haveFreelistLocks(), "must hold free list locks"); 2920 assert_lock_strong(bitMapLock()); 2921 2922 // Clear the marking bit map array before starting, but, just 2923 // for kicks, first report if the given address is already marked 2924 gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", addr, 2925 _markBitMap.isMarked(addr) ? "" : " not"); 2926 2927 if (verify_after_remark()) { 2928 MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag); 2929 bool result = verification_mark_bm()->isMarked(addr); 2930 gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", addr, 2931 result ? "IS" : "is NOT"); 2932 return result; 2933 } else { 2934 gclog_or_tty->print_cr("Could not compute result"); 2935 return false; 2936 } 2937 } 2938 2939 2940 void 2941 CMSCollector::print_on_error(outputStream* st) { 2942 CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector; 2943 if (collector != NULL) { 2944 CMSBitMap* bitmap = &collector->_markBitMap; 2945 st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap); 2946 bitmap->print_on_error(st, " Bits: "); 2947 2948 st->cr(); 2949 2950 CMSBitMap* mut_bitmap = &collector->_modUnionTable; 2951 st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap); 2952 mut_bitmap->print_on_error(st, " Bits: "); 2953 } 2954 } 2955 2956 //////////////////////////////////////////////////////// 2957 // CMS Verification Support 2958 //////////////////////////////////////////////////////// 2959 // Following the remark phase, the following invariant 2960 // should hold -- each object in the CMS heap which is 2961 // marked in markBitMap() should be marked in the verification_mark_bm(). 2962 2963 class VerifyMarkedClosure: public BitMapClosure { 2964 CMSBitMap* _marks; 2965 bool _failed; 2966 2967 public: 2968 VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {} 2969 2970 bool do_bit(size_t offset) { 2971 HeapWord* addr = _marks->offsetToHeapWord(offset); 2972 if (!_marks->isMarked(addr)) { 2973 oop(addr)->print_on(gclog_or_tty); 2974 gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr); 2975 _failed = true; 2976 } 2977 return true; 2978 } 2979 2980 bool failed() { return _failed; } 2981 }; 2982 2983 bool CMSCollector::verify_after_remark(bool silent) { 2984 if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... "); 2985 MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag); 2986 static bool init = false; 2987 2988 assert(SafepointSynchronize::is_at_safepoint(), 2989 "Else mutations in object graph will make answer suspect"); 2990 assert(have_cms_token(), 2991 "Else there may be mutual interference in use of " 2992 " verification data structures"); 2993 assert(_collectorState > Marking && _collectorState <= Sweeping, 2994 "Else marking info checked here may be obsolete"); 2995 assert(haveFreelistLocks(), "must hold free list locks"); 2996 assert_lock_strong(bitMapLock()); 2997 2998 2999 // Allocate marking bit map if not already allocated 3000 if (!init) { // first time 3001 if (!verification_mark_bm()->allocate(_span)) { 3002 return false; 3003 } 3004 init = true; 3005 } 3006 3007 assert(verification_mark_stack()->isEmpty(), "Should be empty"); 3008 3009 // Turn off refs discovery -- so we will be tracing through refs. 3010 // This is as intended, because by this time 3011 // GC must already have cleared any refs that need to be cleared, 3012 // and traced those that need to be marked; moreover, 3013 // the marking done here is not going to interfere in any 3014 // way with the marking information used by GC. 3015 NoRefDiscovery no_discovery(ref_processor()); 3016 3017 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;) 3018 3019 // Clear any marks from a previous round 3020 verification_mark_bm()->clear_all(); 3021 assert(verification_mark_stack()->isEmpty(), "markStack should be empty"); 3022 verify_work_stacks_empty(); 3023 3024 GenCollectedHeap* gch = GenCollectedHeap::heap(); 3025 gch->ensure_parsability(false); // fill TLABs, but no need to retire them 3026 // Update the saved marks which may affect the root scans. 3027 gch->save_marks(); 3028 3029 if (CMSRemarkVerifyVariant == 1) { 3030 // In this first variant of verification, we complete 3031 // all marking, then check if the new marks-vector is 3032 // a subset of the CMS marks-vector. 3033 verify_after_remark_work_1(); 3034 } else if (CMSRemarkVerifyVariant == 2) { 3035 // In this second variant of verification, we flag an error 3036 // (i.e. an object reachable in the new marks-vector not reachable 3037 // in the CMS marks-vector) immediately, also indicating the 3038 // identify of an object (A) that references the unmarked object (B) -- 3039 // presumably, a mutation to A failed to be picked up by preclean/remark? 3040 verify_after_remark_work_2(); 3041 } else { 3042 warning("Unrecognized value %d for CMSRemarkVerifyVariant", 3043 CMSRemarkVerifyVariant); 3044 } 3045 if (!silent) gclog_or_tty->print(" done] "); 3046 return true; 3047 } 3048 3049 void CMSCollector::verify_after_remark_work_1() { 3050 ResourceMark rm; 3051 HandleMark hm; 3052 GenCollectedHeap* gch = GenCollectedHeap::heap(); 3053 3054 // Get a clear set of claim bits for the strong roots processing to work with. 3055 ClassLoaderDataGraph::clear_claimed_marks(); 3056 3057 // Mark from roots one level into CMS 3058 MarkRefsIntoClosure notOlder(_span, verification_mark_bm()); 3059 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 3060 3061 gch->gen_process_strong_roots(_cmsGen->level(), 3062 true, // younger gens are roots 3063 true, // activate StrongRootsScope 3064 SharedHeap::ScanningOption(roots_scanning_options()), 3065 ¬Older, 3066 NULL, 3067 NULL); // SSS: Provide correct closure 3068 3069 // Now mark from the roots 3070 MarkFromRootsClosure markFromRootsClosure(this, _span, 3071 verification_mark_bm(), verification_mark_stack(), 3072 false /* don't yield */, true /* verifying */); 3073 assert(_restart_addr == NULL, "Expected pre-condition"); 3074 verification_mark_bm()->iterate(&markFromRootsClosure); 3075 while (_restart_addr != NULL) { 3076 // Deal with stack overflow: by restarting at the indicated 3077 // address. 3078 HeapWord* ra = _restart_addr; 3079 markFromRootsClosure.reset(ra); 3080 _restart_addr = NULL; 3081 verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end()); 3082 } 3083 assert(verification_mark_stack()->isEmpty(), "Should have been drained"); 3084 verify_work_stacks_empty(); 3085 3086 // Marking completed -- now verify that each bit marked in 3087 // verification_mark_bm() is also marked in markBitMap(); flag all 3088 // errors by printing corresponding objects. 3089 VerifyMarkedClosure vcl(markBitMap()); 3090 verification_mark_bm()->iterate(&vcl); 3091 if (vcl.failed()) { 3092 gclog_or_tty->print("Verification failed"); 3093 Universe::heap()->print_on(gclog_or_tty); 3094 fatal("CMS: failed marking verification after remark"); 3095 } 3096 } 3097 3098 class VerifyKlassOopsKlassClosure : public KlassClosure { 3099 class VerifyKlassOopsClosure : public OopClosure { 3100 CMSBitMap* _bitmap; 3101 public: 3102 VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { } 3103 void do_oop(oop* p) { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); } 3104 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 3105 } _oop_closure; 3106 public: 3107 VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {} 3108 void do_klass(Klass* k) { 3109 k->oops_do(&_oop_closure); 3110 } 3111 }; 3112 3113 void CMSCollector::verify_after_remark_work_2() { 3114 ResourceMark rm; 3115 HandleMark hm; 3116 GenCollectedHeap* gch = GenCollectedHeap::heap(); 3117 3118 // Get a clear set of claim bits for the strong roots processing to work with. 3119 ClassLoaderDataGraph::clear_claimed_marks(); 3120 3121 // Mark from roots one level into CMS 3122 MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(), 3123 markBitMap()); 3124 CMKlassClosure klass_closure(¬Older); 3125 3126 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 3127 gch->gen_process_strong_roots(_cmsGen->level(), 3128 true, // younger gens are roots 3129 true, // activate StrongRootsScope 3130 SharedHeap::ScanningOption(roots_scanning_options()), 3131 ¬Older, 3132 NULL, 3133 &klass_closure); 3134 3135 // Now mark from the roots 3136 MarkFromRootsVerifyClosure markFromRootsClosure(this, _span, 3137 verification_mark_bm(), markBitMap(), verification_mark_stack()); 3138 assert(_restart_addr == NULL, "Expected pre-condition"); 3139 verification_mark_bm()->iterate(&markFromRootsClosure); 3140 while (_restart_addr != NULL) { 3141 // Deal with stack overflow: by restarting at the indicated 3142 // address. 3143 HeapWord* ra = _restart_addr; 3144 markFromRootsClosure.reset(ra); 3145 _restart_addr = NULL; 3146 verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end()); 3147 } 3148 assert(verification_mark_stack()->isEmpty(), "Should have been drained"); 3149 verify_work_stacks_empty(); 3150 3151 VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm()); 3152 ClassLoaderDataGraph::classes_do(&verify_klass_oops); 3153 3154 // Marking completed -- now verify that each bit marked in 3155 // verification_mark_bm() is also marked in markBitMap(); flag all 3156 // errors by printing corresponding objects. 3157 VerifyMarkedClosure vcl(markBitMap()); 3158 verification_mark_bm()->iterate(&vcl); 3159 assert(!vcl.failed(), "Else verification above should not have succeeded"); 3160 } 3161 3162 void ConcurrentMarkSweepGeneration::save_marks() { 3163 // delegate to CMS space 3164 cmsSpace()->save_marks(); 3165 for (uint i = 0; i < ParallelGCThreads; i++) { 3166 _par_gc_thread_states[i]->promo.startTrackingPromotions(); 3167 } 3168 } 3169 3170 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() { 3171 return cmsSpace()->no_allocs_since_save_marks(); 3172 } 3173 3174 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \ 3175 \ 3176 void ConcurrentMarkSweepGeneration:: \ 3177 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \ 3178 cl->set_generation(this); \ 3179 cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl); \ 3180 cl->reset_generation(); \ 3181 save_marks(); \ 3182 } 3183 3184 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN) 3185 3186 void 3187 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) { 3188 cl->set_generation(this); 3189 younger_refs_in_space_iterate(_cmsSpace, cl); 3190 cl->reset_generation(); 3191 } 3192 3193 void 3194 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) { 3195 if (freelistLock()->owned_by_self()) { 3196 Generation::oop_iterate(cl); 3197 } else { 3198 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3199 Generation::oop_iterate(cl); 3200 } 3201 } 3202 3203 void 3204 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) { 3205 if (freelistLock()->owned_by_self()) { 3206 Generation::object_iterate(cl); 3207 } else { 3208 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3209 Generation::object_iterate(cl); 3210 } 3211 } 3212 3213 void 3214 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) { 3215 if (freelistLock()->owned_by_self()) { 3216 Generation::safe_object_iterate(cl); 3217 } else { 3218 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3219 Generation::safe_object_iterate(cl); 3220 } 3221 } 3222 3223 void 3224 ConcurrentMarkSweepGeneration::post_compact() { 3225 } 3226 3227 void 3228 ConcurrentMarkSweepGeneration::prepare_for_verify() { 3229 // Fix the linear allocation blocks to look like free blocks. 3230 3231 // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those 3232 // are not called when the heap is verified during universe initialization and 3233 // at vm shutdown. 3234 if (freelistLock()->owned_by_self()) { 3235 cmsSpace()->prepare_for_verify(); 3236 } else { 3237 MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag); 3238 cmsSpace()->prepare_for_verify(); 3239 } 3240 } 3241 3242 void 3243 ConcurrentMarkSweepGeneration::verify() { 3244 // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those 3245 // are not called when the heap is verified during universe initialization and 3246 // at vm shutdown. 3247 if (freelistLock()->owned_by_self()) { 3248 cmsSpace()->verify(); 3249 } else { 3250 MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag); 3251 cmsSpace()->verify(); 3252 } 3253 } 3254 3255 void CMSCollector::verify() { 3256 _cmsGen->verify(); 3257 } 3258 3259 #ifndef PRODUCT 3260 bool CMSCollector::overflow_list_is_empty() const { 3261 assert(_num_par_pushes >= 0, "Inconsistency"); 3262 if (_overflow_list == NULL) { 3263 assert(_num_par_pushes == 0, "Inconsistency"); 3264 } 3265 return _overflow_list == NULL; 3266 } 3267 3268 // The methods verify_work_stacks_empty() and verify_overflow_empty() 3269 // merely consolidate assertion checks that appear to occur together frequently. 3270 void CMSCollector::verify_work_stacks_empty() const { 3271 assert(_markStack.isEmpty(), "Marking stack should be empty"); 3272 assert(overflow_list_is_empty(), "Overflow list should be empty"); 3273 } 3274 3275 void CMSCollector::verify_overflow_empty() const { 3276 assert(overflow_list_is_empty(), "Overflow list should be empty"); 3277 assert(no_preserved_marks(), "No preserved marks"); 3278 } 3279 #endif // PRODUCT 3280 3281 // Decide if we want to enable class unloading as part of the 3282 // ensuing concurrent GC cycle. We will collect and 3283 // unload classes if it's the case that: 3284 // (1) an explicit gc request has been made and the flag 3285 // ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR 3286 // (2) (a) class unloading is enabled at the command line, and 3287 // (b) old gen is getting really full 3288 // NOTE: Provided there is no change in the state of the heap between 3289 // calls to this method, it should have idempotent results. Moreover, 3290 // its results should be monotonically increasing (i.e. going from 0 to 1, 3291 // but not 1 to 0) between successive calls between which the heap was 3292 // not collected. For the implementation below, it must thus rely on 3293 // the property that concurrent_cycles_since_last_unload() 3294 // will not decrease unless a collection cycle happened and that 3295 // _cmsGen->is_too_full() are 3296 // themselves also monotonic in that sense. See check_monotonicity() 3297 // below. 3298 void CMSCollector::update_should_unload_classes() { 3299 _should_unload_classes = false; 3300 // Condition 1 above 3301 if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) { 3302 _should_unload_classes = true; 3303 } else if (CMSClassUnloadingEnabled) { // Condition 2.a above 3304 // Disjuncts 2.b.(i,ii,iii) above 3305 _should_unload_classes = (concurrent_cycles_since_last_unload() >= 3306 CMSClassUnloadingMaxInterval) 3307 || _cmsGen->is_too_full(); 3308 } 3309 } 3310 3311 bool ConcurrentMarkSweepGeneration::is_too_full() const { 3312 bool res = should_concurrent_collect(); 3313 res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0); 3314 return res; 3315 } 3316 3317 void CMSCollector::setup_cms_unloading_and_verification_state() { 3318 const bool should_verify = VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC 3319 || VerifyBeforeExit; 3320 const int rso = SharedHeap::SO_Strings | SharedHeap::SO_AllCodeCache; 3321 3322 // We set the proper root for this CMS cycle here. 3323 if (should_unload_classes()) { // Should unload classes this cycle 3324 remove_root_scanning_option(SharedHeap::SO_AllClasses); 3325 add_root_scanning_option(SharedHeap::SO_SystemClasses); 3326 remove_root_scanning_option(rso); // Shrink the root set appropriately 3327 set_verifying(should_verify); // Set verification state for this cycle 3328 return; // Nothing else needs to be done at this time 3329 } 3330 3331 // Not unloading classes this cycle 3332 assert(!should_unload_classes(), "Inconsistency!"); 3333 remove_root_scanning_option(SharedHeap::SO_SystemClasses); 3334 add_root_scanning_option(SharedHeap::SO_AllClasses); 3335 3336 if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) { 3337 // Include symbols, strings and code cache elements to prevent their resurrection. 3338 add_root_scanning_option(rso); 3339 set_verifying(true); 3340 } else if (verifying() && !should_verify) { 3341 // We were verifying, but some verification flags got disabled. 3342 set_verifying(false); 3343 // Exclude symbols, strings and code cache elements from root scanning to 3344 // reduce IM and RM pauses. 3345 remove_root_scanning_option(rso); 3346 } 3347 } 3348 3349 3350 #ifndef PRODUCT 3351 HeapWord* CMSCollector::block_start(const void* p) const { 3352 const HeapWord* addr = (HeapWord*)p; 3353 if (_span.contains(p)) { 3354 if (_cmsGen->cmsSpace()->is_in_reserved(addr)) { 3355 return _cmsGen->cmsSpace()->block_start(p); 3356 } 3357 } 3358 return NULL; 3359 } 3360 #endif 3361 3362 HeapWord* 3363 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size, 3364 bool tlab, 3365 bool parallel) { 3366 CMSSynchronousYieldRequest yr; 3367 assert(!tlab, "Can't deal with TLAB allocation"); 3368 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3369 expand(word_size*HeapWordSize, MinHeapDeltaBytes, 3370 CMSExpansionCause::_satisfy_allocation); 3371 if (GCExpandToAllocateDelayMillis > 0) { 3372 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 3373 } 3374 return have_lock_and_allocate(word_size, tlab); 3375 } 3376 3377 // YSR: All of this generation expansion/shrinking stuff is an exact copy of 3378 // OneContigSpaceCardGeneration, which makes me wonder if we should move this 3379 // to CardGeneration and share it... 3380 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) { 3381 return CardGeneration::expand(bytes, expand_bytes); 3382 } 3383 3384 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes, 3385 CMSExpansionCause::Cause cause) 3386 { 3387 3388 bool success = expand(bytes, expand_bytes); 3389 3390 // remember why we expanded; this information is used 3391 // by shouldConcurrentCollect() when making decisions on whether to start 3392 // a new CMS cycle. 3393 if (success) { 3394 set_expansion_cause(cause); 3395 if (PrintGCDetails && Verbose) { 3396 gclog_or_tty->print_cr("Expanded CMS gen for %s", 3397 CMSExpansionCause::to_string(cause)); 3398 } 3399 } 3400 } 3401 3402 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) { 3403 HeapWord* res = NULL; 3404 MutexLocker x(ParGCRareEvent_lock); 3405 while (true) { 3406 // Expansion by some other thread might make alloc OK now: 3407 res = ps->lab.alloc(word_sz); 3408 if (res != NULL) return res; 3409 // If there's not enough expansion space available, give up. 3410 if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) { 3411 return NULL; 3412 } 3413 // Otherwise, we try expansion. 3414 expand(word_sz*HeapWordSize, MinHeapDeltaBytes, 3415 CMSExpansionCause::_allocate_par_lab); 3416 // Now go around the loop and try alloc again; 3417 // A competing par_promote might beat us to the expansion space, 3418 // so we may go around the loop again if promotion fails again. 3419 if (GCExpandToAllocateDelayMillis > 0) { 3420 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 3421 } 3422 } 3423 } 3424 3425 3426 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space( 3427 PromotionInfo* promo) { 3428 MutexLocker x(ParGCRareEvent_lock); 3429 size_t refill_size_bytes = promo->refillSize() * HeapWordSize; 3430 while (true) { 3431 // Expansion by some other thread might make alloc OK now: 3432 if (promo->ensure_spooling_space()) { 3433 assert(promo->has_spooling_space(), 3434 "Post-condition of successful ensure_spooling_space()"); 3435 return true; 3436 } 3437 // If there's not enough expansion space available, give up. 3438 if (_virtual_space.uncommitted_size() < refill_size_bytes) { 3439 return false; 3440 } 3441 // Otherwise, we try expansion. 3442 expand(refill_size_bytes, MinHeapDeltaBytes, 3443 CMSExpansionCause::_allocate_par_spooling_space); 3444 // Now go around the loop and try alloc again; 3445 // A competing allocation might beat us to the expansion space, 3446 // so we may go around the loop again if allocation fails again. 3447 if (GCExpandToAllocateDelayMillis > 0) { 3448 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 3449 } 3450 } 3451 } 3452 3453 3454 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) { 3455 assert_locked_or_safepoint(ExpandHeap_lock); 3456 // Shrink committed space 3457 _virtual_space.shrink_by(bytes); 3458 // Shrink space; this also shrinks the space's BOT 3459 _cmsSpace->set_end((HeapWord*) _virtual_space.high()); 3460 size_t new_word_size = heap_word_size(_cmsSpace->capacity()); 3461 // Shrink the shared block offset array 3462 _bts->resize(new_word_size); 3463 MemRegion mr(_cmsSpace->bottom(), new_word_size); 3464 // Shrink the card table 3465 Universe::heap()->barrier_set()->resize_covered_region(mr); 3466 3467 if (Verbose && PrintGC) { 3468 size_t new_mem_size = _virtual_space.committed_size(); 3469 size_t old_mem_size = new_mem_size + bytes; 3470 gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K", 3471 name(), old_mem_size/K, new_mem_size/K); 3472 } 3473 } 3474 3475 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) { 3476 assert_locked_or_safepoint(Heap_lock); 3477 size_t size = ReservedSpace::page_align_size_down(bytes); 3478 // Only shrink if a compaction was done so that all the free space 3479 // in the generation is in a contiguous block at the end. 3480 if (size > 0 && did_compact()) { 3481 shrink_by(size); 3482 } 3483 } 3484 3485 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) { 3486 assert_locked_or_safepoint(Heap_lock); 3487 bool result = _virtual_space.expand_by(bytes); 3488 if (result) { 3489 size_t new_word_size = 3490 heap_word_size(_virtual_space.committed_size()); 3491 MemRegion mr(_cmsSpace->bottom(), new_word_size); 3492 _bts->resize(new_word_size); // resize the block offset shared array 3493 Universe::heap()->barrier_set()->resize_covered_region(mr); 3494 // Hmmmm... why doesn't CFLS::set_end verify locking? 3495 // This is quite ugly; FIX ME XXX 3496 _cmsSpace->assert_locked(freelistLock()); 3497 _cmsSpace->set_end((HeapWord*)_virtual_space.high()); 3498 3499 // update the space and generation capacity counters 3500 if (UsePerfData) { 3501 _space_counters->update_capacity(); 3502 _gen_counters->update_all(); 3503 } 3504 3505 if (Verbose && PrintGC) { 3506 size_t new_mem_size = _virtual_space.committed_size(); 3507 size_t old_mem_size = new_mem_size - bytes; 3508 gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K", 3509 name(), old_mem_size/K, bytes/K, new_mem_size/K); 3510 } 3511 } 3512 return result; 3513 } 3514 3515 bool ConcurrentMarkSweepGeneration::grow_to_reserved() { 3516 assert_locked_or_safepoint(Heap_lock); 3517 bool success = true; 3518 const size_t remaining_bytes = _virtual_space.uncommitted_size(); 3519 if (remaining_bytes > 0) { 3520 success = grow_by(remaining_bytes); 3521 DEBUG_ONLY(if (!success) warning("grow to reserved failed");) 3522 } 3523 return success; 3524 } 3525 3526 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) { 3527 assert_locked_or_safepoint(Heap_lock); 3528 assert_lock_strong(freelistLock()); 3529 if (PrintGCDetails && Verbose) { 3530 warning("Shrinking of CMS not yet implemented"); 3531 } 3532 return; 3533 } 3534 3535 3536 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent 3537 // phases. 3538 class CMSPhaseAccounting: public StackObj { 3539 public: 3540 CMSPhaseAccounting(CMSCollector *collector, 3541 const char *phase, 3542 bool print_cr = true); 3543 ~CMSPhaseAccounting(); 3544 3545 private: 3546 CMSCollector *_collector; 3547 const char *_phase; 3548 elapsedTimer _wallclock; 3549 bool _print_cr; 3550 3551 public: 3552 // Not MT-safe; so do not pass around these StackObj's 3553 // where they may be accessed by other threads. 3554 jlong wallclock_millis() { 3555 assert(_wallclock.is_active(), "Wall clock should not stop"); 3556 _wallclock.stop(); // to record time 3557 jlong ret = _wallclock.milliseconds(); 3558 _wallclock.start(); // restart 3559 return ret; 3560 } 3561 }; 3562 3563 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector, 3564 const char *phase, 3565 bool print_cr) : 3566 _collector(collector), _phase(phase), _print_cr(print_cr) { 3567 3568 if (PrintCMSStatistics != 0) { 3569 _collector->resetYields(); 3570 } 3571 if (PrintGCDetails) { 3572 gclog_or_tty->date_stamp(PrintGCDateStamps); 3573 gclog_or_tty->stamp(PrintGCTimeStamps); 3574 gclog_or_tty->print_cr("[%s-concurrent-%s-start]", 3575 _collector->cmsGen()->short_name(), _phase); 3576 } 3577 _collector->resetTimer(); 3578 _wallclock.start(); 3579 _collector->startTimer(); 3580 } 3581 3582 CMSPhaseAccounting::~CMSPhaseAccounting() { 3583 assert(_wallclock.is_active(), "Wall clock should not have stopped"); 3584 _collector->stopTimer(); 3585 _wallclock.stop(); 3586 if (PrintGCDetails) { 3587 gclog_or_tty->date_stamp(PrintGCDateStamps); 3588 gclog_or_tty->stamp(PrintGCTimeStamps); 3589 gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]", 3590 _collector->cmsGen()->short_name(), 3591 _phase, _collector->timerValue(), _wallclock.seconds()); 3592 if (_print_cr) { 3593 gclog_or_tty->cr(); 3594 } 3595 if (PrintCMSStatistics != 0) { 3596 gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase, 3597 _collector->yields()); 3598 } 3599 } 3600 } 3601 3602 // CMS work 3603 3604 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask. 3605 class CMSParMarkTask : public AbstractGangTask { 3606 protected: 3607 CMSCollector* _collector; 3608 int _n_workers; 3609 CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) : 3610 AbstractGangTask(name), 3611 _collector(collector), 3612 _n_workers(n_workers) {} 3613 // Work method in support of parallel rescan ... of young gen spaces 3614 void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl, 3615 ContiguousSpace* space, 3616 HeapWord** chunk_array, size_t chunk_top); 3617 void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl); 3618 }; 3619 3620 // Parallel initial mark task 3621 class CMSParInitialMarkTask: public CMSParMarkTask { 3622 public: 3623 CMSParInitialMarkTask(CMSCollector* collector, int n_workers) : 3624 CMSParMarkTask("Scan roots and young gen for initial mark in parallel", 3625 collector, n_workers) {} 3626 void work(uint worker_id); 3627 }; 3628 3629 // Checkpoint the roots into this generation from outside 3630 // this generation. [Note this initial checkpoint need only 3631 // be approximate -- we'll do a catch up phase subsequently.] 3632 void CMSCollector::checkpointRootsInitial(bool asynch) { 3633 assert(_collectorState == InitialMarking, "Wrong collector state"); 3634 check_correct_thread_executing(); 3635 TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause()); 3636 3637 save_heap_summary(); 3638 report_heap_summary(GCWhen::BeforeGC); 3639 3640 ReferenceProcessor* rp = ref_processor(); 3641 SpecializationStats::clear(); 3642 assert(_restart_addr == NULL, "Control point invariant"); 3643 if (asynch) { 3644 // acquire locks for subsequent manipulations 3645 MutexLockerEx x(bitMapLock(), 3646 Mutex::_no_safepoint_check_flag); 3647 checkpointRootsInitialWork(asynch); 3648 // enable ("weak") refs discovery 3649 rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/); 3650 _collectorState = Marking; 3651 } else { 3652 // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection 3653 // which recognizes if we are a CMS generation, and doesn't try to turn on 3654 // discovery; verify that they aren't meddling. 3655 assert(!rp->discovery_is_atomic(), 3656 "incorrect setting of discovery predicate"); 3657 assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control " 3658 "ref discovery for this generation kind"); 3659 // already have locks 3660 checkpointRootsInitialWork(asynch); 3661 // now enable ("weak") refs discovery 3662 rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/); 3663 _collectorState = Marking; 3664 } 3665 SpecializationStats::print(); 3666 } 3667 3668 void CMSCollector::checkpointRootsInitialWork(bool asynch) { 3669 assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped"); 3670 assert(_collectorState == InitialMarking, "just checking"); 3671 3672 // If there has not been a GC[n-1] since last GC[n] cycle completed, 3673 // precede our marking with a collection of all 3674 // younger generations to keep floating garbage to a minimum. 3675 // XXX: we won't do this for now -- it's an optimization to be done later. 3676 3677 // already have locks 3678 assert_lock_strong(bitMapLock()); 3679 assert(_markBitMap.isAllClear(), "was reset at end of previous cycle"); 3680 3681 // Setup the verification and class unloading state for this 3682 // CMS collection cycle. 3683 setup_cms_unloading_and_verification_state(); 3684 3685 NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork", 3686 PrintGCDetails && Verbose, true, _gc_timer_cm);) 3687 if (UseAdaptiveSizePolicy) { 3688 size_policy()->checkpoint_roots_initial_begin(); 3689 } 3690 3691 // Reset all the PLAB chunk arrays if necessary. 3692 if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) { 3693 reset_survivor_plab_arrays(); 3694 } 3695 3696 ResourceMark rm; 3697 HandleMark hm; 3698 3699 MarkRefsIntoClosure notOlder(_span, &_markBitMap); 3700 GenCollectedHeap* gch = GenCollectedHeap::heap(); 3701 3702 verify_work_stacks_empty(); 3703 verify_overflow_empty(); 3704 3705 gch->ensure_parsability(false); // fill TLABs, but no need to retire them 3706 // Update the saved marks which may affect the root scans. 3707 gch->save_marks(); 3708 3709 // weak reference processing has not started yet. 3710 ref_processor()->set_enqueuing_is_done(false); 3711 3712 // Need to remember all newly created CLDs, 3713 // so that we can guarantee that the remark finds them. 3714 ClassLoaderDataGraph::remember_new_clds(true); 3715 3716 // Whenever a CLD is found, it will be claimed before proceeding to mark 3717 // the klasses. The claimed marks need to be cleared before marking starts. 3718 ClassLoaderDataGraph::clear_claimed_marks(); 3719 3720 if (CMSPrintEdenSurvivorChunks) { 3721 print_eden_and_survivor_chunk_arrays(); 3722 } 3723 3724 { 3725 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;) 3726 if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) { 3727 // The parallel version. 3728 FlexibleWorkGang* workers = gch->workers(); 3729 assert(workers != NULL, "Need parallel worker threads."); 3730 int n_workers = workers->active_workers(); 3731 CMSParInitialMarkTask tsk(this, n_workers); 3732 gch->set_par_threads(n_workers); 3733 initialize_sequential_subtasks_for_young_gen_rescan(n_workers); 3734 if (n_workers > 1) { 3735 GenCollectedHeap::StrongRootsScope srs(gch); 3736 workers->run_task(&tsk); 3737 } else { 3738 GenCollectedHeap::StrongRootsScope srs(gch); 3739 tsk.work(0); 3740 } 3741 gch->set_par_threads(0); 3742 } else { 3743 // The serial version. 3744 CMKlassClosure klass_closure(¬Older); 3745 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 3746 gch->gen_process_strong_roots(_cmsGen->level(), 3747 true, // younger gens are roots 3748 true, // activate StrongRootsScope 3749 SharedHeap::ScanningOption(roots_scanning_options()), 3750 ¬Older, 3751 NULL, 3752 &klass_closure); 3753 } 3754 } 3755 3756 // Clear mod-union table; it will be dirtied in the prologue of 3757 // CMS generation per each younger generation collection. 3758 3759 assert(_modUnionTable.isAllClear(), 3760 "Was cleared in most recent final checkpoint phase" 3761 " or no bits are set in the gc_prologue before the start of the next " 3762 "subsequent marking phase."); 3763 3764 assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be"); 3765 3766 // Save the end of the used_region of the constituent generations 3767 // to be used to limit the extent of sweep in each generation. 3768 save_sweep_limits(); 3769 if (UseAdaptiveSizePolicy) { 3770 size_policy()->checkpoint_roots_initial_end(gch->gc_cause()); 3771 } 3772 verify_overflow_empty(); 3773 } 3774 3775 bool CMSCollector::markFromRoots(bool asynch) { 3776 // we might be tempted to assert that: 3777 // assert(asynch == !SafepointSynchronize::is_at_safepoint(), 3778 // "inconsistent argument?"); 3779 // However that wouldn't be right, because it's possible that 3780 // a safepoint is indeed in progress as a younger generation 3781 // stop-the-world GC happens even as we mark in this generation. 3782 assert(_collectorState == Marking, "inconsistent state?"); 3783 check_correct_thread_executing(); 3784 verify_overflow_empty(); 3785 3786 bool res; 3787 if (asynch) { 3788 3789 // Start the timers for adaptive size policy for the concurrent phases 3790 // Do it here so that the foreground MS can use the concurrent 3791 // timer since a foreground MS might has the sweep done concurrently 3792 // or STW. 3793 if (UseAdaptiveSizePolicy) { 3794 size_policy()->concurrent_marking_begin(); 3795 } 3796 3797 // Weak ref discovery note: We may be discovering weak 3798 // refs in this generation concurrent (but interleaved) with 3799 // weak ref discovery by a younger generation collector. 3800 3801 CMSTokenSyncWithLocks ts(true, bitMapLock()); 3802 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 3803 CMSPhaseAccounting pa(this, "mark", !PrintGCDetails); 3804 res = markFromRootsWork(asynch); 3805 if (res) { 3806 _collectorState = Precleaning; 3807 } else { // We failed and a foreground collection wants to take over 3808 assert(_foregroundGCIsActive, "internal state inconsistency"); 3809 assert(_restart_addr == NULL, "foreground will restart from scratch"); 3810 if (PrintGCDetails) { 3811 gclog_or_tty->print_cr("bailing out to foreground collection"); 3812 } 3813 } 3814 if (UseAdaptiveSizePolicy) { 3815 size_policy()->concurrent_marking_end(); 3816 } 3817 } else { 3818 assert(SafepointSynchronize::is_at_safepoint(), 3819 "inconsistent with asynch == false"); 3820 if (UseAdaptiveSizePolicy) { 3821 size_policy()->ms_collection_marking_begin(); 3822 } 3823 // already have locks 3824 res = markFromRootsWork(asynch); 3825 _collectorState = FinalMarking; 3826 if (UseAdaptiveSizePolicy) { 3827 GenCollectedHeap* gch = GenCollectedHeap::heap(); 3828 size_policy()->ms_collection_marking_end(gch->gc_cause()); 3829 } 3830 } 3831 verify_overflow_empty(); 3832 return res; 3833 } 3834 3835 bool CMSCollector::markFromRootsWork(bool asynch) { 3836 // iterate over marked bits in bit map, doing a full scan and mark 3837 // from these roots using the following algorithm: 3838 // . if oop is to the right of the current scan pointer, 3839 // mark corresponding bit (we'll process it later) 3840 // . else (oop is to left of current scan pointer) 3841 // push oop on marking stack 3842 // . drain the marking stack 3843 3844 // Note that when we do a marking step we need to hold the 3845 // bit map lock -- recall that direct allocation (by mutators) 3846 // and promotion (by younger generation collectors) is also 3847 // marking the bit map. [the so-called allocate live policy.] 3848 // Because the implementation of bit map marking is not 3849 // robust wrt simultaneous marking of bits in the same word, 3850 // we need to make sure that there is no such interference 3851 // between concurrent such updates. 3852 3853 // already have locks 3854 assert_lock_strong(bitMapLock()); 3855 3856 verify_work_stacks_empty(); 3857 verify_overflow_empty(); 3858 bool result = false; 3859 if (CMSConcurrentMTEnabled && ConcGCThreads > 0) { 3860 result = do_marking_mt(asynch); 3861 } else { 3862 result = do_marking_st(asynch); 3863 } 3864 return result; 3865 } 3866 3867 // Forward decl 3868 class CMSConcMarkingTask; 3869 3870 class CMSConcMarkingTerminator: public ParallelTaskTerminator { 3871 CMSCollector* _collector; 3872 CMSConcMarkingTask* _task; 3873 public: 3874 virtual void yield(); 3875 3876 // "n_threads" is the number of threads to be terminated. 3877 // "queue_set" is a set of work queues of other threads. 3878 // "collector" is the CMS collector associated with this task terminator. 3879 // "yield" indicates whether we need the gang as a whole to yield. 3880 CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) : 3881 ParallelTaskTerminator(n_threads, queue_set), 3882 _collector(collector) { } 3883 3884 void set_task(CMSConcMarkingTask* task) { 3885 _task = task; 3886 } 3887 }; 3888 3889 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator { 3890 CMSConcMarkingTask* _task; 3891 public: 3892 bool should_exit_termination(); 3893 void set_task(CMSConcMarkingTask* task) { 3894 _task = task; 3895 } 3896 }; 3897 3898 // MT Concurrent Marking Task 3899 class CMSConcMarkingTask: public YieldingFlexibleGangTask { 3900 CMSCollector* _collector; 3901 int _n_workers; // requested/desired # workers 3902 bool _asynch; 3903 bool _result; 3904 CompactibleFreeListSpace* _cms_space; 3905 char _pad_front[64]; // padding to ... 3906 HeapWord* _global_finger; // ... avoid sharing cache line 3907 char _pad_back[64]; 3908 HeapWord* _restart_addr; 3909 3910 // Exposed here for yielding support 3911 Mutex* const _bit_map_lock; 3912 3913 // The per thread work queues, available here for stealing 3914 OopTaskQueueSet* _task_queues; 3915 3916 // Termination (and yielding) support 3917 CMSConcMarkingTerminator _term; 3918 CMSConcMarkingTerminatorTerminator _term_term; 3919 3920 public: 3921 CMSConcMarkingTask(CMSCollector* collector, 3922 CompactibleFreeListSpace* cms_space, 3923 bool asynch, 3924 YieldingFlexibleWorkGang* workers, 3925 OopTaskQueueSet* task_queues): 3926 YieldingFlexibleGangTask("Concurrent marking done multi-threaded"), 3927 _collector(collector), 3928 _cms_space(cms_space), 3929 _asynch(asynch), _n_workers(0), _result(true), 3930 _task_queues(task_queues), 3931 _term(_n_workers, task_queues, _collector), 3932 _bit_map_lock(collector->bitMapLock()) 3933 { 3934 _requested_size = _n_workers; 3935 _term.set_task(this); 3936 _term_term.set_task(this); 3937 _restart_addr = _global_finger = _cms_space->bottom(); 3938 } 3939 3940 3941 OopTaskQueueSet* task_queues() { return _task_queues; } 3942 3943 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 3944 3945 HeapWord** global_finger_addr() { return &_global_finger; } 3946 3947 CMSConcMarkingTerminator* terminator() { return &_term; } 3948 3949 virtual void set_for_termination(int active_workers) { 3950 terminator()->reset_for_reuse(active_workers); 3951 } 3952 3953 void work(uint worker_id); 3954 bool should_yield() { 3955 return ConcurrentMarkSweepThread::should_yield() 3956 && !_collector->foregroundGCIsActive() 3957 && _asynch; 3958 } 3959 3960 virtual void coordinator_yield(); // stuff done by coordinator 3961 bool result() { return _result; } 3962 3963 void reset(HeapWord* ra) { 3964 assert(_global_finger >= _cms_space->end(), "Postcondition of ::work(i)"); 3965 _restart_addr = _global_finger = ra; 3966 _term.reset_for_reuse(); 3967 } 3968 3969 static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk, 3970 OopTaskQueue* work_q); 3971 3972 private: 3973 void do_scan_and_mark(int i, CompactibleFreeListSpace* sp); 3974 void do_work_steal(int i); 3975 void bump_global_finger(HeapWord* f); 3976 }; 3977 3978 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() { 3979 assert(_task != NULL, "Error"); 3980 return _task->yielding(); 3981 // Note that we do not need the disjunct || _task->should_yield() above 3982 // because we want terminating threads to yield only if the task 3983 // is already in the midst of yielding, which happens only after at least one 3984 // thread has yielded. 3985 } 3986 3987 void CMSConcMarkingTerminator::yield() { 3988 if (_task->should_yield()) { 3989 _task->yield(); 3990 } else { 3991 ParallelTaskTerminator::yield(); 3992 } 3993 } 3994 3995 //////////////////////////////////////////////////////////////// 3996 // Concurrent Marking Algorithm Sketch 3997 //////////////////////////////////////////////////////////////// 3998 // Until all tasks exhausted (both spaces): 3999 // -- claim next available chunk 4000 // -- bump global finger via CAS 4001 // -- find first object that starts in this chunk 4002 // and start scanning bitmap from that position 4003 // -- scan marked objects for oops 4004 // -- CAS-mark target, and if successful: 4005 // . if target oop is above global finger (volatile read) 4006 // nothing to do 4007 // . if target oop is in chunk and above local finger 4008 // then nothing to do 4009 // . else push on work-queue 4010 // -- Deal with possible overflow issues: 4011 // . local work-queue overflow causes stuff to be pushed on 4012 // global (common) overflow queue 4013 // . always first empty local work queue 4014 // . then get a batch of oops from global work queue if any 4015 // . then do work stealing 4016 // -- When all tasks claimed (both spaces) 4017 // and local work queue empty, 4018 // then in a loop do: 4019 // . check global overflow stack; steal a batch of oops and trace 4020 // . try to steal from other threads oif GOS is empty 4021 // . if neither is available, offer termination 4022 // -- Terminate and return result 4023 // 4024 void CMSConcMarkingTask::work(uint worker_id) { 4025 elapsedTimer _timer; 4026 ResourceMark rm; 4027 HandleMark hm; 4028 4029 DEBUG_ONLY(_collector->verify_overflow_empty();) 4030 4031 // Before we begin work, our work queue should be empty 4032 assert(work_queue(worker_id)->size() == 0, "Expected to be empty"); 4033 // Scan the bitmap covering _cms_space, tracing through grey objects. 4034 _timer.start(); 4035 do_scan_and_mark(worker_id, _cms_space); 4036 _timer.stop(); 4037 if (PrintCMSStatistics != 0) { 4038 gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec", 4039 worker_id, _timer.seconds()); 4040 // XXX: need xxx/xxx type of notation, two timers 4041 } 4042 4043 // ... do work stealing 4044 _timer.reset(); 4045 _timer.start(); 4046 do_work_steal(worker_id); 4047 _timer.stop(); 4048 if (PrintCMSStatistics != 0) { 4049 gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec", 4050 worker_id, _timer.seconds()); 4051 // XXX: need xxx/xxx type of notation, two timers 4052 } 4053 assert(_collector->_markStack.isEmpty(), "Should have been emptied"); 4054 assert(work_queue(worker_id)->size() == 0, "Should have been emptied"); 4055 // Note that under the current task protocol, the 4056 // following assertion is true even of the spaces 4057 // expanded since the completion of the concurrent 4058 // marking. XXX This will likely change under a strict 4059 // ABORT semantics. 4060 // After perm removal the comparison was changed to 4061 // greater than or equal to from strictly greater than. 4062 // Before perm removal the highest address sweep would 4063 // have been at the end of perm gen but now is at the 4064 // end of the tenured gen. 4065 assert(_global_finger >= _cms_space->end(), 4066 "All tasks have been completed"); 4067 DEBUG_ONLY(_collector->verify_overflow_empty();) 4068 } 4069 4070 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) { 4071 HeapWord* read = _global_finger; 4072 HeapWord* cur = read; 4073 while (f > read) { 4074 cur = read; 4075 read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur); 4076 if (cur == read) { 4077 // our cas succeeded 4078 assert(_global_finger >= f, "protocol consistency"); 4079 break; 4080 } 4081 } 4082 } 4083 4084 // This is really inefficient, and should be redone by 4085 // using (not yet available) block-read and -write interfaces to the 4086 // stack and the work_queue. XXX FIX ME !!! 4087 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk, 4088 OopTaskQueue* work_q) { 4089 // Fast lock-free check 4090 if (ovflw_stk->length() == 0) { 4091 return false; 4092 } 4093 assert(work_q->size() == 0, "Shouldn't steal"); 4094 MutexLockerEx ml(ovflw_stk->par_lock(), 4095 Mutex::_no_safepoint_check_flag); 4096 // Grab up to 1/4 the size of the work queue 4097 size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 4098 (size_t)ParGCDesiredObjsFromOverflowList); 4099 num = MIN2(num, ovflw_stk->length()); 4100 for (int i = (int) num; i > 0; i--) { 4101 oop cur = ovflw_stk->pop(); 4102 assert(cur != NULL, "Counted wrong?"); 4103 work_q->push(cur); 4104 } 4105 return num > 0; 4106 } 4107 4108 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) { 4109 SequentialSubTasksDone* pst = sp->conc_par_seq_tasks(); 4110 int n_tasks = pst->n_tasks(); 4111 // We allow that there may be no tasks to do here because 4112 // we are restarting after a stack overflow. 4113 assert(pst->valid() || n_tasks == 0, "Uninitialized use?"); 4114 uint nth_task = 0; 4115 4116 HeapWord* aligned_start = sp->bottom(); 4117 if (sp->used_region().contains(_restart_addr)) { 4118 // Align down to a card boundary for the start of 0th task 4119 // for this space. 4120 aligned_start = 4121 (HeapWord*)align_size_down((uintptr_t)_restart_addr, 4122 CardTableModRefBS::card_size); 4123 } 4124 4125 size_t chunk_size = sp->marking_task_size(); 4126 while (!pst->is_task_claimed(/* reference */ nth_task)) { 4127 // Having claimed the nth task in this space, 4128 // compute the chunk that it corresponds to: 4129 MemRegion span = MemRegion(aligned_start + nth_task*chunk_size, 4130 aligned_start + (nth_task+1)*chunk_size); 4131 // Try and bump the global finger via a CAS; 4132 // note that we need to do the global finger bump 4133 // _before_ taking the intersection below, because 4134 // the task corresponding to that region will be 4135 // deemed done even if the used_region() expands 4136 // because of allocation -- as it almost certainly will 4137 // during start-up while the threads yield in the 4138 // closure below. 4139 HeapWord* finger = span.end(); 4140 bump_global_finger(finger); // atomically 4141 // There are null tasks here corresponding to chunks 4142 // beyond the "top" address of the space. 4143 span = span.intersection(sp->used_region()); 4144 if (!span.is_empty()) { // Non-null task 4145 HeapWord* prev_obj; 4146 assert(!span.contains(_restart_addr) || nth_task == 0, 4147 "Inconsistency"); 4148 if (nth_task == 0) { 4149 // For the 0th task, we'll not need to compute a block_start. 4150 if (span.contains(_restart_addr)) { 4151 // In the case of a restart because of stack overflow, 4152 // we might additionally skip a chunk prefix. 4153 prev_obj = _restart_addr; 4154 } else { 4155 prev_obj = span.start(); 4156 } 4157 } else { 4158 // We want to skip the first object because 4159 // the protocol is to scan any object in its entirety 4160 // that _starts_ in this span; a fortiori, any 4161 // object starting in an earlier span is scanned 4162 // as part of an earlier claimed task. 4163 // Below we use the "careful" version of block_start 4164 // so we do not try to navigate uninitialized objects. 4165 prev_obj = sp->block_start_careful(span.start()); 4166 // Below we use a variant of block_size that uses the 4167 // Printezis bits to avoid waiting for allocated 4168 // objects to become initialized/parsable. 4169 while (prev_obj < span.start()) { 4170 size_t sz = sp->block_size_no_stall(prev_obj, _collector); 4171 if (sz > 0) { 4172 prev_obj += sz; 4173 } else { 4174 // In this case we may end up doing a bit of redundant 4175 // scanning, but that appears unavoidable, short of 4176 // locking the free list locks; see bug 6324141. 4177 break; 4178 } 4179 } 4180 } 4181 if (prev_obj < span.end()) { 4182 MemRegion my_span = MemRegion(prev_obj, span.end()); 4183 // Do the marking work within a non-empty span -- 4184 // the last argument to the constructor indicates whether the 4185 // iteration should be incremental with periodic yields. 4186 Par_MarkFromRootsClosure cl(this, _collector, my_span, 4187 &_collector->_markBitMap, 4188 work_queue(i), 4189 &_collector->_markStack, 4190 _asynch); 4191 _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end()); 4192 } // else nothing to do for this task 4193 } // else nothing to do for this task 4194 } 4195 // We'd be tempted to assert here that since there are no 4196 // more tasks left to claim in this space, the global_finger 4197 // must exceed space->top() and a fortiori space->end(). However, 4198 // that would not quite be correct because the bumping of 4199 // global_finger occurs strictly after the claiming of a task, 4200 // so by the time we reach here the global finger may not yet 4201 // have been bumped up by the thread that claimed the last 4202 // task. 4203 pst->all_tasks_completed(); 4204 } 4205 4206 class Par_ConcMarkingClosure: public CMSOopClosure { 4207 private: 4208 CMSCollector* _collector; 4209 CMSConcMarkingTask* _task; 4210 MemRegion _span; 4211 CMSBitMap* _bit_map; 4212 CMSMarkStack* _overflow_stack; 4213 OopTaskQueue* _work_queue; 4214 protected: 4215 DO_OOP_WORK_DEFN 4216 public: 4217 Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue, 4218 CMSBitMap* bit_map, CMSMarkStack* overflow_stack): 4219 CMSOopClosure(collector->ref_processor()), 4220 _collector(collector), 4221 _task(task), 4222 _span(collector->_span), 4223 _work_queue(work_queue), 4224 _bit_map(bit_map), 4225 _overflow_stack(overflow_stack) 4226 { } 4227 virtual void do_oop(oop* p); 4228 virtual void do_oop(narrowOop* p); 4229 4230 void trim_queue(size_t max); 4231 void handle_stack_overflow(HeapWord* lost); 4232 void do_yield_check() { 4233 if (_task->should_yield()) { 4234 _task->yield(); 4235 } 4236 } 4237 }; 4238 4239 // Grey object scanning during work stealing phase -- 4240 // the salient assumption here is that any references 4241 // that are in these stolen objects being scanned must 4242 // already have been initialized (else they would not have 4243 // been published), so we do not need to check for 4244 // uninitialized objects before pushing here. 4245 void Par_ConcMarkingClosure::do_oop(oop obj) { 4246 assert(obj->is_oop_or_null(true), "expected an oop or NULL"); 4247 HeapWord* addr = (HeapWord*)obj; 4248 // Check if oop points into the CMS generation 4249 // and is not marked 4250 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 4251 // a white object ... 4252 // If we manage to "claim" the object, by being the 4253 // first thread to mark it, then we push it on our 4254 // marking stack 4255 if (_bit_map->par_mark(addr)) { // ... now grey 4256 // push on work queue (grey set) 4257 bool simulate_overflow = false; 4258 NOT_PRODUCT( 4259 if (CMSMarkStackOverflowALot && 4260 _collector->simulate_overflow()) { 4261 // simulate a stack overflow 4262 simulate_overflow = true; 4263 } 4264 ) 4265 if (simulate_overflow || 4266 !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) { 4267 // stack overflow 4268 if (PrintCMSStatistics != 0) { 4269 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 4270 SIZE_FORMAT, _overflow_stack->capacity()); 4271 } 4272 // We cannot assert that the overflow stack is full because 4273 // it may have been emptied since. 4274 assert(simulate_overflow || 4275 _work_queue->size() == _work_queue->max_elems(), 4276 "Else push should have succeeded"); 4277 handle_stack_overflow(addr); 4278 } 4279 } // Else, some other thread got there first 4280 do_yield_check(); 4281 } 4282 } 4283 4284 void Par_ConcMarkingClosure::do_oop(oop* p) { Par_ConcMarkingClosure::do_oop_work(p); } 4285 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); } 4286 4287 void Par_ConcMarkingClosure::trim_queue(size_t max) { 4288 while (_work_queue->size() > max) { 4289 oop new_oop; 4290 if (_work_queue->pop_local(new_oop)) { 4291 assert(new_oop->is_oop(), "Should be an oop"); 4292 assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object"); 4293 assert(_span.contains((HeapWord*)new_oop), "Not in span"); 4294 new_oop->oop_iterate(this); // do_oop() above 4295 do_yield_check(); 4296 } 4297 } 4298 } 4299 4300 // Upon stack overflow, we discard (part of) the stack, 4301 // remembering the least address amongst those discarded 4302 // in CMSCollector's _restart_address. 4303 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) { 4304 // We need to do this under a mutex to prevent other 4305 // workers from interfering with the work done below. 4306 MutexLockerEx ml(_overflow_stack->par_lock(), 4307 Mutex::_no_safepoint_check_flag); 4308 // Remember the least grey address discarded 4309 HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost); 4310 _collector->lower_restart_addr(ra); 4311 _overflow_stack->reset(); // discard stack contents 4312 _overflow_stack->expand(); // expand the stack if possible 4313 } 4314 4315 4316 void CMSConcMarkingTask::do_work_steal(int i) { 4317 OopTaskQueue* work_q = work_queue(i); 4318 oop obj_to_scan; 4319 CMSBitMap* bm = &(_collector->_markBitMap); 4320 CMSMarkStack* ovflw = &(_collector->_markStack); 4321 int* seed = _collector->hash_seed(i); 4322 Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw); 4323 while (true) { 4324 cl.trim_queue(0); 4325 assert(work_q->size() == 0, "Should have been emptied above"); 4326 if (get_work_from_overflow_stack(ovflw, work_q)) { 4327 // Can't assert below because the work obtained from the 4328 // overflow stack may already have been stolen from us. 4329 // assert(work_q->size() > 0, "Work from overflow stack"); 4330 continue; 4331 } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 4332 assert(obj_to_scan->is_oop(), "Should be an oop"); 4333 assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object"); 4334 obj_to_scan->oop_iterate(&cl); 4335 } else if (terminator()->offer_termination(&_term_term)) { 4336 assert(work_q->size() == 0, "Impossible!"); 4337 break; 4338 } else if (yielding() || should_yield()) { 4339 yield(); 4340 } 4341 } 4342 } 4343 4344 // This is run by the CMS (coordinator) thread. 4345 void CMSConcMarkingTask::coordinator_yield() { 4346 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 4347 "CMS thread should hold CMS token"); 4348 // First give up the locks, then yield, then re-lock 4349 // We should probably use a constructor/destructor idiom to 4350 // do this unlock/lock or modify the MutexUnlocker class to 4351 // serve our purpose. XXX 4352 assert_lock_strong(_bit_map_lock); 4353 _bit_map_lock->unlock(); 4354 ConcurrentMarkSweepThread::desynchronize(true); 4355 ConcurrentMarkSweepThread::acknowledge_yield_request(); 4356 _collector->stopTimer(); 4357 if (PrintCMSStatistics != 0) { 4358 _collector->incrementYields(); 4359 } 4360 _collector->icms_wait(); 4361 4362 // It is possible for whichever thread initiated the yield request 4363 // not to get a chance to wake up and take the bitmap lock between 4364 // this thread releasing it and reacquiring it. So, while the 4365 // should_yield() flag is on, let's sleep for a bit to give the 4366 // other thread a chance to wake up. The limit imposed on the number 4367 // of iterations is defensive, to avoid any unforseen circumstances 4368 // putting us into an infinite loop. Since it's always been this 4369 // (coordinator_yield()) method that was observed to cause the 4370 // problem, we are using a parameter (CMSCoordinatorYieldSleepCount) 4371 // which is by default non-zero. For the other seven methods that 4372 // also perform the yield operation, as are using a different 4373 // parameter (CMSYieldSleepCount) which is by default zero. This way we 4374 // can enable the sleeping for those methods too, if necessary. 4375 // See 6442774. 4376 // 4377 // We really need to reconsider the synchronization between the GC 4378 // thread and the yield-requesting threads in the future and we 4379 // should really use wait/notify, which is the recommended 4380 // way of doing this type of interaction. Additionally, we should 4381 // consolidate the eight methods that do the yield operation and they 4382 // are almost identical into one for better maintainability and 4383 // readability. See 6445193. 4384 // 4385 // Tony 2006.06.29 4386 for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount && 4387 ConcurrentMarkSweepThread::should_yield() && 4388 !CMSCollector::foregroundGCIsActive(); ++i) { 4389 os::sleep(Thread::current(), 1, false); 4390 ConcurrentMarkSweepThread::acknowledge_yield_request(); 4391 } 4392 4393 ConcurrentMarkSweepThread::synchronize(true); 4394 _bit_map_lock->lock_without_safepoint_check(); 4395 _collector->startTimer(); 4396 } 4397 4398 bool CMSCollector::do_marking_mt(bool asynch) { 4399 assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition"); 4400 int num_workers = AdaptiveSizePolicy::calc_active_conc_workers( 4401 conc_workers()->total_workers(), 4402 conc_workers()->active_workers(), 4403 Threads::number_of_non_daemon_threads()); 4404 conc_workers()->set_active_workers(num_workers); 4405 4406 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 4407 4408 CMSConcMarkingTask tsk(this, 4409 cms_space, 4410 asynch, 4411 conc_workers(), 4412 task_queues()); 4413 4414 // Since the actual number of workers we get may be different 4415 // from the number we requested above, do we need to do anything different 4416 // below? In particular, may be we need to subclass the SequantialSubTasksDone 4417 // class?? XXX 4418 cms_space ->initialize_sequential_subtasks_for_marking(num_workers); 4419 4420 // Refs discovery is already non-atomic. 4421 assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic"); 4422 assert(ref_processor()->discovery_is_mt(), "Discovery should be MT"); 4423 conc_workers()->start_task(&tsk); 4424 while (tsk.yielded()) { 4425 tsk.coordinator_yield(); 4426 conc_workers()->continue_task(&tsk); 4427 } 4428 // If the task was aborted, _restart_addr will be non-NULL 4429 assert(tsk.completed() || _restart_addr != NULL, "Inconsistency"); 4430 while (_restart_addr != NULL) { 4431 // XXX For now we do not make use of ABORTED state and have not 4432 // yet implemented the right abort semantics (even in the original 4433 // single-threaded CMS case). That needs some more investigation 4434 // and is deferred for now; see CR# TBF. 07252005YSR. XXX 4435 assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency"); 4436 // If _restart_addr is non-NULL, a marking stack overflow 4437 // occurred; we need to do a fresh marking iteration from the 4438 // indicated restart address. 4439 if (_foregroundGCIsActive && asynch) { 4440 // We may be running into repeated stack overflows, having 4441 // reached the limit of the stack size, while making very 4442 // slow forward progress. It may be best to bail out and 4443 // let the foreground collector do its job. 4444 // Clear _restart_addr, so that foreground GC 4445 // works from scratch. This avoids the headache of 4446 // a "rescan" which would otherwise be needed because 4447 // of the dirty mod union table & card table. 4448 _restart_addr = NULL; 4449 return false; 4450 } 4451 // Adjust the task to restart from _restart_addr 4452 tsk.reset(_restart_addr); 4453 cms_space ->initialize_sequential_subtasks_for_marking(num_workers, 4454 _restart_addr); 4455 _restart_addr = NULL; 4456 // Get the workers going again 4457 conc_workers()->start_task(&tsk); 4458 while (tsk.yielded()) { 4459 tsk.coordinator_yield(); 4460 conc_workers()->continue_task(&tsk); 4461 } 4462 } 4463 assert(tsk.completed(), "Inconsistency"); 4464 assert(tsk.result() == true, "Inconsistency"); 4465 return true; 4466 } 4467 4468 bool CMSCollector::do_marking_st(bool asynch) { 4469 ResourceMark rm; 4470 HandleMark hm; 4471 4472 // Temporarily make refs discovery single threaded (non-MT) 4473 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false); 4474 MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap, 4475 &_markStack, CMSYield && asynch); 4476 // the last argument to iterate indicates whether the iteration 4477 // should be incremental with periodic yields. 4478 _markBitMap.iterate(&markFromRootsClosure); 4479 // If _restart_addr is non-NULL, a marking stack overflow 4480 // occurred; we need to do a fresh iteration from the 4481 // indicated restart address. 4482 while (_restart_addr != NULL) { 4483 if (_foregroundGCIsActive && asynch) { 4484 // We may be running into repeated stack overflows, having 4485 // reached the limit of the stack size, while making very 4486 // slow forward progress. It may be best to bail out and 4487 // let the foreground collector do its job. 4488 // Clear _restart_addr, so that foreground GC 4489 // works from scratch. This avoids the headache of 4490 // a "rescan" which would otherwise be needed because 4491 // of the dirty mod union table & card table. 4492 _restart_addr = NULL; 4493 return false; // indicating failure to complete marking 4494 } 4495 // Deal with stack overflow: 4496 // we restart marking from _restart_addr 4497 HeapWord* ra = _restart_addr; 4498 markFromRootsClosure.reset(ra); 4499 _restart_addr = NULL; 4500 _markBitMap.iterate(&markFromRootsClosure, ra, _span.end()); 4501 } 4502 return true; 4503 } 4504 4505 void CMSCollector::preclean() { 4506 check_correct_thread_executing(); 4507 assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread"); 4508 verify_work_stacks_empty(); 4509 verify_overflow_empty(); 4510 _abort_preclean = false; 4511 if (CMSPrecleaningEnabled) { 4512 if (!CMSEdenChunksRecordAlways) { 4513 _eden_chunk_index = 0; 4514 } 4515 size_t used = get_eden_used(); 4516 size_t capacity = get_eden_capacity(); 4517 // Don't start sampling unless we will get sufficiently 4518 // many samples. 4519 if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100) 4520 * CMSScheduleRemarkEdenPenetration)) { 4521 _start_sampling = true; 4522 } else { 4523 _start_sampling = false; 4524 } 4525 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 4526 CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails); 4527 preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1); 4528 } 4529 CMSTokenSync x(true); // is cms thread 4530 if (CMSPrecleaningEnabled) { 4531 sample_eden(); 4532 _collectorState = AbortablePreclean; 4533 } else { 4534 _collectorState = FinalMarking; 4535 } 4536 verify_work_stacks_empty(); 4537 verify_overflow_empty(); 4538 } 4539 4540 // Try and schedule the remark such that young gen 4541 // occupancy is CMSScheduleRemarkEdenPenetration %. 4542 void CMSCollector::abortable_preclean() { 4543 check_correct_thread_executing(); 4544 assert(CMSPrecleaningEnabled, "Inconsistent control state"); 4545 assert(_collectorState == AbortablePreclean, "Inconsistent control state"); 4546 4547 // If Eden's current occupancy is below this threshold, 4548 // immediately schedule the remark; else preclean 4549 // past the next scavenge in an effort to 4550 // schedule the pause as described above. By choosing 4551 // CMSScheduleRemarkEdenSizeThreshold >= max eden size 4552 // we will never do an actual abortable preclean cycle. 4553 if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) { 4554 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 4555 CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails); 4556 // We need more smarts in the abortable preclean 4557 // loop below to deal with cases where allocation 4558 // in young gen is very very slow, and our precleaning 4559 // is running a losing race against a horde of 4560 // mutators intent on flooding us with CMS updates 4561 // (dirty cards). 4562 // One, admittedly dumb, strategy is to give up 4563 // after a certain number of abortable precleaning loops 4564 // or after a certain maximum time. We want to make 4565 // this smarter in the next iteration. 4566 // XXX FIX ME!!! YSR 4567 size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0; 4568 while (!(should_abort_preclean() || 4569 ConcurrentMarkSweepThread::should_terminate())) { 4570 workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2); 4571 cumworkdone += workdone; 4572 loops++; 4573 // Voluntarily terminate abortable preclean phase if we have 4574 // been at it for too long. 4575 if ((CMSMaxAbortablePrecleanLoops != 0) && 4576 loops >= CMSMaxAbortablePrecleanLoops) { 4577 if (PrintGCDetails) { 4578 gclog_or_tty->print(" CMS: abort preclean due to loops "); 4579 } 4580 break; 4581 } 4582 if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) { 4583 if (PrintGCDetails) { 4584 gclog_or_tty->print(" CMS: abort preclean due to time "); 4585 } 4586 break; 4587 } 4588 // If we are doing little work each iteration, we should 4589 // take a short break. 4590 if (workdone < CMSAbortablePrecleanMinWorkPerIteration) { 4591 // Sleep for some time, waiting for work to accumulate 4592 stopTimer(); 4593 cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis); 4594 startTimer(); 4595 waited++; 4596 } 4597 } 4598 if (PrintCMSStatistics > 0) { 4599 gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ", 4600 loops, waited, cumworkdone); 4601 } 4602 } 4603 CMSTokenSync x(true); // is cms thread 4604 if (_collectorState != Idling) { 4605 assert(_collectorState == AbortablePreclean, 4606 "Spontaneous state transition?"); 4607 _collectorState = FinalMarking; 4608 } // Else, a foreground collection completed this CMS cycle. 4609 return; 4610 } 4611 4612 // Respond to an Eden sampling opportunity 4613 void CMSCollector::sample_eden() { 4614 // Make sure a young gc cannot sneak in between our 4615 // reading and recording of a sample. 4616 assert(Thread::current()->is_ConcurrentGC_thread(), 4617 "Only the cms thread may collect Eden samples"); 4618 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 4619 "Should collect samples while holding CMS token"); 4620 if (!_start_sampling) { 4621 return; 4622 } 4623 // When CMSEdenChunksRecordAlways is true, the eden chunk array 4624 // is populated by the young generation. 4625 if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) { 4626 if (_eden_chunk_index < _eden_chunk_capacity) { 4627 _eden_chunk_array[_eden_chunk_index] = *_top_addr; // take sample 4628 assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr, 4629 "Unexpected state of Eden"); 4630 // We'd like to check that what we just sampled is an oop-start address; 4631 // however, we cannot do that here since the object may not yet have been 4632 // initialized. So we'll instead do the check when we _use_ this sample 4633 // later. 4634 if (_eden_chunk_index == 0 || 4635 (pointer_delta(_eden_chunk_array[_eden_chunk_index], 4636 _eden_chunk_array[_eden_chunk_index-1]) 4637 >= CMSSamplingGrain)) { 4638 _eden_chunk_index++; // commit sample 4639 } 4640 } 4641 } 4642 if ((_collectorState == AbortablePreclean) && !_abort_preclean) { 4643 size_t used = get_eden_used(); 4644 size_t capacity = get_eden_capacity(); 4645 assert(used <= capacity, "Unexpected state of Eden"); 4646 if (used > (capacity/100 * CMSScheduleRemarkEdenPenetration)) { 4647 _abort_preclean = true; 4648 } 4649 } 4650 } 4651 4652 4653 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) { 4654 assert(_collectorState == Precleaning || 4655 _collectorState == AbortablePreclean, "incorrect state"); 4656 ResourceMark rm; 4657 HandleMark hm; 4658 4659 // Precleaning is currently not MT but the reference processor 4660 // may be set for MT. Disable it temporarily here. 4661 ReferenceProcessor* rp = ref_processor(); 4662 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false); 4663 4664 // Do one pass of scrubbing the discovered reference lists 4665 // to remove any reference objects with strongly-reachable 4666 // referents. 4667 if (clean_refs) { 4668 CMSPrecleanRefsYieldClosure yield_cl(this); 4669 assert(rp->span().equals(_span), "Spans should be equal"); 4670 CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap, 4671 &_markStack, true /* preclean */); 4672 CMSDrainMarkingStackClosure complete_trace(this, 4673 _span, &_markBitMap, &_markStack, 4674 &keep_alive, true /* preclean */); 4675 4676 // We don't want this step to interfere with a young 4677 // collection because we don't want to take CPU 4678 // or memory bandwidth away from the young GC threads 4679 // (which may be as many as there are CPUs). 4680 // Note that we don't need to protect ourselves from 4681 // interference with mutators because they can't 4682 // manipulate the discovered reference lists nor affect 4683 // the computed reachability of the referents, the 4684 // only properties manipulated by the precleaning 4685 // of these reference lists. 4686 stopTimer(); 4687 CMSTokenSyncWithLocks x(true /* is cms thread */, 4688 bitMapLock()); 4689 startTimer(); 4690 sample_eden(); 4691 4692 // The following will yield to allow foreground 4693 // collection to proceed promptly. XXX YSR: 4694 // The code in this method may need further 4695 // tweaking for better performance and some restructuring 4696 // for cleaner interfaces. 4697 GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases 4698 rp->preclean_discovered_references( 4699 rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl, 4700 gc_timer); 4701 } 4702 4703 if (clean_survivor) { // preclean the active survivor space(s) 4704 assert(_young_gen->kind() == Generation::DefNew || 4705 _young_gen->kind() == Generation::ParNew || 4706 _young_gen->kind() == Generation::ASParNew, 4707 "incorrect type for cast"); 4708 DefNewGeneration* dng = (DefNewGeneration*)_young_gen; 4709 PushAndMarkClosure pam_cl(this, _span, ref_processor(), 4710 &_markBitMap, &_modUnionTable, 4711 &_markStack, true /* precleaning phase */); 4712 stopTimer(); 4713 CMSTokenSyncWithLocks ts(true /* is cms thread */, 4714 bitMapLock()); 4715 startTimer(); 4716 unsigned int before_count = 4717 GenCollectedHeap::heap()->total_collections(); 4718 SurvivorSpacePrecleanClosure 4719 sss_cl(this, _span, &_markBitMap, &_markStack, 4720 &pam_cl, before_count, CMSYield); 4721 dng->from()->object_iterate_careful(&sss_cl); 4722 dng->to()->object_iterate_careful(&sss_cl); 4723 } 4724 MarkRefsIntoAndScanClosure 4725 mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable, 4726 &_markStack, this, CMSYield, 4727 true /* precleaning phase */); 4728 // CAUTION: The following closure has persistent state that may need to 4729 // be reset upon a decrease in the sequence of addresses it 4730 // processes. 4731 ScanMarkedObjectsAgainCarefullyClosure 4732 smoac_cl(this, _span, 4733 &_markBitMap, &_markStack, &mrias_cl, CMSYield); 4734 4735 // Preclean dirty cards in ModUnionTable and CardTable using 4736 // appropriate convergence criterion; 4737 // repeat CMSPrecleanIter times unless we find that 4738 // we are losing. 4739 assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large"); 4740 assert(CMSPrecleanNumerator < CMSPrecleanDenominator, 4741 "Bad convergence multiplier"); 4742 assert(CMSPrecleanThreshold >= 100, 4743 "Unreasonably low CMSPrecleanThreshold"); 4744 4745 size_t numIter, cumNumCards, lastNumCards, curNumCards; 4746 for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0; 4747 numIter < CMSPrecleanIter; 4748 numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) { 4749 curNumCards = preclean_mod_union_table(_cmsGen, &smoac_cl); 4750 if (Verbose && PrintGCDetails) { 4751 gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards); 4752 } 4753 // Either there are very few dirty cards, so re-mark 4754 // pause will be small anyway, or our pre-cleaning isn't 4755 // that much faster than the rate at which cards are being 4756 // dirtied, so we might as well stop and re-mark since 4757 // precleaning won't improve our re-mark time by much. 4758 if (curNumCards <= CMSPrecleanThreshold || 4759 (numIter > 0 && 4760 (curNumCards * CMSPrecleanDenominator > 4761 lastNumCards * CMSPrecleanNumerator))) { 4762 numIter++; 4763 cumNumCards += curNumCards; 4764 break; 4765 } 4766 } 4767 4768 preclean_klasses(&mrias_cl, _cmsGen->freelistLock()); 4769 4770 curNumCards = preclean_card_table(_cmsGen, &smoac_cl); 4771 cumNumCards += curNumCards; 4772 if (PrintGCDetails && PrintCMSStatistics != 0) { 4773 gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)", 4774 curNumCards, cumNumCards, numIter); 4775 } 4776 return cumNumCards; // as a measure of useful work done 4777 } 4778 4779 // PRECLEANING NOTES: 4780 // Precleaning involves: 4781 // . reading the bits of the modUnionTable and clearing the set bits. 4782 // . For the cards corresponding to the set bits, we scan the 4783 // objects on those cards. This means we need the free_list_lock 4784 // so that we can safely iterate over the CMS space when scanning 4785 // for oops. 4786 // . When we scan the objects, we'll be both reading and setting 4787 // marks in the marking bit map, so we'll need the marking bit map. 4788 // . For protecting _collector_state transitions, we take the CGC_lock. 4789 // Note that any races in the reading of of card table entries by the 4790 // CMS thread on the one hand and the clearing of those entries by the 4791 // VM thread or the setting of those entries by the mutator threads on the 4792 // other are quite benign. However, for efficiency it makes sense to keep 4793 // the VM thread from racing with the CMS thread while the latter is 4794 // dirty card info to the modUnionTable. We therefore also use the 4795 // CGC_lock to protect the reading of the card table and the mod union 4796 // table by the CM thread. 4797 // . We run concurrently with mutator updates, so scanning 4798 // needs to be done carefully -- we should not try to scan 4799 // potentially uninitialized objects. 4800 // 4801 // Locking strategy: While holding the CGC_lock, we scan over and 4802 // reset a maximal dirty range of the mod union / card tables, then lock 4803 // the free_list_lock and bitmap lock to do a full marking, then 4804 // release these locks; and repeat the cycle. This allows for a 4805 // certain amount of fairness in the sharing of these locks between 4806 // the CMS collector on the one hand, and the VM thread and the 4807 // mutators on the other. 4808 4809 // NOTE: preclean_mod_union_table() and preclean_card_table() 4810 // further below are largely identical; if you need to modify 4811 // one of these methods, please check the other method too. 4812 4813 size_t CMSCollector::preclean_mod_union_table( 4814 ConcurrentMarkSweepGeneration* gen, 4815 ScanMarkedObjectsAgainCarefullyClosure* cl) { 4816 verify_work_stacks_empty(); 4817 verify_overflow_empty(); 4818 4819 // strategy: starting with the first card, accumulate contiguous 4820 // ranges of dirty cards; clear these cards, then scan the region 4821 // covered by these cards. 4822 4823 // Since all of the MUT is committed ahead, we can just use 4824 // that, in case the generations expand while we are precleaning. 4825 // It might also be fine to just use the committed part of the 4826 // generation, but we might potentially miss cards when the 4827 // generation is rapidly expanding while we are in the midst 4828 // of precleaning. 4829 HeapWord* startAddr = gen->reserved().start(); 4830 HeapWord* endAddr = gen->reserved().end(); 4831 4832 cl->setFreelistLock(gen->freelistLock()); // needed for yielding 4833 4834 size_t numDirtyCards, cumNumDirtyCards; 4835 HeapWord *nextAddr, *lastAddr; 4836 for (cumNumDirtyCards = numDirtyCards = 0, 4837 nextAddr = lastAddr = startAddr; 4838 nextAddr < endAddr; 4839 nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) { 4840 4841 ResourceMark rm; 4842 HandleMark hm; 4843 4844 MemRegion dirtyRegion; 4845 { 4846 stopTimer(); 4847 // Potential yield point 4848 CMSTokenSync ts(true); 4849 startTimer(); 4850 sample_eden(); 4851 // Get dirty region starting at nextOffset (inclusive), 4852 // simultaneously clearing it. 4853 dirtyRegion = 4854 _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr); 4855 assert(dirtyRegion.start() >= nextAddr, 4856 "returned region inconsistent?"); 4857 } 4858 // Remember where the next search should begin. 4859 // The returned region (if non-empty) is a right open interval, 4860 // so lastOffset is obtained from the right end of that 4861 // interval. 4862 lastAddr = dirtyRegion.end(); 4863 // Should do something more transparent and less hacky XXX 4864 numDirtyCards = 4865 _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size()); 4866 4867 // We'll scan the cards in the dirty region (with periodic 4868 // yields for foreground GC as needed). 4869 if (!dirtyRegion.is_empty()) { 4870 assert(numDirtyCards > 0, "consistency check"); 4871 HeapWord* stop_point = NULL; 4872 stopTimer(); 4873 // Potential yield point 4874 CMSTokenSyncWithLocks ts(true, gen->freelistLock(), 4875 bitMapLock()); 4876 startTimer(); 4877 { 4878 verify_work_stacks_empty(); 4879 verify_overflow_empty(); 4880 sample_eden(); 4881 stop_point = 4882 gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl); 4883 } 4884 if (stop_point != NULL) { 4885 // The careful iteration stopped early either because it found an 4886 // uninitialized object, or because we were in the midst of an 4887 // "abortable preclean", which should now be aborted. Redirty 4888 // the bits corresponding to the partially-scanned or unscanned 4889 // cards. We'll either restart at the next block boundary or 4890 // abort the preclean. 4891 assert((_collectorState == AbortablePreclean && should_abort_preclean()), 4892 "Should only be AbortablePreclean."); 4893 _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end())); 4894 if (should_abort_preclean()) { 4895 break; // out of preclean loop 4896 } else { 4897 // Compute the next address at which preclean should pick up; 4898 // might need bitMapLock in order to read P-bits. 4899 lastAddr = next_card_start_after_block(stop_point); 4900 } 4901 } 4902 } else { 4903 assert(lastAddr == endAddr, "consistency check"); 4904 assert(numDirtyCards == 0, "consistency check"); 4905 break; 4906 } 4907 } 4908 verify_work_stacks_empty(); 4909 verify_overflow_empty(); 4910 return cumNumDirtyCards; 4911 } 4912 4913 // NOTE: preclean_mod_union_table() above and preclean_card_table() 4914 // below are largely identical; if you need to modify 4915 // one of these methods, please check the other method too. 4916 4917 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen, 4918 ScanMarkedObjectsAgainCarefullyClosure* cl) { 4919 // strategy: it's similar to precleamModUnionTable above, in that 4920 // we accumulate contiguous ranges of dirty cards, mark these cards 4921 // precleaned, then scan the region covered by these cards. 4922 HeapWord* endAddr = (HeapWord*)(gen->_virtual_space.high()); 4923 HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low()); 4924 4925 cl->setFreelistLock(gen->freelistLock()); // needed for yielding 4926 4927 size_t numDirtyCards, cumNumDirtyCards; 4928 HeapWord *lastAddr, *nextAddr; 4929 4930 for (cumNumDirtyCards = numDirtyCards = 0, 4931 nextAddr = lastAddr = startAddr; 4932 nextAddr < endAddr; 4933 nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) { 4934 4935 ResourceMark rm; 4936 HandleMark hm; 4937 4938 MemRegion dirtyRegion; 4939 { 4940 // See comments in "Precleaning notes" above on why we 4941 // do this locking. XXX Could the locking overheads be 4942 // too high when dirty cards are sparse? [I don't think so.] 4943 stopTimer(); 4944 CMSTokenSync x(true); // is cms thread 4945 startTimer(); 4946 sample_eden(); 4947 // Get and clear dirty region from card table 4948 dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset( 4949 MemRegion(nextAddr, endAddr), 4950 true, 4951 CardTableModRefBS::precleaned_card_val()); 4952 4953 assert(dirtyRegion.start() >= nextAddr, 4954 "returned region inconsistent?"); 4955 } 4956 lastAddr = dirtyRegion.end(); 4957 numDirtyCards = 4958 dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words; 4959 4960 if (!dirtyRegion.is_empty()) { 4961 stopTimer(); 4962 CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock()); 4963 startTimer(); 4964 sample_eden(); 4965 verify_work_stacks_empty(); 4966 verify_overflow_empty(); 4967 HeapWord* stop_point = 4968 gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl); 4969 if (stop_point != NULL) { 4970 assert((_collectorState == AbortablePreclean && should_abort_preclean()), 4971 "Should only be AbortablePreclean."); 4972 _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end())); 4973 if (should_abort_preclean()) { 4974 break; // out of preclean loop 4975 } else { 4976 // Compute the next address at which preclean should pick up. 4977 lastAddr = next_card_start_after_block(stop_point); 4978 } 4979 } 4980 } else { 4981 break; 4982 } 4983 } 4984 verify_work_stacks_empty(); 4985 verify_overflow_empty(); 4986 return cumNumDirtyCards; 4987 } 4988 4989 class PrecleanKlassClosure : public KlassClosure { 4990 CMKlassClosure _cm_klass_closure; 4991 public: 4992 PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {} 4993 void do_klass(Klass* k) { 4994 if (k->has_accumulated_modified_oops()) { 4995 k->clear_accumulated_modified_oops(); 4996 4997 _cm_klass_closure.do_klass(k); 4998 } 4999 } 5000 }; 5001 5002 // The freelist lock is needed to prevent asserts, is it really needed? 5003 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) { 5004 5005 cl->set_freelistLock(freelistLock); 5006 5007 CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock()); 5008 5009 // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean? 5010 // SSS: We should probably check if precleaning should be aborted, at suitable intervals? 5011 PrecleanKlassClosure preclean_klass_closure(cl); 5012 ClassLoaderDataGraph::classes_do(&preclean_klass_closure); 5013 5014 verify_work_stacks_empty(); 5015 verify_overflow_empty(); 5016 } 5017 5018 void CMSCollector::checkpointRootsFinal(bool asynch, 5019 bool clear_all_soft_refs, bool init_mark_was_synchronous) { 5020 assert(_collectorState == FinalMarking, "incorrect state transition?"); 5021 check_correct_thread_executing(); 5022 // world is stopped at this checkpoint 5023 assert(SafepointSynchronize::is_at_safepoint(), 5024 "world should be stopped"); 5025 TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause()); 5026 5027 verify_work_stacks_empty(); 5028 verify_overflow_empty(); 5029 5030 SpecializationStats::clear(); 5031 if (PrintGCDetails) { 5032 gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]", 5033 _young_gen->used() / K, 5034 _young_gen->capacity() / K); 5035 } 5036 if (asynch) { 5037 if (CMSScavengeBeforeRemark) { 5038 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5039 // Temporarily set flag to false, GCH->do_collection will 5040 // expect it to be false and set to true 5041 FlagSetting fl(gch->_is_gc_active, false); 5042 NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark", 5043 PrintGCDetails && Verbose, true, _gc_timer_cm);) 5044 int level = _cmsGen->level() - 1; 5045 if (level >= 0) { 5046 gch->do_collection(true, // full (i.e. force, see below) 5047 false, // !clear_all_soft_refs 5048 0, // size 5049 false, // is_tlab 5050 level // max_level 5051 ); 5052 } 5053 } 5054 FreelistLocker x(this); 5055 MutexLockerEx y(bitMapLock(), 5056 Mutex::_no_safepoint_check_flag); 5057 assert(!init_mark_was_synchronous, "but that's impossible!"); 5058 checkpointRootsFinalWork(asynch, clear_all_soft_refs, false); 5059 } else { 5060 // already have all the locks 5061 checkpointRootsFinalWork(asynch, clear_all_soft_refs, 5062 init_mark_was_synchronous); 5063 } 5064 verify_work_stacks_empty(); 5065 verify_overflow_empty(); 5066 SpecializationStats::print(); 5067 } 5068 5069 void CMSCollector::checkpointRootsFinalWork(bool asynch, 5070 bool clear_all_soft_refs, bool init_mark_was_synchronous) { 5071 5072 NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);) 5073 5074 assert(haveFreelistLocks(), "must have free list locks"); 5075 assert_lock_strong(bitMapLock()); 5076 5077 if (UseAdaptiveSizePolicy) { 5078 size_policy()->checkpoint_roots_final_begin(); 5079 } 5080 5081 ResourceMark rm; 5082 HandleMark hm; 5083 5084 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5085 5086 if (should_unload_classes()) { 5087 CodeCache::gc_prologue(); 5088 } 5089 assert(haveFreelistLocks(), "must have free list locks"); 5090 assert_lock_strong(bitMapLock()); 5091 5092 if (!init_mark_was_synchronous) { 5093 // We might assume that we need not fill TLAB's when 5094 // CMSScavengeBeforeRemark is set, because we may have just done 5095 // a scavenge which would have filled all TLAB's -- and besides 5096 // Eden would be empty. This however may not always be the case -- 5097 // for instance although we asked for a scavenge, it may not have 5098 // happened because of a JNI critical section. We probably need 5099 // a policy for deciding whether we can in that case wait until 5100 // the critical section releases and then do the remark following 5101 // the scavenge, and skip it here. In the absence of that policy, 5102 // or of an indication of whether the scavenge did indeed occur, 5103 // we cannot rely on TLAB's having been filled and must do 5104 // so here just in case a scavenge did not happen. 5105 gch->ensure_parsability(false); // fill TLAB's, but no need to retire them 5106 // Update the saved marks which may affect the root scans. 5107 gch->save_marks(); 5108 5109 if (CMSPrintEdenSurvivorChunks) { 5110 print_eden_and_survivor_chunk_arrays(); 5111 } 5112 5113 { 5114 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;) 5115 5116 // Note on the role of the mod union table: 5117 // Since the marker in "markFromRoots" marks concurrently with 5118 // mutators, it is possible for some reachable objects not to have been 5119 // scanned. For instance, an only reference to an object A was 5120 // placed in object B after the marker scanned B. Unless B is rescanned, 5121 // A would be collected. Such updates to references in marked objects 5122 // are detected via the mod union table which is the set of all cards 5123 // dirtied since the first checkpoint in this GC cycle and prior to 5124 // the most recent young generation GC, minus those cleaned up by the 5125 // concurrent precleaning. 5126 if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) { 5127 GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm); 5128 do_remark_parallel(); 5129 } else { 5130 GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false, 5131 _gc_timer_cm); 5132 do_remark_non_parallel(); 5133 } 5134 } 5135 } else { 5136 assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode"); 5137 // The initial mark was stop-world, so there's no rescanning to 5138 // do; go straight on to the next step below. 5139 } 5140 verify_work_stacks_empty(); 5141 verify_overflow_empty(); 5142 5143 { 5144 NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);) 5145 refProcessingWork(asynch, clear_all_soft_refs); 5146 } 5147 verify_work_stacks_empty(); 5148 verify_overflow_empty(); 5149 5150 if (should_unload_classes()) { 5151 CodeCache::gc_epilogue(); 5152 } 5153 JvmtiExport::gc_epilogue(); 5154 5155 // If we encountered any (marking stack / work queue) overflow 5156 // events during the current CMS cycle, take appropriate 5157 // remedial measures, where possible, so as to try and avoid 5158 // recurrence of that condition. 5159 assert(_markStack.isEmpty(), "No grey objects"); 5160 size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw + 5161 _ser_kac_ovflw + _ser_kac_preclean_ovflw; 5162 if (ser_ovflw > 0) { 5163 if (PrintCMSStatistics != 0) { 5164 gclog_or_tty->print_cr("Marking stack overflow (benign) " 5165 "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT 5166 ", kac_preclean="SIZE_FORMAT")", 5167 _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, 5168 _ser_kac_ovflw, _ser_kac_preclean_ovflw); 5169 } 5170 _markStack.expand(); 5171 _ser_pmc_remark_ovflw = 0; 5172 _ser_pmc_preclean_ovflw = 0; 5173 _ser_kac_preclean_ovflw = 0; 5174 _ser_kac_ovflw = 0; 5175 } 5176 if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) { 5177 if (PrintCMSStatistics != 0) { 5178 gclog_or_tty->print_cr("Work queue overflow (benign) " 5179 "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")", 5180 _par_pmc_remark_ovflw, _par_kac_ovflw); 5181 } 5182 _par_pmc_remark_ovflw = 0; 5183 _par_kac_ovflw = 0; 5184 } 5185 if (PrintCMSStatistics != 0) { 5186 if (_markStack._hit_limit > 0) { 5187 gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")", 5188 _markStack._hit_limit); 5189 } 5190 if (_markStack._failed_double > 0) { 5191 gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT")," 5192 " current capacity "SIZE_FORMAT, 5193 _markStack._failed_double, 5194 _markStack.capacity()); 5195 } 5196 } 5197 _markStack._hit_limit = 0; 5198 _markStack._failed_double = 0; 5199 5200 if ((VerifyAfterGC || VerifyDuringGC) && 5201 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 5202 verify_after_remark(); 5203 } 5204 5205 _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure); 5206 5207 // Change under the freelistLocks. 5208 _collectorState = Sweeping; 5209 // Call isAllClear() under bitMapLock 5210 assert(_modUnionTable.isAllClear(), 5211 "Should be clear by end of the final marking"); 5212 assert(_ct->klass_rem_set()->mod_union_is_clear(), 5213 "Should be clear by end of the final marking"); 5214 if (UseAdaptiveSizePolicy) { 5215 size_policy()->checkpoint_roots_final_end(gch->gc_cause()); 5216 } 5217 } 5218 5219 void CMSParInitialMarkTask::work(uint worker_id) { 5220 elapsedTimer _timer; 5221 ResourceMark rm; 5222 HandleMark hm; 5223 5224 // ---------- scan from roots -------------- 5225 _timer.start(); 5226 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5227 Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap)); 5228 CMKlassClosure klass_closure(&par_mri_cl); 5229 5230 // ---------- young gen roots -------------- 5231 { 5232 work_on_young_gen_roots(worker_id, &par_mri_cl); 5233 _timer.stop(); 5234 if (PrintCMSStatistics != 0) { 5235 gclog_or_tty->print_cr( 5236 "Finished young gen initial mark scan work in %dth thread: %3.3f sec", 5237 worker_id, _timer.seconds()); 5238 } 5239 } 5240 5241 // ---------- remaining roots -------------- 5242 _timer.reset(); 5243 _timer.start(); 5244 gch->gen_process_strong_roots(_collector->_cmsGen->level(), 5245 false, // yg was scanned above 5246 false, // this is parallel code 5247 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()), 5248 &par_mri_cl, 5249 NULL, 5250 &klass_closure); 5251 assert(_collector->should_unload_classes() 5252 || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache), 5253 "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops"); 5254 _timer.stop(); 5255 if (PrintCMSStatistics != 0) { 5256 gclog_or_tty->print_cr( 5257 "Finished remaining root initial mark scan work in %dth thread: %3.3f sec", 5258 worker_id, _timer.seconds()); 5259 } 5260 } 5261 5262 // Parallel remark task 5263 class CMSParRemarkTask: public CMSParMarkTask { 5264 CompactibleFreeListSpace* _cms_space; 5265 5266 // The per-thread work queues, available here for stealing. 5267 OopTaskQueueSet* _task_queues; 5268 ParallelTaskTerminator _term; 5269 5270 public: 5271 // A value of 0 passed to n_workers will cause the number of 5272 // workers to be taken from the active workers in the work gang. 5273 CMSParRemarkTask(CMSCollector* collector, 5274 CompactibleFreeListSpace* cms_space, 5275 int n_workers, FlexibleWorkGang* workers, 5276 OopTaskQueueSet* task_queues): 5277 CMSParMarkTask("Rescan roots and grey objects in parallel", 5278 collector, n_workers), 5279 _cms_space(cms_space), 5280 _task_queues(task_queues), 5281 _term(n_workers, task_queues) { } 5282 5283 OopTaskQueueSet* task_queues() { return _task_queues; } 5284 5285 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 5286 5287 ParallelTaskTerminator* terminator() { return &_term; } 5288 int n_workers() { return _n_workers; } 5289 5290 void work(uint worker_id); 5291 5292 private: 5293 // ... of dirty cards in old space 5294 void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i, 5295 Par_MarkRefsIntoAndScanClosure* cl); 5296 5297 // ... work stealing for the above 5298 void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed); 5299 }; 5300 5301 class RemarkKlassClosure : public KlassClosure { 5302 CMKlassClosure _cm_klass_closure; 5303 public: 5304 RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {} 5305 void do_klass(Klass* k) { 5306 // Check if we have modified any oops in the Klass during the concurrent marking. 5307 if (k->has_accumulated_modified_oops()) { 5308 k->clear_accumulated_modified_oops(); 5309 5310 // We could have transfered the current modified marks to the accumulated marks, 5311 // like we do with the Card Table to Mod Union Table. But it's not really necessary. 5312 } else if (k->has_modified_oops()) { 5313 // Don't clear anything, this info is needed by the next young collection. 5314 } else { 5315 // No modified oops in the Klass. 5316 return; 5317 } 5318 5319 // The klass has modified fields, need to scan the klass. 5320 _cm_klass_closure.do_klass(k); 5321 } 5322 }; 5323 5324 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) { 5325 DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration(); 5326 EdenSpace* eden_space = dng->eden(); 5327 ContiguousSpace* from_space = dng->from(); 5328 ContiguousSpace* to_space = dng->to(); 5329 5330 HeapWord** eca = _collector->_eden_chunk_array; 5331 size_t ect = _collector->_eden_chunk_index; 5332 HeapWord** sca = _collector->_survivor_chunk_array; 5333 size_t sct = _collector->_survivor_chunk_index; 5334 5335 assert(ect <= _collector->_eden_chunk_capacity, "out of bounds"); 5336 assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds"); 5337 5338 do_young_space_rescan(worker_id, cl, to_space, NULL, 0); 5339 do_young_space_rescan(worker_id, cl, from_space, sca, sct); 5340 do_young_space_rescan(worker_id, cl, eden_space, eca, ect); 5341 } 5342 5343 // work_queue(i) is passed to the closure 5344 // Par_MarkRefsIntoAndScanClosure. The "i" parameter 5345 // also is passed to do_dirty_card_rescan_tasks() and to 5346 // do_work_steal() to select the i-th task_queue. 5347 5348 void CMSParRemarkTask::work(uint worker_id) { 5349 elapsedTimer _timer; 5350 ResourceMark rm; 5351 HandleMark hm; 5352 5353 // ---------- rescan from roots -------------- 5354 _timer.start(); 5355 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5356 Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector, 5357 _collector->_span, _collector->ref_processor(), 5358 &(_collector->_markBitMap), 5359 work_queue(worker_id)); 5360 5361 // Rescan young gen roots first since these are likely 5362 // coarsely partitioned and may, on that account, constitute 5363 // the critical path; thus, it's best to start off that 5364 // work first. 5365 // ---------- young gen roots -------------- 5366 { 5367 work_on_young_gen_roots(worker_id, &par_mrias_cl); 5368 _timer.stop(); 5369 if (PrintCMSStatistics != 0) { 5370 gclog_or_tty->print_cr( 5371 "Finished young gen rescan work in %dth thread: %3.3f sec", 5372 worker_id, _timer.seconds()); 5373 } 5374 } 5375 5376 // ---------- remaining roots -------------- 5377 _timer.reset(); 5378 _timer.start(); 5379 gch->gen_process_strong_roots(_collector->_cmsGen->level(), 5380 false, // yg was scanned above 5381 false, // this is parallel code 5382 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()), 5383 &par_mrias_cl, 5384 NULL, 5385 NULL); // The dirty klasses will be handled below 5386 assert(_collector->should_unload_classes() 5387 || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache), 5388 "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops"); 5389 _timer.stop(); 5390 if (PrintCMSStatistics != 0) { 5391 gclog_or_tty->print_cr( 5392 "Finished remaining root rescan work in %dth thread: %3.3f sec", 5393 worker_id, _timer.seconds()); 5394 } 5395 5396 // ---------- unhandled CLD scanning ---------- 5397 if (worker_id == 0) { // Single threaded at the moment. 5398 _timer.reset(); 5399 _timer.start(); 5400 5401 // Scan all new class loader data objects and new dependencies that were 5402 // introduced during concurrent marking. 5403 ResourceMark rm; 5404 GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds(); 5405 for (int i = 0; i < array->length(); i++) { 5406 par_mrias_cl.do_class_loader_data(array->at(i)); 5407 } 5408 5409 // We don't need to keep track of new CLDs anymore. 5410 ClassLoaderDataGraph::remember_new_clds(false); 5411 5412 _timer.stop(); 5413 if (PrintCMSStatistics != 0) { 5414 gclog_or_tty->print_cr( 5415 "Finished unhandled CLD scanning work in %dth thread: %3.3f sec", 5416 worker_id, _timer.seconds()); 5417 } 5418 } 5419 5420 // ---------- dirty klass scanning ---------- 5421 if (worker_id == 0) { // Single threaded at the moment. 5422 _timer.reset(); 5423 _timer.start(); 5424 5425 // Scan all classes that was dirtied during the concurrent marking phase. 5426 RemarkKlassClosure remark_klass_closure(&par_mrias_cl); 5427 ClassLoaderDataGraph::classes_do(&remark_klass_closure); 5428 5429 _timer.stop(); 5430 if (PrintCMSStatistics != 0) { 5431 gclog_or_tty->print_cr( 5432 "Finished dirty klass scanning work in %dth thread: %3.3f sec", 5433 worker_id, _timer.seconds()); 5434 } 5435 } 5436 5437 // We might have added oops to ClassLoaderData::_handles during the 5438 // concurrent marking phase. These oops point to newly allocated objects 5439 // that are guaranteed to be kept alive. Either by the direct allocation 5440 // code, or when the young collector processes the strong roots. Hence, 5441 // we don't have to revisit the _handles block during the remark phase. 5442 5443 // ---------- rescan dirty cards ------------ 5444 _timer.reset(); 5445 _timer.start(); 5446 5447 // Do the rescan tasks for each of the two spaces 5448 // (cms_space) in turn. 5449 // "worker_id" is passed to select the task_queue for "worker_id" 5450 do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl); 5451 _timer.stop(); 5452 if (PrintCMSStatistics != 0) { 5453 gclog_or_tty->print_cr( 5454 "Finished dirty card rescan work in %dth thread: %3.3f sec", 5455 worker_id, _timer.seconds()); 5456 } 5457 5458 // ---------- steal work from other threads ... 5459 // ---------- ... and drain overflow list. 5460 _timer.reset(); 5461 _timer.start(); 5462 do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id)); 5463 _timer.stop(); 5464 if (PrintCMSStatistics != 0) { 5465 gclog_or_tty->print_cr( 5466 "Finished work stealing in %dth thread: %3.3f sec", 5467 worker_id, _timer.seconds()); 5468 } 5469 } 5470 5471 // Note that parameter "i" is not used. 5472 void 5473 CMSParMarkTask::do_young_space_rescan(uint worker_id, 5474 OopsInGenClosure* cl, ContiguousSpace* space, 5475 HeapWord** chunk_array, size_t chunk_top) { 5476 // Until all tasks completed: 5477 // . claim an unclaimed task 5478 // . compute region boundaries corresponding to task claimed 5479 // using chunk_array 5480 // . par_oop_iterate(cl) over that region 5481 5482 ResourceMark rm; 5483 HandleMark hm; 5484 5485 SequentialSubTasksDone* pst = space->par_seq_tasks(); 5486 5487 uint nth_task = 0; 5488 uint n_tasks = pst->n_tasks(); 5489 5490 if (n_tasks > 0) { 5491 assert(pst->valid(), "Uninitialized use?"); 5492 HeapWord *start, *end; 5493 while (!pst->is_task_claimed(/* reference */ nth_task)) { 5494 // We claimed task # nth_task; compute its boundaries. 5495 if (chunk_top == 0) { // no samples were taken 5496 assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task"); 5497 start = space->bottom(); 5498 end = space->top(); 5499 } else if (nth_task == 0) { 5500 start = space->bottom(); 5501 end = chunk_array[nth_task]; 5502 } else if (nth_task < (uint)chunk_top) { 5503 assert(nth_task >= 1, "Control point invariant"); 5504 start = chunk_array[nth_task - 1]; 5505 end = chunk_array[nth_task]; 5506 } else { 5507 assert(nth_task == (uint)chunk_top, "Control point invariant"); 5508 start = chunk_array[chunk_top - 1]; 5509 end = space->top(); 5510 } 5511 MemRegion mr(start, end); 5512 // Verify that mr is in space 5513 assert(mr.is_empty() || space->used_region().contains(mr), 5514 "Should be in space"); 5515 // Verify that "start" is an object boundary 5516 assert(mr.is_empty() || oop(mr.start())->is_oop(), 5517 "Should be an oop"); 5518 space->par_oop_iterate(mr, cl); 5519 } 5520 pst->all_tasks_completed(); 5521 } 5522 } 5523 5524 void 5525 CMSParRemarkTask::do_dirty_card_rescan_tasks( 5526 CompactibleFreeListSpace* sp, int i, 5527 Par_MarkRefsIntoAndScanClosure* cl) { 5528 // Until all tasks completed: 5529 // . claim an unclaimed task 5530 // . compute region boundaries corresponding to task claimed 5531 // . transfer dirty bits ct->mut for that region 5532 // . apply rescanclosure to dirty mut bits for that region 5533 5534 ResourceMark rm; 5535 HandleMark hm; 5536 5537 OopTaskQueue* work_q = work_queue(i); 5538 ModUnionClosure modUnionClosure(&(_collector->_modUnionTable)); 5539 // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! 5540 // CAUTION: This closure has state that persists across calls to 5541 // the work method dirty_range_iterate_clear() in that it has 5542 // embedded in it a (subtype of) UpwardsObjectClosure. The 5543 // use of that state in the embedded UpwardsObjectClosure instance 5544 // assumes that the cards are always iterated (even if in parallel 5545 // by several threads) in monotonically increasing order per each 5546 // thread. This is true of the implementation below which picks 5547 // card ranges (chunks) in monotonically increasing order globally 5548 // and, a-fortiori, in monotonically increasing order per thread 5549 // (the latter order being a subsequence of the former). 5550 // If the work code below is ever reorganized into a more chaotic 5551 // work-partitioning form than the current "sequential tasks" 5552 // paradigm, the use of that persistent state will have to be 5553 // revisited and modified appropriately. See also related 5554 // bug 4756801 work on which should examine this code to make 5555 // sure that the changes there do not run counter to the 5556 // assumptions made here and necessary for correctness and 5557 // efficiency. Note also that this code might yield inefficient 5558 // behavior in the case of very large objects that span one or 5559 // more work chunks. Such objects would potentially be scanned 5560 // several times redundantly. Work on 4756801 should try and 5561 // address that performance anomaly if at all possible. XXX 5562 MemRegion full_span = _collector->_span; 5563 CMSBitMap* bm = &(_collector->_markBitMap); // shared 5564 MarkFromDirtyCardsClosure 5565 greyRescanClosure(_collector, full_span, // entire span of interest 5566 sp, bm, work_q, cl); 5567 5568 SequentialSubTasksDone* pst = sp->conc_par_seq_tasks(); 5569 assert(pst->valid(), "Uninitialized use?"); 5570 uint nth_task = 0; 5571 const int alignment = CardTableModRefBS::card_size * BitsPerWord; 5572 MemRegion span = sp->used_region(); 5573 HeapWord* start_addr = span.start(); 5574 HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(), 5575 alignment); 5576 const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units 5577 assert((HeapWord*)round_to((intptr_t)start_addr, alignment) == 5578 start_addr, "Check alignment"); 5579 assert((size_t)round_to((intptr_t)chunk_size, alignment) == 5580 chunk_size, "Check alignment"); 5581 5582 while (!pst->is_task_claimed(/* reference */ nth_task)) { 5583 // Having claimed the nth_task, compute corresponding mem-region, 5584 // which is a-fortiori aligned correctly (i.e. at a MUT boundary). 5585 // The alignment restriction ensures that we do not need any 5586 // synchronization with other gang-workers while setting or 5587 // clearing bits in thus chunk of the MUT. 5588 MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size, 5589 start_addr + (nth_task+1)*chunk_size); 5590 // The last chunk's end might be way beyond end of the 5591 // used region. In that case pull back appropriately. 5592 if (this_span.end() > end_addr) { 5593 this_span.set_end(end_addr); 5594 assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)"); 5595 } 5596 // Iterate over the dirty cards covering this chunk, marking them 5597 // precleaned, and setting the corresponding bits in the mod union 5598 // table. Since we have been careful to partition at Card and MUT-word 5599 // boundaries no synchronization is needed between parallel threads. 5600 _collector->_ct->ct_bs()->dirty_card_iterate(this_span, 5601 &modUnionClosure); 5602 5603 // Having transferred these marks into the modUnionTable, 5604 // rescan the marked objects on the dirty cards in the modUnionTable. 5605 // Even if this is at a synchronous collection, the initial marking 5606 // may have been done during an asynchronous collection so there 5607 // may be dirty bits in the mod-union table. 5608 _collector->_modUnionTable.dirty_range_iterate_clear( 5609 this_span, &greyRescanClosure); 5610 _collector->_modUnionTable.verifyNoOneBitsInRange( 5611 this_span.start(), 5612 this_span.end()); 5613 } 5614 pst->all_tasks_completed(); // declare that i am done 5615 } 5616 5617 // . see if we can share work_queues with ParNew? XXX 5618 void 5619 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, 5620 int* seed) { 5621 OopTaskQueue* work_q = work_queue(i); 5622 NOT_PRODUCT(int num_steals = 0;) 5623 oop obj_to_scan; 5624 CMSBitMap* bm = &(_collector->_markBitMap); 5625 5626 while (true) { 5627 // Completely finish any left over work from (an) earlier round(s) 5628 cl->trim_queue(0); 5629 size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 5630 (size_t)ParGCDesiredObjsFromOverflowList); 5631 // Now check if there's any work in the overflow list 5632 // Passing ParallelGCThreads as the third parameter, no_of_gc_threads, 5633 // only affects the number of attempts made to get work from the 5634 // overflow list and does not affect the number of workers. Just 5635 // pass ParallelGCThreads so this behavior is unchanged. 5636 if (_collector->par_take_from_overflow_list(num_from_overflow_list, 5637 work_q, 5638 ParallelGCThreads)) { 5639 // found something in global overflow list; 5640 // not yet ready to go stealing work from others. 5641 // We'd like to assert(work_q->size() != 0, ...) 5642 // because we just took work from the overflow list, 5643 // but of course we can't since all of that could have 5644 // been already stolen from us. 5645 // "He giveth and He taketh away." 5646 continue; 5647 } 5648 // Verify that we have no work before we resort to stealing 5649 assert(work_q->size() == 0, "Have work, shouldn't steal"); 5650 // Try to steal from other queues that have work 5651 if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 5652 NOT_PRODUCT(num_steals++;) 5653 assert(obj_to_scan->is_oop(), "Oops, not an oop!"); 5654 assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?"); 5655 // Do scanning work 5656 obj_to_scan->oop_iterate(cl); 5657 // Loop around, finish this work, and try to steal some more 5658 } else if (terminator()->offer_termination()) { 5659 break; // nirvana from the infinite cycle 5660 } 5661 } 5662 NOT_PRODUCT( 5663 if (PrintCMSStatistics != 0) { 5664 gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals); 5665 } 5666 ) 5667 assert(work_q->size() == 0 && _collector->overflow_list_is_empty(), 5668 "Else our work is not yet done"); 5669 } 5670 5671 // Record object boundaries in _eden_chunk_array by sampling the eden 5672 // top in the slow-path eden object allocation code path and record 5673 // the boundaries, if CMSEdenChunksRecordAlways is true. If 5674 // CMSEdenChunksRecordAlways is false, we use the other asynchronous 5675 // sampling in sample_eden() that activates during the part of the 5676 // preclean phase. 5677 void CMSCollector::sample_eden_chunk() { 5678 if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) { 5679 if (_eden_chunk_lock->try_lock()) { 5680 // Record a sample. This is the critical section. The contents 5681 // of the _eden_chunk_array have to be non-decreasing in the 5682 // address order. 5683 _eden_chunk_array[_eden_chunk_index] = *_top_addr; 5684 assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr, 5685 "Unexpected state of Eden"); 5686 if (_eden_chunk_index == 0 || 5687 ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) && 5688 (pointer_delta(_eden_chunk_array[_eden_chunk_index], 5689 _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) { 5690 _eden_chunk_index++; // commit sample 5691 } 5692 _eden_chunk_lock->unlock(); 5693 } 5694 } 5695 } 5696 5697 // Return a thread-local PLAB recording array, as appropriate. 5698 void* CMSCollector::get_data_recorder(int thr_num) { 5699 if (_survivor_plab_array != NULL && 5700 (CMSPLABRecordAlways || 5701 (_collectorState > Marking && _collectorState < FinalMarking))) { 5702 assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds"); 5703 ChunkArray* ca = &_survivor_plab_array[thr_num]; 5704 ca->reset(); // clear it so that fresh data is recorded 5705 return (void*) ca; 5706 } else { 5707 return NULL; 5708 } 5709 } 5710 5711 // Reset all the thread-local PLAB recording arrays 5712 void CMSCollector::reset_survivor_plab_arrays() { 5713 for (uint i = 0; i < ParallelGCThreads; i++) { 5714 _survivor_plab_array[i].reset(); 5715 } 5716 } 5717 5718 // Merge the per-thread plab arrays into the global survivor chunk 5719 // array which will provide the partitioning of the survivor space 5720 // for CMS initial scan and rescan. 5721 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv, 5722 int no_of_gc_threads) { 5723 assert(_survivor_plab_array != NULL, "Error"); 5724 assert(_survivor_chunk_array != NULL, "Error"); 5725 assert(_collectorState == FinalMarking || 5726 (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error"); 5727 for (int j = 0; j < no_of_gc_threads; j++) { 5728 _cursor[j] = 0; 5729 } 5730 HeapWord* top = surv->top(); 5731 size_t i; 5732 for (i = 0; i < _survivor_chunk_capacity; i++) { // all sca entries 5733 HeapWord* min_val = top; // Higher than any PLAB address 5734 uint min_tid = 0; // position of min_val this round 5735 for (int j = 0; j < no_of_gc_threads; j++) { 5736 ChunkArray* cur_sca = &_survivor_plab_array[j]; 5737 if (_cursor[j] == cur_sca->end()) { 5738 continue; 5739 } 5740 assert(_cursor[j] < cur_sca->end(), "ctl pt invariant"); 5741 HeapWord* cur_val = cur_sca->nth(_cursor[j]); 5742 assert(surv->used_region().contains(cur_val), "Out of bounds value"); 5743 if (cur_val < min_val) { 5744 min_tid = j; 5745 min_val = cur_val; 5746 } else { 5747 assert(cur_val < top, "All recorded addresses should be less"); 5748 } 5749 } 5750 // At this point min_val and min_tid are respectively 5751 // the least address in _survivor_plab_array[j]->nth(_cursor[j]) 5752 // and the thread (j) that witnesses that address. 5753 // We record this address in the _survivor_chunk_array[i] 5754 // and increment _cursor[min_tid] prior to the next round i. 5755 if (min_val == top) { 5756 break; 5757 } 5758 _survivor_chunk_array[i] = min_val; 5759 _cursor[min_tid]++; 5760 } 5761 // We are all done; record the size of the _survivor_chunk_array 5762 _survivor_chunk_index = i; // exclusive: [0, i) 5763 if (PrintCMSStatistics > 0) { 5764 gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i); 5765 } 5766 // Verify that we used up all the recorded entries 5767 #ifdef ASSERT 5768 size_t total = 0; 5769 for (int j = 0; j < no_of_gc_threads; j++) { 5770 assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant"); 5771 total += _cursor[j]; 5772 } 5773 assert(total == _survivor_chunk_index, "Ctl Pt Invariant"); 5774 // Check that the merged array is in sorted order 5775 if (total > 0) { 5776 for (size_t i = 0; i < total - 1; i++) { 5777 if (PrintCMSStatistics > 0) { 5778 gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ", 5779 i, _survivor_chunk_array[i]); 5780 } 5781 assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1], 5782 "Not sorted"); 5783 } 5784 } 5785 #endif // ASSERT 5786 } 5787 5788 // Set up the space's par_seq_tasks structure for work claiming 5789 // for parallel initial scan and rescan of young gen. 5790 // See ParRescanTask where this is currently used. 5791 void 5792 CMSCollector:: 5793 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) { 5794 assert(n_threads > 0, "Unexpected n_threads argument"); 5795 DefNewGeneration* dng = (DefNewGeneration*)_young_gen; 5796 5797 // Eden space 5798 if (!dng->eden()->is_empty()) { 5799 SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks(); 5800 assert(!pst->valid(), "Clobbering existing data?"); 5801 // Each valid entry in [0, _eden_chunk_index) represents a task. 5802 size_t n_tasks = _eden_chunk_index + 1; 5803 assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error"); 5804 // Sets the condition for completion of the subtask (how many threads 5805 // need to finish in order to be done). 5806 pst->set_n_threads(n_threads); 5807 pst->set_n_tasks((int)n_tasks); 5808 } 5809 5810 // Merge the survivor plab arrays into _survivor_chunk_array 5811 if (_survivor_plab_array != NULL) { 5812 merge_survivor_plab_arrays(dng->from(), n_threads); 5813 } else { 5814 assert(_survivor_chunk_index == 0, "Error"); 5815 } 5816 5817 // To space 5818 { 5819 SequentialSubTasksDone* pst = dng->to()->par_seq_tasks(); 5820 assert(!pst->valid(), "Clobbering existing data?"); 5821 // Sets the condition for completion of the subtask (how many threads 5822 // need to finish in order to be done). 5823 pst->set_n_threads(n_threads); 5824 pst->set_n_tasks(1); 5825 assert(pst->valid(), "Error"); 5826 } 5827 5828 // From space 5829 { 5830 SequentialSubTasksDone* pst = dng->from()->par_seq_tasks(); 5831 assert(!pst->valid(), "Clobbering existing data?"); 5832 size_t n_tasks = _survivor_chunk_index + 1; 5833 assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error"); 5834 // Sets the condition for completion of the subtask (how many threads 5835 // need to finish in order to be done). 5836 pst->set_n_threads(n_threads); 5837 pst->set_n_tasks((int)n_tasks); 5838 assert(pst->valid(), "Error"); 5839 } 5840 } 5841 5842 // Parallel version of remark 5843 void CMSCollector::do_remark_parallel() { 5844 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5845 FlexibleWorkGang* workers = gch->workers(); 5846 assert(workers != NULL, "Need parallel worker threads."); 5847 // Choose to use the number of GC workers most recently set 5848 // into "active_workers". If active_workers is not set, set it 5849 // to ParallelGCThreads. 5850 int n_workers = workers->active_workers(); 5851 if (n_workers == 0) { 5852 assert(n_workers > 0, "Should have been set during scavenge"); 5853 n_workers = ParallelGCThreads; 5854 workers->set_active_workers(n_workers); 5855 } 5856 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 5857 5858 CMSParRemarkTask tsk(this, 5859 cms_space, 5860 n_workers, workers, task_queues()); 5861 5862 // Set up for parallel process_strong_roots work. 5863 gch->set_par_threads(n_workers); 5864 // We won't be iterating over the cards in the card table updating 5865 // the younger_gen cards, so we shouldn't call the following else 5866 // the verification code as well as subsequent younger_refs_iterate 5867 // code would get confused. XXX 5868 // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel 5869 5870 // The young gen rescan work will not be done as part of 5871 // process_strong_roots (which currently doesn't knw how to 5872 // parallelize such a scan), but rather will be broken up into 5873 // a set of parallel tasks (via the sampling that the [abortable] 5874 // preclean phase did of EdenSpace, plus the [two] tasks of 5875 // scanning the [two] survivor spaces. Further fine-grain 5876 // parallelization of the scanning of the survivor spaces 5877 // themselves, and of precleaning of the younger gen itself 5878 // is deferred to the future. 5879 initialize_sequential_subtasks_for_young_gen_rescan(n_workers); 5880 5881 // The dirty card rescan work is broken up into a "sequence" 5882 // of parallel tasks (per constituent space) that are dynamically 5883 // claimed by the parallel threads. 5884 cms_space->initialize_sequential_subtasks_for_rescan(n_workers); 5885 5886 // It turns out that even when we're using 1 thread, doing the work in a 5887 // separate thread causes wide variance in run times. We can't help this 5888 // in the multi-threaded case, but we special-case n=1 here to get 5889 // repeatable measurements of the 1-thread overhead of the parallel code. 5890 if (n_workers > 1) { 5891 // Make refs discovery MT-safe, if it isn't already: it may not 5892 // necessarily be so, since it's possible that we are doing 5893 // ST marking. 5894 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true); 5895 GenCollectedHeap::StrongRootsScope srs(gch); 5896 workers->run_task(&tsk); 5897 } else { 5898 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false); 5899 GenCollectedHeap::StrongRootsScope srs(gch); 5900 tsk.work(0); 5901 } 5902 5903 gch->set_par_threads(0); // 0 ==> non-parallel. 5904 // restore, single-threaded for now, any preserved marks 5905 // as a result of work_q overflow 5906 restore_preserved_marks_if_any(); 5907 } 5908 5909 // Non-parallel version of remark 5910 void CMSCollector::do_remark_non_parallel() { 5911 ResourceMark rm; 5912 HandleMark hm; 5913 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5914 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false); 5915 5916 MarkRefsIntoAndScanClosure 5917 mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */, 5918 &_markStack, this, 5919 false /* should_yield */, false /* not precleaning */); 5920 MarkFromDirtyCardsClosure 5921 markFromDirtyCardsClosure(this, _span, 5922 NULL, // space is set further below 5923 &_markBitMap, &_markStack, &mrias_cl); 5924 { 5925 GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm); 5926 // Iterate over the dirty cards, setting the corresponding bits in the 5927 // mod union table. 5928 { 5929 ModUnionClosure modUnionClosure(&_modUnionTable); 5930 _ct->ct_bs()->dirty_card_iterate( 5931 _cmsGen->used_region(), 5932 &modUnionClosure); 5933 } 5934 // Having transferred these marks into the modUnionTable, we just need 5935 // to rescan the marked objects on the dirty cards in the modUnionTable. 5936 // The initial marking may have been done during an asynchronous 5937 // collection so there may be dirty bits in the mod-union table. 5938 const int alignment = 5939 CardTableModRefBS::card_size * BitsPerWord; 5940 { 5941 // ... First handle dirty cards in CMS gen 5942 markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace()); 5943 MemRegion ur = _cmsGen->used_region(); 5944 HeapWord* lb = ur.start(); 5945 HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment); 5946 MemRegion cms_span(lb, ub); 5947 _modUnionTable.dirty_range_iterate_clear(cms_span, 5948 &markFromDirtyCardsClosure); 5949 verify_work_stacks_empty(); 5950 if (PrintCMSStatistics != 0) { 5951 gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ", 5952 markFromDirtyCardsClosure.num_dirty_cards()); 5953 } 5954 } 5955 } 5956 if (VerifyDuringGC && 5957 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 5958 HandleMark hm; // Discard invalid handles created during verification 5959 Universe::verify(); 5960 } 5961 { 5962 GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm); 5963 5964 verify_work_stacks_empty(); 5965 5966 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 5967 GenCollectedHeap::StrongRootsScope srs(gch); 5968 gch->gen_process_strong_roots(_cmsGen->level(), 5969 true, // younger gens as roots 5970 false, // use the local StrongRootsScope 5971 SharedHeap::ScanningOption(roots_scanning_options()), 5972 &mrias_cl, 5973 NULL, 5974 NULL); // The dirty klasses will be handled below 5975 5976 assert(should_unload_classes() 5977 || (roots_scanning_options() & SharedHeap::SO_AllCodeCache), 5978 "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops"); 5979 } 5980 5981 { 5982 GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm); 5983 5984 verify_work_stacks_empty(); 5985 5986 // Scan all class loader data objects that might have been introduced 5987 // during concurrent marking. 5988 ResourceMark rm; 5989 GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds(); 5990 for (int i = 0; i < array->length(); i++) { 5991 mrias_cl.do_class_loader_data(array->at(i)); 5992 } 5993 5994 // We don't need to keep track of new CLDs anymore. 5995 ClassLoaderDataGraph::remember_new_clds(false); 5996 5997 verify_work_stacks_empty(); 5998 } 5999 6000 { 6001 GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm); 6002 6003 verify_work_stacks_empty(); 6004 6005 RemarkKlassClosure remark_klass_closure(&mrias_cl); 6006 ClassLoaderDataGraph::classes_do(&remark_klass_closure); 6007 6008 verify_work_stacks_empty(); 6009 } 6010 6011 // We might have added oops to ClassLoaderData::_handles during the 6012 // concurrent marking phase. These oops point to newly allocated objects 6013 // that are guaranteed to be kept alive. Either by the direct allocation 6014 // code, or when the young collector processes the strong roots. Hence, 6015 // we don't have to revisit the _handles block during the remark phase. 6016 6017 verify_work_stacks_empty(); 6018 // Restore evacuated mark words, if any, used for overflow list links 6019 if (!CMSOverflowEarlyRestoration) { 6020 restore_preserved_marks_if_any(); 6021 } 6022 verify_overflow_empty(); 6023 } 6024 6025 //////////////////////////////////////////////////////// 6026 // Parallel Reference Processing Task Proxy Class 6027 //////////////////////////////////////////////////////// 6028 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues { 6029 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 6030 CMSCollector* _collector; 6031 CMSBitMap* _mark_bit_map; 6032 const MemRegion _span; 6033 ProcessTask& _task; 6034 6035 public: 6036 CMSRefProcTaskProxy(ProcessTask& task, 6037 CMSCollector* collector, 6038 const MemRegion& span, 6039 CMSBitMap* mark_bit_map, 6040 AbstractWorkGang* workers, 6041 OopTaskQueueSet* task_queues): 6042 // XXX Should superclass AGTWOQ also know about AWG since it knows 6043 // about the task_queues used by the AWG? Then it could initialize 6044 // the terminator() object. See 6984287. The set_for_termination() 6045 // below is a temporary band-aid for the regression in 6984287. 6046 AbstractGangTaskWOopQueues("Process referents by policy in parallel", 6047 task_queues), 6048 _task(task), 6049 _collector(collector), _span(span), _mark_bit_map(mark_bit_map) 6050 { 6051 assert(_collector->_span.equals(_span) && !_span.is_empty(), 6052 "Inconsistency in _span"); 6053 set_for_termination(workers->active_workers()); 6054 } 6055 6056 OopTaskQueueSet* task_queues() { return queues(); } 6057 6058 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 6059 6060 void do_work_steal(int i, 6061 CMSParDrainMarkingStackClosure* drain, 6062 CMSParKeepAliveClosure* keep_alive, 6063 int* seed); 6064 6065 virtual void work(uint worker_id); 6066 }; 6067 6068 void CMSRefProcTaskProxy::work(uint worker_id) { 6069 assert(_collector->_span.equals(_span), "Inconsistency in _span"); 6070 CMSParKeepAliveClosure par_keep_alive(_collector, _span, 6071 _mark_bit_map, 6072 work_queue(worker_id)); 6073 CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span, 6074 _mark_bit_map, 6075 work_queue(worker_id)); 6076 CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map); 6077 _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack); 6078 if (_task.marks_oops_alive()) { 6079 do_work_steal(worker_id, &par_drain_stack, &par_keep_alive, 6080 _collector->hash_seed(worker_id)); 6081 } 6082 assert(work_queue(worker_id)->size() == 0, "work_queue should be empty"); 6083 assert(_collector->_overflow_list == NULL, "non-empty _overflow_list"); 6084 } 6085 6086 class CMSRefEnqueueTaskProxy: public AbstractGangTask { 6087 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 6088 EnqueueTask& _task; 6089 6090 public: 6091 CMSRefEnqueueTaskProxy(EnqueueTask& task) 6092 : AbstractGangTask("Enqueue reference objects in parallel"), 6093 _task(task) 6094 { } 6095 6096 virtual void work(uint worker_id) 6097 { 6098 _task.work(worker_id); 6099 } 6100 }; 6101 6102 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector, 6103 MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue): 6104 _span(span), 6105 _bit_map(bit_map), 6106 _work_queue(work_queue), 6107 _mark_and_push(collector, span, bit_map, work_queue), 6108 _low_water_mark(MIN2((uint)(work_queue->max_elems()/4), 6109 (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))) 6110 { } 6111 6112 // . see if we can share work_queues with ParNew? XXX 6113 void CMSRefProcTaskProxy::do_work_steal(int i, 6114 CMSParDrainMarkingStackClosure* drain, 6115 CMSParKeepAliveClosure* keep_alive, 6116 int* seed) { 6117 OopTaskQueue* work_q = work_queue(i); 6118 NOT_PRODUCT(int num_steals = 0;) 6119 oop obj_to_scan; 6120 6121 while (true) { 6122 // Completely finish any left over work from (an) earlier round(s) 6123 drain->trim_queue(0); 6124 size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 6125 (size_t)ParGCDesiredObjsFromOverflowList); 6126 // Now check if there's any work in the overflow list 6127 // Passing ParallelGCThreads as the third parameter, no_of_gc_threads, 6128 // only affects the number of attempts made to get work from the 6129 // overflow list and does not affect the number of workers. Just 6130 // pass ParallelGCThreads so this behavior is unchanged. 6131 if (_collector->par_take_from_overflow_list(num_from_overflow_list, 6132 work_q, 6133 ParallelGCThreads)) { 6134 // Found something in global overflow list; 6135 // not yet ready to go stealing work from others. 6136 // We'd like to assert(work_q->size() != 0, ...) 6137 // because we just took work from the overflow list, 6138 // but of course we can't, since all of that might have 6139 // been already stolen from us. 6140 continue; 6141 } 6142 // Verify that we have no work before we resort to stealing 6143 assert(work_q->size() == 0, "Have work, shouldn't steal"); 6144 // Try to steal from other queues that have work 6145 if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 6146 NOT_PRODUCT(num_steals++;) 6147 assert(obj_to_scan->is_oop(), "Oops, not an oop!"); 6148 assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?"); 6149 // Do scanning work 6150 obj_to_scan->oop_iterate(keep_alive); 6151 // Loop around, finish this work, and try to steal some more 6152 } else if (terminator()->offer_termination()) { 6153 break; // nirvana from the infinite cycle 6154 } 6155 } 6156 NOT_PRODUCT( 6157 if (PrintCMSStatistics != 0) { 6158 gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals); 6159 } 6160 ) 6161 } 6162 6163 void CMSRefProcTaskExecutor::execute(ProcessTask& task) 6164 { 6165 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6166 FlexibleWorkGang* workers = gch->workers(); 6167 assert(workers != NULL, "Need parallel worker threads."); 6168 CMSRefProcTaskProxy rp_task(task, &_collector, 6169 _collector.ref_processor()->span(), 6170 _collector.markBitMap(), 6171 workers, _collector.task_queues()); 6172 workers->run_task(&rp_task); 6173 } 6174 6175 void CMSRefProcTaskExecutor::execute(EnqueueTask& task) 6176 { 6177 6178 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6179 FlexibleWorkGang* workers = gch->workers(); 6180 assert(workers != NULL, "Need parallel worker threads."); 6181 CMSRefEnqueueTaskProxy enq_task(task); 6182 workers->run_task(&enq_task); 6183 } 6184 6185 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) { 6186 6187 ResourceMark rm; 6188 HandleMark hm; 6189 6190 ReferenceProcessor* rp = ref_processor(); 6191 assert(rp->span().equals(_span), "Spans should be equal"); 6192 assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete"); 6193 // Process weak references. 6194 rp->setup_policy(clear_all_soft_refs); 6195 verify_work_stacks_empty(); 6196 6197 CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap, 6198 &_markStack, false /* !preclean */); 6199 CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this, 6200 _span, &_markBitMap, &_markStack, 6201 &cmsKeepAliveClosure, false /* !preclean */); 6202 { 6203 GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm); 6204 6205 ReferenceProcessorStats stats; 6206 if (rp->processing_is_mt()) { 6207 // Set the degree of MT here. If the discovery is done MT, there 6208 // may have been a different number of threads doing the discovery 6209 // and a different number of discovered lists may have Ref objects. 6210 // That is OK as long as the Reference lists are balanced (see 6211 // balance_all_queues() and balance_queues()). 6212 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6213 int active_workers = ParallelGCThreads; 6214 FlexibleWorkGang* workers = gch->workers(); 6215 if (workers != NULL) { 6216 active_workers = workers->active_workers(); 6217 // The expectation is that active_workers will have already 6218 // been set to a reasonable value. If it has not been set, 6219 // investigate. 6220 assert(active_workers > 0, "Should have been set during scavenge"); 6221 } 6222 rp->set_active_mt_degree(active_workers); 6223 CMSRefProcTaskExecutor task_executor(*this); 6224 stats = rp->process_discovered_references(&_is_alive_closure, 6225 &cmsKeepAliveClosure, 6226 &cmsDrainMarkingStackClosure, 6227 &task_executor, 6228 _gc_timer_cm); 6229 } else { 6230 stats = rp->process_discovered_references(&_is_alive_closure, 6231 &cmsKeepAliveClosure, 6232 &cmsDrainMarkingStackClosure, 6233 NULL, 6234 _gc_timer_cm); 6235 } 6236 _gc_tracer_cm->report_gc_reference_stats(stats); 6237 6238 } 6239 6240 // This is the point where the entire marking should have completed. 6241 verify_work_stacks_empty(); 6242 6243 if (should_unload_classes()) { 6244 { 6245 GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm); 6246 6247 // Unload classes and purge the SystemDictionary. 6248 bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure); 6249 6250 // Unload nmethods. 6251 CodeCache::do_unloading(&_is_alive_closure, purged_class); 6252 6253 // Prune dead klasses from subklass/sibling/implementor lists. 6254 Klass::clean_weak_klass_links(&_is_alive_closure); 6255 } 6256 6257 { 6258 GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm); 6259 // Clean up unreferenced symbols in symbol table. 6260 SymbolTable::unlink(); 6261 } 6262 } 6263 6264 // CMS doesn't use the StringTable as hard roots when class unloading is turned off. 6265 // Need to check if we really scanned the StringTable. 6266 if ((roots_scanning_options() & SharedHeap::SO_Strings) == 0) { 6267 GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm); 6268 // Delete entries for dead interned strings. 6269 StringTable::unlink(&_is_alive_closure); 6270 } 6271 6272 // Restore any preserved marks as a result of mark stack or 6273 // work queue overflow 6274 restore_preserved_marks_if_any(); // done single-threaded for now 6275 6276 rp->set_enqueuing_is_done(true); 6277 if (rp->processing_is_mt()) { 6278 rp->balance_all_queues(); 6279 CMSRefProcTaskExecutor task_executor(*this); 6280 rp->enqueue_discovered_references(&task_executor); 6281 } else { 6282 rp->enqueue_discovered_references(NULL); 6283 } 6284 rp->verify_no_references_recorded(); 6285 assert(!rp->discovery_enabled(), "should have been disabled"); 6286 } 6287 6288 #ifndef PRODUCT 6289 void CMSCollector::check_correct_thread_executing() { 6290 Thread* t = Thread::current(); 6291 // Only the VM thread or the CMS thread should be here. 6292 assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(), 6293 "Unexpected thread type"); 6294 // If this is the vm thread, the foreground process 6295 // should not be waiting. Note that _foregroundGCIsActive is 6296 // true while the foreground collector is waiting. 6297 if (_foregroundGCShouldWait) { 6298 // We cannot be the VM thread 6299 assert(t->is_ConcurrentGC_thread(), 6300 "Should be CMS thread"); 6301 } else { 6302 // We can be the CMS thread only if we are in a stop-world 6303 // phase of CMS collection. 6304 if (t->is_ConcurrentGC_thread()) { 6305 assert(_collectorState == InitialMarking || 6306 _collectorState == FinalMarking, 6307 "Should be a stop-world phase"); 6308 // The CMS thread should be holding the CMS_token. 6309 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6310 "Potential interference with concurrently " 6311 "executing VM thread"); 6312 } 6313 } 6314 } 6315 #endif 6316 6317 void CMSCollector::sweep(bool asynch) { 6318 assert(_collectorState == Sweeping, "just checking"); 6319 check_correct_thread_executing(); 6320 verify_work_stacks_empty(); 6321 verify_overflow_empty(); 6322 increment_sweep_count(); 6323 TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause()); 6324 6325 _inter_sweep_timer.stop(); 6326 _inter_sweep_estimate.sample(_inter_sweep_timer.seconds()); 6327 size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free()); 6328 6329 assert(!_intra_sweep_timer.is_active(), "Should not be active"); 6330 _intra_sweep_timer.reset(); 6331 _intra_sweep_timer.start(); 6332 if (asynch) { 6333 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 6334 CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails); 6335 // First sweep the old gen 6336 { 6337 CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(), 6338 bitMapLock()); 6339 sweepWork(_cmsGen, asynch); 6340 } 6341 6342 // Update Universe::_heap_*_at_gc figures. 6343 // We need all the free list locks to make the abstract state 6344 // transition from Sweeping to Resetting. See detailed note 6345 // further below. 6346 { 6347 CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock()); 6348 // Update heap occupancy information which is used as 6349 // input to soft ref clearing policy at the next gc. 6350 Universe::update_heap_info_at_gc(); 6351 _collectorState = Resizing; 6352 } 6353 } else { 6354 // already have needed locks 6355 sweepWork(_cmsGen, asynch); 6356 // Update heap occupancy information which is used as 6357 // input to soft ref clearing policy at the next gc. 6358 Universe::update_heap_info_at_gc(); 6359 _collectorState = Resizing; 6360 } 6361 verify_work_stacks_empty(); 6362 verify_overflow_empty(); 6363 6364 if (should_unload_classes()) { 6365 ClassLoaderDataGraph::purge(); 6366 } 6367 6368 _intra_sweep_timer.stop(); 6369 _intra_sweep_estimate.sample(_intra_sweep_timer.seconds()); 6370 6371 _inter_sweep_timer.reset(); 6372 _inter_sweep_timer.start(); 6373 6374 // We need to use a monotonically non-decreasing time in ms 6375 // or we will see time-warp warnings and os::javaTimeMillis() 6376 // does not guarantee monotonicity. 6377 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; 6378 update_time_of_last_gc(now); 6379 6380 // NOTE on abstract state transitions: 6381 // Mutators allocate-live and/or mark the mod-union table dirty 6382 // based on the state of the collection. The former is done in 6383 // the interval [Marking, Sweeping] and the latter in the interval 6384 // [Marking, Sweeping). Thus the transitions into the Marking state 6385 // and out of the Sweeping state must be synchronously visible 6386 // globally to the mutators. 6387 // The transition into the Marking state happens with the world 6388 // stopped so the mutators will globally see it. Sweeping is 6389 // done asynchronously by the background collector so the transition 6390 // from the Sweeping state to the Resizing state must be done 6391 // under the freelistLock (as is the check for whether to 6392 // allocate-live and whether to dirty the mod-union table). 6393 assert(_collectorState == Resizing, "Change of collector state to" 6394 " Resizing must be done under the freelistLocks (plural)"); 6395 6396 // Now that sweeping has been completed, we clear 6397 // the incremental_collection_failed flag, 6398 // thus inviting a younger gen collection to promote into 6399 // this generation. If such a promotion may still fail, 6400 // the flag will be set again when a young collection is 6401 // attempted. 6402 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6403 gch->clear_incremental_collection_failed(); // Worth retrying as fresh space may have been freed up 6404 gch->update_full_collections_completed(_collection_count_start); 6405 } 6406 6407 // FIX ME!!! Looks like this belongs in CFLSpace, with 6408 // CMSGen merely delegating to it. 6409 void ConcurrentMarkSweepGeneration::setNearLargestChunk() { 6410 double nearLargestPercent = FLSLargestBlockCoalesceProximity; 6411 HeapWord* minAddr = _cmsSpace->bottom(); 6412 HeapWord* largestAddr = 6413 (HeapWord*) _cmsSpace->dictionary()->find_largest_dict(); 6414 if (largestAddr == NULL) { 6415 // The dictionary appears to be empty. In this case 6416 // try to coalesce at the end of the heap. 6417 largestAddr = _cmsSpace->end(); 6418 } 6419 size_t largestOffset = pointer_delta(largestAddr, minAddr); 6420 size_t nearLargestOffset = 6421 (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize; 6422 if (PrintFLSStatistics != 0) { 6423 gclog_or_tty->print_cr( 6424 "CMS: Large Block: " PTR_FORMAT ";" 6425 " Proximity: " PTR_FORMAT " -> " PTR_FORMAT, 6426 largestAddr, 6427 _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset); 6428 } 6429 _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset); 6430 } 6431 6432 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) { 6433 return addr >= _cmsSpace->nearLargestChunk(); 6434 } 6435 6436 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() { 6437 return _cmsSpace->find_chunk_at_end(); 6438 } 6439 6440 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level, 6441 bool full) { 6442 // The next lower level has been collected. Gather any statistics 6443 // that are of interest at this point. 6444 if (!full && (current_level + 1) == level()) { 6445 // Gather statistics on the young generation collection. 6446 collector()->stats().record_gc0_end(used()); 6447 } 6448 } 6449 6450 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() { 6451 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6452 assert(gch->kind() == CollectedHeap::GenCollectedHeap, 6453 "Wrong type of heap"); 6454 CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*) 6455 gch->gen_policy()->size_policy(); 6456 assert(sp->is_gc_cms_adaptive_size_policy(), 6457 "Wrong type of size policy"); 6458 return sp; 6459 } 6460 6461 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() { 6462 if (PrintGCDetails && Verbose) { 6463 gclog_or_tty->print("Rotate from %d ", _debug_collection_type); 6464 } 6465 _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1); 6466 _debug_collection_type = 6467 (CollectionTypes) (_debug_collection_type % Unknown_collection_type); 6468 if (PrintGCDetails && Verbose) { 6469 gclog_or_tty->print_cr("to %d ", _debug_collection_type); 6470 } 6471 } 6472 6473 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen, 6474 bool asynch) { 6475 // We iterate over the space(s) underlying this generation, 6476 // checking the mark bit map to see if the bits corresponding 6477 // to specific blocks are marked or not. Blocks that are 6478 // marked are live and are not swept up. All remaining blocks 6479 // are swept up, with coalescing on-the-fly as we sweep up 6480 // contiguous free and/or garbage blocks: 6481 // We need to ensure that the sweeper synchronizes with allocators 6482 // and stop-the-world collectors. In particular, the following 6483 // locks are used: 6484 // . CMS token: if this is held, a stop the world collection cannot occur 6485 // . freelistLock: if this is held no allocation can occur from this 6486 // generation by another thread 6487 // . bitMapLock: if this is held, no other thread can access or update 6488 // 6489 6490 // Note that we need to hold the freelistLock if we use 6491 // block iterate below; else the iterator might go awry if 6492 // a mutator (or promotion) causes block contents to change 6493 // (for instance if the allocator divvies up a block). 6494 // If we hold the free list lock, for all practical purposes 6495 // young generation GC's can't occur (they'll usually need to 6496 // promote), so we might as well prevent all young generation 6497 // GC's while we do a sweeping step. For the same reason, we might 6498 // as well take the bit map lock for the entire duration 6499 6500 // check that we hold the requisite locks 6501 assert(have_cms_token(), "Should hold cms token"); 6502 assert( (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token()) 6503 || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()), 6504 "Should possess CMS token to sweep"); 6505 assert_lock_strong(gen->freelistLock()); 6506 assert_lock_strong(bitMapLock()); 6507 6508 assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context"); 6509 assert(_intra_sweep_timer.is_active(), "Was switched on in an outer context"); 6510 gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()), 6511 _inter_sweep_estimate.padded_average(), 6512 _intra_sweep_estimate.padded_average()); 6513 gen->setNearLargestChunk(); 6514 6515 { 6516 SweepClosure sweepClosure(this, gen, &_markBitMap, 6517 CMSYield && asynch); 6518 gen->cmsSpace()->blk_iterate_careful(&sweepClosure); 6519 // We need to free-up/coalesce garbage/blocks from a 6520 // co-terminal free run. This is done in the SweepClosure 6521 // destructor; so, do not remove this scope, else the 6522 // end-of-sweep-census below will be off by a little bit. 6523 } 6524 gen->cmsSpace()->sweep_completed(); 6525 gen->cmsSpace()->endSweepFLCensus(sweep_count()); 6526 if (should_unload_classes()) { // unloaded classes this cycle, 6527 _concurrent_cycles_since_last_unload = 0; // ... reset count 6528 } else { // did not unload classes, 6529 _concurrent_cycles_since_last_unload++; // ... increment count 6530 } 6531 } 6532 6533 // Reset CMS data structures (for now just the marking bit map) 6534 // preparatory for the next cycle. 6535 void CMSCollector::reset(bool asynch) { 6536 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6537 CMSAdaptiveSizePolicy* sp = size_policy(); 6538 AdaptiveSizePolicyOutput(sp, gch->total_collections()); 6539 if (asynch) { 6540 CMSTokenSyncWithLocks ts(true, bitMapLock()); 6541 6542 // If the state is not "Resetting", the foreground thread 6543 // has done a collection and the resetting. 6544 if (_collectorState != Resetting) { 6545 assert(_collectorState == Idling, "The state should only change" 6546 " because the foreground collector has finished the collection"); 6547 return; 6548 } 6549 6550 // Clear the mark bitmap (no grey objects to start with) 6551 // for the next cycle. 6552 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 6553 CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails); 6554 6555 HeapWord* curAddr = _markBitMap.startWord(); 6556 while (curAddr < _markBitMap.endWord()) { 6557 size_t remaining = pointer_delta(_markBitMap.endWord(), curAddr); 6558 MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining)); 6559 _markBitMap.clear_large_range(chunk); 6560 if (ConcurrentMarkSweepThread::should_yield() && 6561 !foregroundGCIsActive() && 6562 CMSYield) { 6563 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6564 "CMS thread should hold CMS token"); 6565 assert_lock_strong(bitMapLock()); 6566 bitMapLock()->unlock(); 6567 ConcurrentMarkSweepThread::desynchronize(true); 6568 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6569 stopTimer(); 6570 if (PrintCMSStatistics != 0) { 6571 incrementYields(); 6572 } 6573 icms_wait(); 6574 6575 // See the comment in coordinator_yield() 6576 for (unsigned i = 0; i < CMSYieldSleepCount && 6577 ConcurrentMarkSweepThread::should_yield() && 6578 !CMSCollector::foregroundGCIsActive(); ++i) { 6579 os::sleep(Thread::current(), 1, false); 6580 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6581 } 6582 6583 ConcurrentMarkSweepThread::synchronize(true); 6584 bitMapLock()->lock_without_safepoint_check(); 6585 startTimer(); 6586 } 6587 curAddr = chunk.end(); 6588 } 6589 // A successful mostly concurrent collection has been done. 6590 // Because only the full (i.e., concurrent mode failure) collections 6591 // are being measured for gc overhead limits, clean the "near" flag 6592 // and count. 6593 sp->reset_gc_overhead_limit_count(); 6594 _collectorState = Idling; 6595 } else { 6596 // already have the lock 6597 assert(_collectorState == Resetting, "just checking"); 6598 assert_lock_strong(bitMapLock()); 6599 _markBitMap.clear_all(); 6600 _collectorState = Idling; 6601 } 6602 6603 // Stop incremental mode after a cycle completes, so that any future cycles 6604 // are triggered by allocation. 6605 stop_icms(); 6606 6607 NOT_PRODUCT( 6608 if (RotateCMSCollectionTypes) { 6609 _cmsGen->rotate_debug_collection_type(); 6610 } 6611 ) 6612 6613 register_gc_end(); 6614 } 6615 6616 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) { 6617 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps); 6618 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 6619 GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL); 6620 TraceCollectorStats tcs(counters()); 6621 6622 switch (op) { 6623 case CMS_op_checkpointRootsInitial: { 6624 SvcGCMarker sgcm(SvcGCMarker::OTHER); 6625 checkpointRootsInitial(true); // asynch 6626 if (PrintGC) { 6627 _cmsGen->printOccupancy("initial-mark"); 6628 } 6629 break; 6630 } 6631 case CMS_op_checkpointRootsFinal: { 6632 SvcGCMarker sgcm(SvcGCMarker::OTHER); 6633 checkpointRootsFinal(true, // asynch 6634 false, // !clear_all_soft_refs 6635 false); // !init_mark_was_synchronous 6636 if (PrintGC) { 6637 _cmsGen->printOccupancy("remark"); 6638 } 6639 break; 6640 } 6641 default: 6642 fatal("No such CMS_op"); 6643 } 6644 } 6645 6646 #ifndef PRODUCT 6647 size_t const CMSCollector::skip_header_HeapWords() { 6648 return FreeChunk::header_size(); 6649 } 6650 6651 // Try and collect here conditions that should hold when 6652 // CMS thread is exiting. The idea is that the foreground GC 6653 // thread should not be blocked if it wants to terminate 6654 // the CMS thread and yet continue to run the VM for a while 6655 // after that. 6656 void CMSCollector::verify_ok_to_terminate() const { 6657 assert(Thread::current()->is_ConcurrentGC_thread(), 6658 "should be called by CMS thread"); 6659 assert(!_foregroundGCShouldWait, "should be false"); 6660 // We could check here that all the various low-level locks 6661 // are not held by the CMS thread, but that is overkill; see 6662 // also CMSThread::verify_ok_to_terminate() where the CGC_lock 6663 // is checked. 6664 } 6665 #endif 6666 6667 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const { 6668 assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1), 6669 "missing Printezis mark?"); 6670 HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2); 6671 size_t size = pointer_delta(nextOneAddr + 1, addr); 6672 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 6673 "alignment problem"); 6674 assert(size >= 3, "Necessary for Printezis marks to work"); 6675 return size; 6676 } 6677 6678 // A variant of the above (block_size_using_printezis_bits()) except 6679 // that we return 0 if the P-bits are not yet set. 6680 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const { 6681 if (_markBitMap.isMarked(addr + 1)) { 6682 assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects"); 6683 HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2); 6684 size_t size = pointer_delta(nextOneAddr + 1, addr); 6685 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 6686 "alignment problem"); 6687 assert(size >= 3, "Necessary for Printezis marks to work"); 6688 return size; 6689 } 6690 return 0; 6691 } 6692 6693 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const { 6694 size_t sz = 0; 6695 oop p = (oop)addr; 6696 if (p->klass_or_null() != NULL) { 6697 sz = CompactibleFreeListSpace::adjustObjectSize(p->size()); 6698 } else { 6699 sz = block_size_using_printezis_bits(addr); 6700 } 6701 assert(sz > 0, "size must be nonzero"); 6702 HeapWord* next_block = addr + sz; 6703 HeapWord* next_card = (HeapWord*)round_to((uintptr_t)next_block, 6704 CardTableModRefBS::card_size); 6705 assert(round_down((uintptr_t)addr, CardTableModRefBS::card_size) < 6706 round_down((uintptr_t)next_card, CardTableModRefBS::card_size), 6707 "must be different cards"); 6708 return next_card; 6709 } 6710 6711 6712 // CMS Bit Map Wrapper ///////////////////////////////////////// 6713 6714 // Construct a CMS bit map infrastructure, but don't create the 6715 // bit vector itself. That is done by a separate call CMSBitMap::allocate() 6716 // further below. 6717 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name): 6718 _bm(), 6719 _shifter(shifter), 6720 _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL) 6721 { 6722 _bmStartWord = 0; 6723 _bmWordSize = 0; 6724 } 6725 6726 bool CMSBitMap::allocate(MemRegion mr) { 6727 _bmStartWord = mr.start(); 6728 _bmWordSize = mr.word_size(); 6729 ReservedSpace brs(ReservedSpace::allocation_align_size_up( 6730 (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1)); 6731 if (!brs.is_reserved()) { 6732 warning("CMS bit map allocation failure"); 6733 return false; 6734 } 6735 // For now we'll just commit all of the bit map up front. 6736 // Later on we'll try to be more parsimonious with swap. 6737 if (!_virtual_space.initialize(brs, brs.size())) { 6738 warning("CMS bit map backing store failure"); 6739 return false; 6740 } 6741 assert(_virtual_space.committed_size() == brs.size(), 6742 "didn't reserve backing store for all of CMS bit map?"); 6743 _bm.set_map((BitMap::bm_word_t*)_virtual_space.low()); 6744 assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >= 6745 _bmWordSize, "inconsistency in bit map sizing"); 6746 _bm.set_size(_bmWordSize >> _shifter); 6747 6748 // bm.clear(); // can we rely on getting zero'd memory? verify below 6749 assert(isAllClear(), 6750 "Expected zero'd memory from ReservedSpace constructor"); 6751 assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()), 6752 "consistency check"); 6753 return true; 6754 } 6755 6756 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) { 6757 HeapWord *next_addr, *end_addr, *last_addr; 6758 assert_locked(); 6759 assert(covers(mr), "out-of-range error"); 6760 // XXX assert that start and end are appropriately aligned 6761 for (next_addr = mr.start(), end_addr = mr.end(); 6762 next_addr < end_addr; next_addr = last_addr) { 6763 MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr); 6764 last_addr = dirty_region.end(); 6765 if (!dirty_region.is_empty()) { 6766 cl->do_MemRegion(dirty_region); 6767 } else { 6768 assert(last_addr == end_addr, "program logic"); 6769 return; 6770 } 6771 } 6772 } 6773 6774 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const { 6775 _bm.print_on_error(st, prefix); 6776 } 6777 6778 #ifndef PRODUCT 6779 void CMSBitMap::assert_locked() const { 6780 CMSLockVerifier::assert_locked(lock()); 6781 } 6782 6783 bool CMSBitMap::covers(MemRegion mr) const { 6784 // assert(_bm.map() == _virtual_space.low(), "map inconsistency"); 6785 assert((size_t)_bm.size() == (_bmWordSize >> _shifter), 6786 "size inconsistency"); 6787 return (mr.start() >= _bmStartWord) && 6788 (mr.end() <= endWord()); 6789 } 6790 6791 bool CMSBitMap::covers(HeapWord* start, size_t size) const { 6792 return (start >= _bmStartWord && (start + size) <= endWord()); 6793 } 6794 6795 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) { 6796 // verify that there are no 1 bits in the interval [left, right) 6797 FalseBitMapClosure falseBitMapClosure; 6798 iterate(&falseBitMapClosure, left, right); 6799 } 6800 6801 void CMSBitMap::region_invariant(MemRegion mr) 6802 { 6803 assert_locked(); 6804 // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize)); 6805 assert(!mr.is_empty(), "unexpected empty region"); 6806 assert(covers(mr), "mr should be covered by bit map"); 6807 // convert address range into offset range 6808 size_t start_ofs = heapWordToOffset(mr.start()); 6809 // Make sure that end() is appropriately aligned 6810 assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(), 6811 (1 << (_shifter+LogHeapWordSize))), 6812 "Misaligned mr.end()"); 6813 size_t end_ofs = heapWordToOffset(mr.end()); 6814 assert(end_ofs > start_ofs, "Should mark at least one bit"); 6815 } 6816 6817 #endif 6818 6819 bool CMSMarkStack::allocate(size_t size) { 6820 // allocate a stack of the requisite depth 6821 ReservedSpace rs(ReservedSpace::allocation_align_size_up( 6822 size * sizeof(oop))); 6823 if (!rs.is_reserved()) { 6824 warning("CMSMarkStack allocation failure"); 6825 return false; 6826 } 6827 if (!_virtual_space.initialize(rs, rs.size())) { 6828 warning("CMSMarkStack backing store failure"); 6829 return false; 6830 } 6831 assert(_virtual_space.committed_size() == rs.size(), 6832 "didn't reserve backing store for all of CMS stack?"); 6833 _base = (oop*)(_virtual_space.low()); 6834 _index = 0; 6835 _capacity = size; 6836 NOT_PRODUCT(_max_depth = 0); 6837 return true; 6838 } 6839 6840 // XXX FIX ME !!! In the MT case we come in here holding a 6841 // leaf lock. For printing we need to take a further lock 6842 // which has lower rank. We need to recalibrate the two 6843 // lock-ranks involved in order to be able to print the 6844 // messages below. (Or defer the printing to the caller. 6845 // For now we take the expedient path of just disabling the 6846 // messages for the problematic case.) 6847 void CMSMarkStack::expand() { 6848 assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted"); 6849 if (_capacity == MarkStackSizeMax) { 6850 if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) { 6851 // We print a warning message only once per CMS cycle. 6852 gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit"); 6853 } 6854 return; 6855 } 6856 // Double capacity if possible 6857 size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax); 6858 // Do not give up existing stack until we have managed to 6859 // get the double capacity that we desired. 6860 ReservedSpace rs(ReservedSpace::allocation_align_size_up( 6861 new_capacity * sizeof(oop))); 6862 if (rs.is_reserved()) { 6863 // Release the backing store associated with old stack 6864 _virtual_space.release(); 6865 // Reinitialize virtual space for new stack 6866 if (!_virtual_space.initialize(rs, rs.size())) { 6867 fatal("Not enough swap for expanded marking stack"); 6868 } 6869 _base = (oop*)(_virtual_space.low()); 6870 _index = 0; 6871 _capacity = new_capacity; 6872 } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) { 6873 // Failed to double capacity, continue; 6874 // we print a detail message only once per CMS cycle. 6875 gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to " 6876 SIZE_FORMAT"K", 6877 _capacity / K, new_capacity / K); 6878 } 6879 } 6880 6881 6882 // Closures 6883 // XXX: there seems to be a lot of code duplication here; 6884 // should refactor and consolidate common code. 6885 6886 // This closure is used to mark refs into the CMS generation in 6887 // the CMS bit map. Called at the first checkpoint. This closure 6888 // assumes that we do not need to re-mark dirty cards; if the CMS 6889 // generation on which this is used is not an oldest 6890 // generation then this will lose younger_gen cards! 6891 6892 MarkRefsIntoClosure::MarkRefsIntoClosure( 6893 MemRegion span, CMSBitMap* bitMap): 6894 _span(span), 6895 _bitMap(bitMap) 6896 { 6897 assert(_ref_processor == NULL, "deliberately left NULL"); 6898 assert(_bitMap->covers(_span), "_bitMap/_span mismatch"); 6899 } 6900 6901 void MarkRefsIntoClosure::do_oop(oop obj) { 6902 // if p points into _span, then mark corresponding bit in _markBitMap 6903 assert(obj->is_oop(), "expected an oop"); 6904 HeapWord* addr = (HeapWord*)obj; 6905 if (_span.contains(addr)) { 6906 // this should be made more efficient 6907 _bitMap->mark(addr); 6908 } 6909 } 6910 6911 void MarkRefsIntoClosure::do_oop(oop* p) { MarkRefsIntoClosure::do_oop_work(p); } 6912 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); } 6913 6914 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure( 6915 MemRegion span, CMSBitMap* bitMap): 6916 _span(span), 6917 _bitMap(bitMap) 6918 { 6919 assert(_ref_processor == NULL, "deliberately left NULL"); 6920 assert(_bitMap->covers(_span), "_bitMap/_span mismatch"); 6921 } 6922 6923 void Par_MarkRefsIntoClosure::do_oop(oop obj) { 6924 // if p points into _span, then mark corresponding bit in _markBitMap 6925 assert(obj->is_oop(), "expected an oop"); 6926 HeapWord* addr = (HeapWord*)obj; 6927 if (_span.contains(addr)) { 6928 // this should be made more efficient 6929 _bitMap->par_mark(addr); 6930 } 6931 } 6932 6933 void Par_MarkRefsIntoClosure::do_oop(oop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); } 6934 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); } 6935 6936 // A variant of the above, used for CMS marking verification. 6937 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure( 6938 MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm): 6939 _span(span), 6940 _verification_bm(verification_bm), 6941 _cms_bm(cms_bm) 6942 { 6943 assert(_ref_processor == NULL, "deliberately left NULL"); 6944 assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch"); 6945 } 6946 6947 void MarkRefsIntoVerifyClosure::do_oop(oop obj) { 6948 // if p points into _span, then mark corresponding bit in _markBitMap 6949 assert(obj->is_oop(), "expected an oop"); 6950 HeapWord* addr = (HeapWord*)obj; 6951 if (_span.contains(addr)) { 6952 _verification_bm->mark(addr); 6953 if (!_cms_bm->isMarked(addr)) { 6954 oop(addr)->print(); 6955 gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr); 6956 fatal("... aborting"); 6957 } 6958 } 6959 } 6960 6961 void MarkRefsIntoVerifyClosure::do_oop(oop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); } 6962 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); } 6963 6964 ////////////////////////////////////////////////// 6965 // MarkRefsIntoAndScanClosure 6966 ////////////////////////////////////////////////// 6967 6968 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span, 6969 ReferenceProcessor* rp, 6970 CMSBitMap* bit_map, 6971 CMSBitMap* mod_union_table, 6972 CMSMarkStack* mark_stack, 6973 CMSCollector* collector, 6974 bool should_yield, 6975 bool concurrent_precleaning): 6976 _collector(collector), 6977 _span(span), 6978 _bit_map(bit_map), 6979 _mark_stack(mark_stack), 6980 _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table, 6981 mark_stack, concurrent_precleaning), 6982 _yield(should_yield), 6983 _concurrent_precleaning(concurrent_precleaning), 6984 _freelistLock(NULL) 6985 { 6986 _ref_processor = rp; 6987 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 6988 } 6989 6990 // This closure is used to mark refs into the CMS generation at the 6991 // second (final) checkpoint, and to scan and transitively follow 6992 // the unmarked oops. It is also used during the concurrent precleaning 6993 // phase while scanning objects on dirty cards in the CMS generation. 6994 // The marks are made in the marking bit map and the marking stack is 6995 // used for keeping the (newly) grey objects during the scan. 6996 // The parallel version (Par_...) appears further below. 6997 void MarkRefsIntoAndScanClosure::do_oop(oop obj) { 6998 if (obj != NULL) { 6999 assert(obj->is_oop(), "expected an oop"); 7000 HeapWord* addr = (HeapWord*)obj; 7001 assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)"); 7002 assert(_collector->overflow_list_is_empty(), 7003 "overflow list should be empty"); 7004 if (_span.contains(addr) && 7005 !_bit_map->isMarked(addr)) { 7006 // mark bit map (object is now grey) 7007 _bit_map->mark(addr); 7008 // push on marking stack (stack should be empty), and drain the 7009 // stack by applying this closure to the oops in the oops popped 7010 // from the stack (i.e. blacken the grey objects) 7011 bool res = _mark_stack->push(obj); 7012 assert(res, "Should have space to push on empty stack"); 7013 do { 7014 oop new_oop = _mark_stack->pop(); 7015 assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop"); 7016 assert(_bit_map->isMarked((HeapWord*)new_oop), 7017 "only grey objects on this stack"); 7018 // iterate over the oops in this oop, marking and pushing 7019 // the ones in CMS heap (i.e. in _span). 7020 new_oop->oop_iterate(&_pushAndMarkClosure); 7021 // check if it's time to yield 7022 do_yield_check(); 7023 } while (!_mark_stack->isEmpty() || 7024 (!_concurrent_precleaning && take_from_overflow_list())); 7025 // if marking stack is empty, and we are not doing this 7026 // during precleaning, then check the overflow list 7027 } 7028 assert(_mark_stack->isEmpty(), "post-condition (eager drainage)"); 7029 assert(_collector->overflow_list_is_empty(), 7030 "overflow list was drained above"); 7031 // We could restore evacuated mark words, if any, used for 7032 // overflow list links here because the overflow list is 7033 // provably empty here. That would reduce the maximum 7034 // size requirements for preserved_{oop,mark}_stack. 7035 // But we'll just postpone it until we are all done 7036 // so we can just stream through. 7037 if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) { 7038 _collector->restore_preserved_marks_if_any(); 7039 assert(_collector->no_preserved_marks(), "No preserved marks"); 7040 } 7041 assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(), 7042 "All preserved marks should have been restored above"); 7043 } 7044 } 7045 7046 void MarkRefsIntoAndScanClosure::do_oop(oop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); } 7047 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); } 7048 7049 void MarkRefsIntoAndScanClosure::do_yield_work() { 7050 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7051 "CMS thread should hold CMS token"); 7052 assert_lock_strong(_freelistLock); 7053 assert_lock_strong(_bit_map->lock()); 7054 // relinquish the free_list_lock and bitMaplock() 7055 _bit_map->lock()->unlock(); 7056 _freelistLock->unlock(); 7057 ConcurrentMarkSweepThread::desynchronize(true); 7058 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7059 _collector->stopTimer(); 7060 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 7061 if (PrintCMSStatistics != 0) { 7062 _collector->incrementYields(); 7063 } 7064 _collector->icms_wait(); 7065 7066 // See the comment in coordinator_yield() 7067 for (unsigned i = 0; 7068 i < CMSYieldSleepCount && 7069 ConcurrentMarkSweepThread::should_yield() && 7070 !CMSCollector::foregroundGCIsActive(); 7071 ++i) { 7072 os::sleep(Thread::current(), 1, false); 7073 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7074 } 7075 7076 ConcurrentMarkSweepThread::synchronize(true); 7077 _freelistLock->lock_without_safepoint_check(); 7078 _bit_map->lock()->lock_without_safepoint_check(); 7079 _collector->startTimer(); 7080 } 7081 7082 /////////////////////////////////////////////////////////// 7083 // Par_MarkRefsIntoAndScanClosure: a parallel version of 7084 // MarkRefsIntoAndScanClosure 7085 /////////////////////////////////////////////////////////// 7086 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure( 7087 CMSCollector* collector, MemRegion span, ReferenceProcessor* rp, 7088 CMSBitMap* bit_map, OopTaskQueue* work_queue): 7089 _span(span), 7090 _bit_map(bit_map), 7091 _work_queue(work_queue), 7092 _low_water_mark(MIN2((uint)(work_queue->max_elems()/4), 7093 (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))), 7094 _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue) 7095 { 7096 _ref_processor = rp; 7097 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 7098 } 7099 7100 // This closure is used to mark refs into the CMS generation at the 7101 // second (final) checkpoint, and to scan and transitively follow 7102 // the unmarked oops. The marks are made in the marking bit map and 7103 // the work_queue is used for keeping the (newly) grey objects during 7104 // the scan phase whence they are also available for stealing by parallel 7105 // threads. Since the marking bit map is shared, updates are 7106 // synchronized (via CAS). 7107 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) { 7108 if (obj != NULL) { 7109 // Ignore mark word because this could be an already marked oop 7110 // that may be chained at the end of the overflow list. 7111 assert(obj->is_oop(true), "expected an oop"); 7112 HeapWord* addr = (HeapWord*)obj; 7113 if (_span.contains(addr) && 7114 !_bit_map->isMarked(addr)) { 7115 // mark bit map (object will become grey): 7116 // It is possible for several threads to be 7117 // trying to "claim" this object concurrently; 7118 // the unique thread that succeeds in marking the 7119 // object first will do the subsequent push on 7120 // to the work queue (or overflow list). 7121 if (_bit_map->par_mark(addr)) { 7122 // push on work_queue (which may not be empty), and trim the 7123 // queue to an appropriate length by applying this closure to 7124 // the oops in the oops popped from the stack (i.e. blacken the 7125 // grey objects) 7126 bool res = _work_queue->push(obj); 7127 assert(res, "Low water mark should be less than capacity?"); 7128 trim_queue(_low_water_mark); 7129 } // Else, another thread claimed the object 7130 } 7131 } 7132 } 7133 7134 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); } 7135 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); } 7136 7137 // This closure is used to rescan the marked objects on the dirty cards 7138 // in the mod union table and the card table proper. 7139 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m( 7140 oop p, MemRegion mr) { 7141 7142 size_t size = 0; 7143 HeapWord* addr = (HeapWord*)p; 7144 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 7145 assert(_span.contains(addr), "we are scanning the CMS generation"); 7146 // check if it's time to yield 7147 if (do_yield_check()) { 7148 // We yielded for some foreground stop-world work, 7149 // and we have been asked to abort this ongoing preclean cycle. 7150 return 0; 7151 } 7152 if (_bitMap->isMarked(addr)) { 7153 // it's marked; is it potentially uninitialized? 7154 if (p->klass_or_null() != NULL) { 7155 // an initialized object; ignore mark word in verification below 7156 // since we are running concurrent with mutators 7157 assert(p->is_oop(true), "should be an oop"); 7158 if (p->is_objArray()) { 7159 // objArrays are precisely marked; restrict scanning 7160 // to dirty cards only. 7161 size = CompactibleFreeListSpace::adjustObjectSize( 7162 p->oop_iterate(_scanningClosure, mr)); 7163 } else { 7164 // A non-array may have been imprecisely marked; we need 7165 // to scan object in its entirety. 7166 size = CompactibleFreeListSpace::adjustObjectSize( 7167 p->oop_iterate(_scanningClosure)); 7168 } 7169 #ifdef ASSERT 7170 size_t direct_size = 7171 CompactibleFreeListSpace::adjustObjectSize(p->size()); 7172 assert(size == direct_size, "Inconsistency in size"); 7173 assert(size >= 3, "Necessary for Printezis marks to work"); 7174 if (!_bitMap->isMarked(addr+1)) { 7175 _bitMap->verifyNoOneBitsInRange(addr+2, addr+size); 7176 } else { 7177 _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1); 7178 assert(_bitMap->isMarked(addr+size-1), 7179 "inconsistent Printezis mark"); 7180 } 7181 #endif // ASSERT 7182 } else { 7183 // An uninitialized object. 7184 assert(_bitMap->isMarked(addr+1), "missing Printezis mark?"); 7185 HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2); 7186 size = pointer_delta(nextOneAddr + 1, addr); 7187 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 7188 "alignment problem"); 7189 // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass() 7190 // will dirty the card when the klass pointer is installed in the 7191 // object (signaling the completion of initialization). 7192 } 7193 } else { 7194 // Either a not yet marked object or an uninitialized object 7195 if (p->klass_or_null() == NULL) { 7196 // An uninitialized object, skip to the next card, since 7197 // we may not be able to read its P-bits yet. 7198 assert(size == 0, "Initial value"); 7199 } else { 7200 // An object not (yet) reached by marking: we merely need to 7201 // compute its size so as to go look at the next block. 7202 assert(p->is_oop(true), "should be an oop"); 7203 size = CompactibleFreeListSpace::adjustObjectSize(p->size()); 7204 } 7205 } 7206 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 7207 return size; 7208 } 7209 7210 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() { 7211 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7212 "CMS thread should hold CMS token"); 7213 assert_lock_strong(_freelistLock); 7214 assert_lock_strong(_bitMap->lock()); 7215 // relinquish the free_list_lock and bitMaplock() 7216 _bitMap->lock()->unlock(); 7217 _freelistLock->unlock(); 7218 ConcurrentMarkSweepThread::desynchronize(true); 7219 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7220 _collector->stopTimer(); 7221 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 7222 if (PrintCMSStatistics != 0) { 7223 _collector->incrementYields(); 7224 } 7225 _collector->icms_wait(); 7226 7227 // See the comment in coordinator_yield() 7228 for (unsigned i = 0; i < CMSYieldSleepCount && 7229 ConcurrentMarkSweepThread::should_yield() && 7230 !CMSCollector::foregroundGCIsActive(); ++i) { 7231 os::sleep(Thread::current(), 1, false); 7232 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7233 } 7234 7235 ConcurrentMarkSweepThread::synchronize(true); 7236 _freelistLock->lock_without_safepoint_check(); 7237 _bitMap->lock()->lock_without_safepoint_check(); 7238 _collector->startTimer(); 7239 } 7240 7241 7242 ////////////////////////////////////////////////////////////////// 7243 // SurvivorSpacePrecleanClosure 7244 ////////////////////////////////////////////////////////////////// 7245 // This (single-threaded) closure is used to preclean the oops in 7246 // the survivor spaces. 7247 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) { 7248 7249 HeapWord* addr = (HeapWord*)p; 7250 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 7251 assert(!_span.contains(addr), "we are scanning the survivor spaces"); 7252 assert(p->klass_or_null() != NULL, "object should be initialized"); 7253 // an initialized object; ignore mark word in verification below 7254 // since we are running concurrent with mutators 7255 assert(p->is_oop(true), "should be an oop"); 7256 // Note that we do not yield while we iterate over 7257 // the interior oops of p, pushing the relevant ones 7258 // on our marking stack. 7259 size_t size = p->oop_iterate(_scanning_closure); 7260 do_yield_check(); 7261 // Observe that below, we do not abandon the preclean 7262 // phase as soon as we should; rather we empty the 7263 // marking stack before returning. This is to satisfy 7264 // some existing assertions. In general, it may be a 7265 // good idea to abort immediately and complete the marking 7266 // from the grey objects at a later time. 7267 while (!_mark_stack->isEmpty()) { 7268 oop new_oop = _mark_stack->pop(); 7269 assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop"); 7270 assert(_bit_map->isMarked((HeapWord*)new_oop), 7271 "only grey objects on this stack"); 7272 // iterate over the oops in this oop, marking and pushing 7273 // the ones in CMS heap (i.e. in _span). 7274 new_oop->oop_iterate(_scanning_closure); 7275 // check if it's time to yield 7276 do_yield_check(); 7277 } 7278 unsigned int after_count = 7279 GenCollectedHeap::heap()->total_collections(); 7280 bool abort = (_before_count != after_count) || 7281 _collector->should_abort_preclean(); 7282 return abort ? 0 : size; 7283 } 7284 7285 void SurvivorSpacePrecleanClosure::do_yield_work() { 7286 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7287 "CMS thread should hold CMS token"); 7288 assert_lock_strong(_bit_map->lock()); 7289 // Relinquish the bit map lock 7290 _bit_map->lock()->unlock(); 7291 ConcurrentMarkSweepThread::desynchronize(true); 7292 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7293 _collector->stopTimer(); 7294 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 7295 if (PrintCMSStatistics != 0) { 7296 _collector->incrementYields(); 7297 } 7298 _collector->icms_wait(); 7299 7300 // See the comment in coordinator_yield() 7301 for (unsigned i = 0; i < CMSYieldSleepCount && 7302 ConcurrentMarkSweepThread::should_yield() && 7303 !CMSCollector::foregroundGCIsActive(); ++i) { 7304 os::sleep(Thread::current(), 1, false); 7305 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7306 } 7307 7308 ConcurrentMarkSweepThread::synchronize(true); 7309 _bit_map->lock()->lock_without_safepoint_check(); 7310 _collector->startTimer(); 7311 } 7312 7313 // This closure is used to rescan the marked objects on the dirty cards 7314 // in the mod union table and the card table proper. In the parallel 7315 // case, although the bitMap is shared, we do a single read so the 7316 // isMarked() query is "safe". 7317 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) { 7318 // Ignore mark word because we are running concurrent with mutators 7319 assert(p->is_oop_or_null(true), "expected an oop or null"); 7320 HeapWord* addr = (HeapWord*)p; 7321 assert(_span.contains(addr), "we are scanning the CMS generation"); 7322 bool is_obj_array = false; 7323 #ifdef ASSERT 7324 if (!_parallel) { 7325 assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)"); 7326 assert(_collector->overflow_list_is_empty(), 7327 "overflow list should be empty"); 7328 7329 } 7330 #endif // ASSERT 7331 if (_bit_map->isMarked(addr)) { 7332 // Obj arrays are precisely marked, non-arrays are not; 7333 // so we scan objArrays precisely and non-arrays in their 7334 // entirety. 7335 if (p->is_objArray()) { 7336 is_obj_array = true; 7337 if (_parallel) { 7338 p->oop_iterate(_par_scan_closure, mr); 7339 } else { 7340 p->oop_iterate(_scan_closure, mr); 7341 } 7342 } else { 7343 if (_parallel) { 7344 p->oop_iterate(_par_scan_closure); 7345 } else { 7346 p->oop_iterate(_scan_closure); 7347 } 7348 } 7349 } 7350 #ifdef ASSERT 7351 if (!_parallel) { 7352 assert(_mark_stack->isEmpty(), "post-condition (eager drainage)"); 7353 assert(_collector->overflow_list_is_empty(), 7354 "overflow list should be empty"); 7355 7356 } 7357 #endif // ASSERT 7358 return is_obj_array; 7359 } 7360 7361 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector, 7362 MemRegion span, 7363 CMSBitMap* bitMap, CMSMarkStack* markStack, 7364 bool should_yield, bool verifying): 7365 _collector(collector), 7366 _span(span), 7367 _bitMap(bitMap), 7368 _mut(&collector->_modUnionTable), 7369 _markStack(markStack), 7370 _yield(should_yield), 7371 _skipBits(0) 7372 { 7373 assert(_markStack->isEmpty(), "stack should be empty"); 7374 _finger = _bitMap->startWord(); 7375 _threshold = _finger; 7376 assert(_collector->_restart_addr == NULL, "Sanity check"); 7377 assert(_span.contains(_finger), "Out of bounds _finger?"); 7378 DEBUG_ONLY(_verifying = verifying;) 7379 } 7380 7381 void MarkFromRootsClosure::reset(HeapWord* addr) { 7382 assert(_markStack->isEmpty(), "would cause duplicates on stack"); 7383 assert(_span.contains(addr), "Out of bounds _finger?"); 7384 _finger = addr; 7385 _threshold = (HeapWord*)round_to( 7386 (intptr_t)_finger, CardTableModRefBS::card_size); 7387 } 7388 7389 // Should revisit to see if this should be restructured for 7390 // greater efficiency. 7391 bool MarkFromRootsClosure::do_bit(size_t offset) { 7392 if (_skipBits > 0) { 7393 _skipBits--; 7394 return true; 7395 } 7396 // convert offset into a HeapWord* 7397 HeapWord* addr = _bitMap->startWord() + offset; 7398 assert(_bitMap->endWord() && addr < _bitMap->endWord(), 7399 "address out of range"); 7400 assert(_bitMap->isMarked(addr), "tautology"); 7401 if (_bitMap->isMarked(addr+1)) { 7402 // this is an allocated but not yet initialized object 7403 assert(_skipBits == 0, "tautology"); 7404 _skipBits = 2; // skip next two marked bits ("Printezis-marks") 7405 oop p = oop(addr); 7406 if (p->klass_or_null() == NULL) { 7407 DEBUG_ONLY(if (!_verifying) {) 7408 // We re-dirty the cards on which this object lies and increase 7409 // the _threshold so that we'll come back to scan this object 7410 // during the preclean or remark phase. (CMSCleanOnEnter) 7411 if (CMSCleanOnEnter) { 7412 size_t sz = _collector->block_size_using_printezis_bits(addr); 7413 HeapWord* end_card_addr = (HeapWord*)round_to( 7414 (intptr_t)(addr+sz), CardTableModRefBS::card_size); 7415 MemRegion redirty_range = MemRegion(addr, end_card_addr); 7416 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 7417 // Bump _threshold to end_card_addr; note that 7418 // _threshold cannot possibly exceed end_card_addr, anyhow. 7419 // This prevents future clearing of the card as the scan proceeds 7420 // to the right. 7421 assert(_threshold <= end_card_addr, 7422 "Because we are just scanning into this object"); 7423 if (_threshold < end_card_addr) { 7424 _threshold = end_card_addr; 7425 } 7426 if (p->klass_or_null() != NULL) { 7427 // Redirty the range of cards... 7428 _mut->mark_range(redirty_range); 7429 } // ...else the setting of klass will dirty the card anyway. 7430 } 7431 DEBUG_ONLY(}) 7432 return true; 7433 } 7434 } 7435 scanOopsInOop(addr); 7436 return true; 7437 } 7438 7439 // We take a break if we've been at this for a while, 7440 // so as to avoid monopolizing the locks involved. 7441 void MarkFromRootsClosure::do_yield_work() { 7442 // First give up the locks, then yield, then re-lock 7443 // We should probably use a constructor/destructor idiom to 7444 // do this unlock/lock or modify the MutexUnlocker class to 7445 // serve our purpose. XXX 7446 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7447 "CMS thread should hold CMS token"); 7448 assert_lock_strong(_bitMap->lock()); 7449 _bitMap->lock()->unlock(); 7450 ConcurrentMarkSweepThread::desynchronize(true); 7451 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7452 _collector->stopTimer(); 7453 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 7454 if (PrintCMSStatistics != 0) { 7455 _collector->incrementYields(); 7456 } 7457 _collector->icms_wait(); 7458 7459 // See the comment in coordinator_yield() 7460 for (unsigned i = 0; i < CMSYieldSleepCount && 7461 ConcurrentMarkSweepThread::should_yield() && 7462 !CMSCollector::foregroundGCIsActive(); ++i) { 7463 os::sleep(Thread::current(), 1, false); 7464 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7465 } 7466 7467 ConcurrentMarkSweepThread::synchronize(true); 7468 _bitMap->lock()->lock_without_safepoint_check(); 7469 _collector->startTimer(); 7470 } 7471 7472 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) { 7473 assert(_bitMap->isMarked(ptr), "expected bit to be set"); 7474 assert(_markStack->isEmpty(), 7475 "should drain stack to limit stack usage"); 7476 // convert ptr to an oop preparatory to scanning 7477 oop obj = oop(ptr); 7478 // Ignore mark word in verification below, since we 7479 // may be running concurrent with mutators. 7480 assert(obj->is_oop(true), "should be an oop"); 7481 assert(_finger <= ptr, "_finger runneth ahead"); 7482 // advance the finger to right end of this object 7483 _finger = ptr + obj->size(); 7484 assert(_finger > ptr, "we just incremented it above"); 7485 // On large heaps, it may take us some time to get through 7486 // the marking phase (especially if running iCMS). During 7487 // this time it's possible that a lot of mutations have 7488 // accumulated in the card table and the mod union table -- 7489 // these mutation records are redundant until we have 7490 // actually traced into the corresponding card. 7491 // Here, we check whether advancing the finger would make 7492 // us cross into a new card, and if so clear corresponding 7493 // cards in the MUT (preclean them in the card-table in the 7494 // future). 7495 7496 DEBUG_ONLY(if (!_verifying) {) 7497 // The clean-on-enter optimization is disabled by default, 7498 // until we fix 6178663. 7499 if (CMSCleanOnEnter && (_finger > _threshold)) { 7500 // [_threshold, _finger) represents the interval 7501 // of cards to be cleared in MUT (or precleaned in card table). 7502 // The set of cards to be cleared is all those that overlap 7503 // with the interval [_threshold, _finger); note that 7504 // _threshold is always kept card-aligned but _finger isn't 7505 // always card-aligned. 7506 HeapWord* old_threshold = _threshold; 7507 assert(old_threshold == (HeapWord*)round_to( 7508 (intptr_t)old_threshold, CardTableModRefBS::card_size), 7509 "_threshold should always be card-aligned"); 7510 _threshold = (HeapWord*)round_to( 7511 (intptr_t)_finger, CardTableModRefBS::card_size); 7512 MemRegion mr(old_threshold, _threshold); 7513 assert(!mr.is_empty(), "Control point invariant"); 7514 assert(_span.contains(mr), "Should clear within span"); 7515 _mut->clear_range(mr); 7516 } 7517 DEBUG_ONLY(}) 7518 // Note: the finger doesn't advance while we drain 7519 // the stack below. 7520 PushOrMarkClosure pushOrMarkClosure(_collector, 7521 _span, _bitMap, _markStack, 7522 _finger, this); 7523 bool res = _markStack->push(obj); 7524 assert(res, "Empty non-zero size stack should have space for single push"); 7525 while (!_markStack->isEmpty()) { 7526 oop new_oop = _markStack->pop(); 7527 // Skip verifying header mark word below because we are 7528 // running concurrent with mutators. 7529 assert(new_oop->is_oop(true), "Oops! expected to pop an oop"); 7530 // now scan this oop's oops 7531 new_oop->oop_iterate(&pushOrMarkClosure); 7532 do_yield_check(); 7533 } 7534 assert(_markStack->isEmpty(), "tautology, emphasizing post-condition"); 7535 } 7536 7537 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task, 7538 CMSCollector* collector, MemRegion span, 7539 CMSBitMap* bit_map, 7540 OopTaskQueue* work_queue, 7541 CMSMarkStack* overflow_stack, 7542 bool should_yield): 7543 _collector(collector), 7544 _whole_span(collector->_span), 7545 _span(span), 7546 _bit_map(bit_map), 7547 _mut(&collector->_modUnionTable), 7548 _work_queue(work_queue), 7549 _overflow_stack(overflow_stack), 7550 _yield(should_yield), 7551 _skip_bits(0), 7552 _task(task) 7553 { 7554 assert(_work_queue->size() == 0, "work_queue should be empty"); 7555 _finger = span.start(); 7556 _threshold = _finger; // XXX Defer clear-on-enter optimization for now 7557 assert(_span.contains(_finger), "Out of bounds _finger?"); 7558 } 7559 7560 // Should revisit to see if this should be restructured for 7561 // greater efficiency. 7562 bool Par_MarkFromRootsClosure::do_bit(size_t offset) { 7563 if (_skip_bits > 0) { 7564 _skip_bits--; 7565 return true; 7566 } 7567 // convert offset into a HeapWord* 7568 HeapWord* addr = _bit_map->startWord() + offset; 7569 assert(_bit_map->endWord() && addr < _bit_map->endWord(), 7570 "address out of range"); 7571 assert(_bit_map->isMarked(addr), "tautology"); 7572 if (_bit_map->isMarked(addr+1)) { 7573 // this is an allocated object that might not yet be initialized 7574 assert(_skip_bits == 0, "tautology"); 7575 _skip_bits = 2; // skip next two marked bits ("Printezis-marks") 7576 oop p = oop(addr); 7577 if (p->klass_or_null() == NULL) { 7578 // in the case of Clean-on-Enter optimization, redirty card 7579 // and avoid clearing card by increasing the threshold. 7580 return true; 7581 } 7582 } 7583 scan_oops_in_oop(addr); 7584 return true; 7585 } 7586 7587 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) { 7588 assert(_bit_map->isMarked(ptr), "expected bit to be set"); 7589 // Should we assert that our work queue is empty or 7590 // below some drain limit? 7591 assert(_work_queue->size() == 0, 7592 "should drain stack to limit stack usage"); 7593 // convert ptr to an oop preparatory to scanning 7594 oop obj = oop(ptr); 7595 // Ignore mark word in verification below, since we 7596 // may be running concurrent with mutators. 7597 assert(obj->is_oop(true), "should be an oop"); 7598 assert(_finger <= ptr, "_finger runneth ahead"); 7599 // advance the finger to right end of this object 7600 _finger = ptr + obj->size(); 7601 assert(_finger > ptr, "we just incremented it above"); 7602 // On large heaps, it may take us some time to get through 7603 // the marking phase (especially if running iCMS). During 7604 // this time it's possible that a lot of mutations have 7605 // accumulated in the card table and the mod union table -- 7606 // these mutation records are redundant until we have 7607 // actually traced into the corresponding card. 7608 // Here, we check whether advancing the finger would make 7609 // us cross into a new card, and if so clear corresponding 7610 // cards in the MUT (preclean them in the card-table in the 7611 // future). 7612 7613 // The clean-on-enter optimization is disabled by default, 7614 // until we fix 6178663. 7615 if (CMSCleanOnEnter && (_finger > _threshold)) { 7616 // [_threshold, _finger) represents the interval 7617 // of cards to be cleared in MUT (or precleaned in card table). 7618 // The set of cards to be cleared is all those that overlap 7619 // with the interval [_threshold, _finger); note that 7620 // _threshold is always kept card-aligned but _finger isn't 7621 // always card-aligned. 7622 HeapWord* old_threshold = _threshold; 7623 assert(old_threshold == (HeapWord*)round_to( 7624 (intptr_t)old_threshold, CardTableModRefBS::card_size), 7625 "_threshold should always be card-aligned"); 7626 _threshold = (HeapWord*)round_to( 7627 (intptr_t)_finger, CardTableModRefBS::card_size); 7628 MemRegion mr(old_threshold, _threshold); 7629 assert(!mr.is_empty(), "Control point invariant"); 7630 assert(_span.contains(mr), "Should clear within span"); // _whole_span ?? 7631 _mut->clear_range(mr); 7632 } 7633 7634 // Note: the local finger doesn't advance while we drain 7635 // the stack below, but the global finger sure can and will. 7636 HeapWord** gfa = _task->global_finger_addr(); 7637 Par_PushOrMarkClosure pushOrMarkClosure(_collector, 7638 _span, _bit_map, 7639 _work_queue, 7640 _overflow_stack, 7641 _finger, 7642 gfa, this); 7643 bool res = _work_queue->push(obj); // overflow could occur here 7644 assert(res, "Will hold once we use workqueues"); 7645 while (true) { 7646 oop new_oop; 7647 if (!_work_queue->pop_local(new_oop)) { 7648 // We emptied our work_queue; check if there's stuff that can 7649 // be gotten from the overflow stack. 7650 if (CMSConcMarkingTask::get_work_from_overflow_stack( 7651 _overflow_stack, _work_queue)) { 7652 do_yield_check(); 7653 continue; 7654 } else { // done 7655 break; 7656 } 7657 } 7658 // Skip verifying header mark word below because we are 7659 // running concurrent with mutators. 7660 assert(new_oop->is_oop(true), "Oops! expected to pop an oop"); 7661 // now scan this oop's oops 7662 new_oop->oop_iterate(&pushOrMarkClosure); 7663 do_yield_check(); 7664 } 7665 assert(_work_queue->size() == 0, "tautology, emphasizing post-condition"); 7666 } 7667 7668 // Yield in response to a request from VM Thread or 7669 // from mutators. 7670 void Par_MarkFromRootsClosure::do_yield_work() { 7671 assert(_task != NULL, "sanity"); 7672 _task->yield(); 7673 } 7674 7675 // A variant of the above used for verifying CMS marking work. 7676 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector, 7677 MemRegion span, 7678 CMSBitMap* verification_bm, CMSBitMap* cms_bm, 7679 CMSMarkStack* mark_stack): 7680 _collector(collector), 7681 _span(span), 7682 _verification_bm(verification_bm), 7683 _cms_bm(cms_bm), 7684 _mark_stack(mark_stack), 7685 _pam_verify_closure(collector, span, verification_bm, cms_bm, 7686 mark_stack) 7687 { 7688 assert(_mark_stack->isEmpty(), "stack should be empty"); 7689 _finger = _verification_bm->startWord(); 7690 assert(_collector->_restart_addr == NULL, "Sanity check"); 7691 assert(_span.contains(_finger), "Out of bounds _finger?"); 7692 } 7693 7694 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) { 7695 assert(_mark_stack->isEmpty(), "would cause duplicates on stack"); 7696 assert(_span.contains(addr), "Out of bounds _finger?"); 7697 _finger = addr; 7698 } 7699 7700 // Should revisit to see if this should be restructured for 7701 // greater efficiency. 7702 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) { 7703 // convert offset into a HeapWord* 7704 HeapWord* addr = _verification_bm->startWord() + offset; 7705 assert(_verification_bm->endWord() && addr < _verification_bm->endWord(), 7706 "address out of range"); 7707 assert(_verification_bm->isMarked(addr), "tautology"); 7708 assert(_cms_bm->isMarked(addr), "tautology"); 7709 7710 assert(_mark_stack->isEmpty(), 7711 "should drain stack to limit stack usage"); 7712 // convert addr to an oop preparatory to scanning 7713 oop obj = oop(addr); 7714 assert(obj->is_oop(), "should be an oop"); 7715 assert(_finger <= addr, "_finger runneth ahead"); 7716 // advance the finger to right end of this object 7717 _finger = addr + obj->size(); 7718 assert(_finger > addr, "we just incremented it above"); 7719 // Note: the finger doesn't advance while we drain 7720 // the stack below. 7721 bool res = _mark_stack->push(obj); 7722 assert(res, "Empty non-zero size stack should have space for single push"); 7723 while (!_mark_stack->isEmpty()) { 7724 oop new_oop = _mark_stack->pop(); 7725 assert(new_oop->is_oop(), "Oops! expected to pop an oop"); 7726 // now scan this oop's oops 7727 new_oop->oop_iterate(&_pam_verify_closure); 7728 } 7729 assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition"); 7730 return true; 7731 } 7732 7733 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure( 7734 CMSCollector* collector, MemRegion span, 7735 CMSBitMap* verification_bm, CMSBitMap* cms_bm, 7736 CMSMarkStack* mark_stack): 7737 CMSOopClosure(collector->ref_processor()), 7738 _collector(collector), 7739 _span(span), 7740 _verification_bm(verification_bm), 7741 _cms_bm(cms_bm), 7742 _mark_stack(mark_stack) 7743 { } 7744 7745 void PushAndMarkVerifyClosure::do_oop(oop* p) { PushAndMarkVerifyClosure::do_oop_work(p); } 7746 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); } 7747 7748 // Upon stack overflow, we discard (part of) the stack, 7749 // remembering the least address amongst those discarded 7750 // in CMSCollector's _restart_address. 7751 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) { 7752 // Remember the least grey address discarded 7753 HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost); 7754 _collector->lower_restart_addr(ra); 7755 _mark_stack->reset(); // discard stack contents 7756 _mark_stack->expand(); // expand the stack if possible 7757 } 7758 7759 void PushAndMarkVerifyClosure::do_oop(oop obj) { 7760 assert(obj->is_oop_or_null(), "expected an oop or NULL"); 7761 HeapWord* addr = (HeapWord*)obj; 7762 if (_span.contains(addr) && !_verification_bm->isMarked(addr)) { 7763 // Oop lies in _span and isn't yet grey or black 7764 _verification_bm->mark(addr); // now grey 7765 if (!_cms_bm->isMarked(addr)) { 7766 oop(addr)->print(); 7767 gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", 7768 addr); 7769 fatal("... aborting"); 7770 } 7771 7772 if (!_mark_stack->push(obj)) { // stack overflow 7773 if (PrintCMSStatistics != 0) { 7774 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 7775 SIZE_FORMAT, _mark_stack->capacity()); 7776 } 7777 assert(_mark_stack->isFull(), "Else push should have succeeded"); 7778 handle_stack_overflow(addr); 7779 } 7780 // anything including and to the right of _finger 7781 // will be scanned as we iterate over the remainder of the 7782 // bit map 7783 } 7784 } 7785 7786 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector, 7787 MemRegion span, 7788 CMSBitMap* bitMap, CMSMarkStack* markStack, 7789 HeapWord* finger, MarkFromRootsClosure* parent) : 7790 CMSOopClosure(collector->ref_processor()), 7791 _collector(collector), 7792 _span(span), 7793 _bitMap(bitMap), 7794 _markStack(markStack), 7795 _finger(finger), 7796 _parent(parent) 7797 { } 7798 7799 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector, 7800 MemRegion span, 7801 CMSBitMap* bit_map, 7802 OopTaskQueue* work_queue, 7803 CMSMarkStack* overflow_stack, 7804 HeapWord* finger, 7805 HeapWord** global_finger_addr, 7806 Par_MarkFromRootsClosure* parent) : 7807 CMSOopClosure(collector->ref_processor()), 7808 _collector(collector), 7809 _whole_span(collector->_span), 7810 _span(span), 7811 _bit_map(bit_map), 7812 _work_queue(work_queue), 7813 _overflow_stack(overflow_stack), 7814 _finger(finger), 7815 _global_finger_addr(global_finger_addr), 7816 _parent(parent) 7817 { } 7818 7819 // Assumes thread-safe access by callers, who are 7820 // responsible for mutual exclusion. 7821 void CMSCollector::lower_restart_addr(HeapWord* low) { 7822 assert(_span.contains(low), "Out of bounds addr"); 7823 if (_restart_addr == NULL) { 7824 _restart_addr = low; 7825 } else { 7826 _restart_addr = MIN2(_restart_addr, low); 7827 } 7828 } 7829 7830 // Upon stack overflow, we discard (part of) the stack, 7831 // remembering the least address amongst those discarded 7832 // in CMSCollector's _restart_address. 7833 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) { 7834 // Remember the least grey address discarded 7835 HeapWord* ra = (HeapWord*)_markStack->least_value(lost); 7836 _collector->lower_restart_addr(ra); 7837 _markStack->reset(); // discard stack contents 7838 _markStack->expand(); // expand the stack if possible 7839 } 7840 7841 // Upon stack overflow, we discard (part of) the stack, 7842 // remembering the least address amongst those discarded 7843 // in CMSCollector's _restart_address. 7844 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) { 7845 // We need to do this under a mutex to prevent other 7846 // workers from interfering with the work done below. 7847 MutexLockerEx ml(_overflow_stack->par_lock(), 7848 Mutex::_no_safepoint_check_flag); 7849 // Remember the least grey address discarded 7850 HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost); 7851 _collector->lower_restart_addr(ra); 7852 _overflow_stack->reset(); // discard stack contents 7853 _overflow_stack->expand(); // expand the stack if possible 7854 } 7855 7856 void CMKlassClosure::do_klass(Klass* k) { 7857 assert(_oop_closure != NULL, "Not initialized?"); 7858 k->oops_do(_oop_closure); 7859 } 7860 7861 void PushOrMarkClosure::do_oop(oop obj) { 7862 // Ignore mark word because we are running concurrent with mutators. 7863 assert(obj->is_oop_or_null(true), "expected an oop or NULL"); 7864 HeapWord* addr = (HeapWord*)obj; 7865 if (_span.contains(addr) && !_bitMap->isMarked(addr)) { 7866 // Oop lies in _span and isn't yet grey or black 7867 _bitMap->mark(addr); // now grey 7868 if (addr < _finger) { 7869 // the bit map iteration has already either passed, or 7870 // sampled, this bit in the bit map; we'll need to 7871 // use the marking stack to scan this oop's oops. 7872 bool simulate_overflow = false; 7873 NOT_PRODUCT( 7874 if (CMSMarkStackOverflowALot && 7875 _collector->simulate_overflow()) { 7876 // simulate a stack overflow 7877 simulate_overflow = true; 7878 } 7879 ) 7880 if (simulate_overflow || !_markStack->push(obj)) { // stack overflow 7881 if (PrintCMSStatistics != 0) { 7882 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 7883 SIZE_FORMAT, _markStack->capacity()); 7884 } 7885 assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded"); 7886 handle_stack_overflow(addr); 7887 } 7888 } 7889 // anything including and to the right of _finger 7890 // will be scanned as we iterate over the remainder of the 7891 // bit map 7892 do_yield_check(); 7893 } 7894 } 7895 7896 void PushOrMarkClosure::do_oop(oop* p) { PushOrMarkClosure::do_oop_work(p); } 7897 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); } 7898 7899 void Par_PushOrMarkClosure::do_oop(oop obj) { 7900 // Ignore mark word because we are running concurrent with mutators. 7901 assert(obj->is_oop_or_null(true), "expected an oop or NULL"); 7902 HeapWord* addr = (HeapWord*)obj; 7903 if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) { 7904 // Oop lies in _span and isn't yet grey or black 7905 // We read the global_finger (volatile read) strictly after marking oop 7906 bool res = _bit_map->par_mark(addr); // now grey 7907 volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr; 7908 // Should we push this marked oop on our stack? 7909 // -- if someone else marked it, nothing to do 7910 // -- if target oop is above global finger nothing to do 7911 // -- if target oop is in chunk and above local finger 7912 // then nothing to do 7913 // -- else push on work queue 7914 if ( !res // someone else marked it, they will deal with it 7915 || (addr >= *gfa) // will be scanned in a later task 7916 || (_span.contains(addr) && addr >= _finger)) { // later in this chunk 7917 return; 7918 } 7919 // the bit map iteration has already either passed, or 7920 // sampled, this bit in the bit map; we'll need to 7921 // use the marking stack to scan this oop's oops. 7922 bool simulate_overflow = false; 7923 NOT_PRODUCT( 7924 if (CMSMarkStackOverflowALot && 7925 _collector->simulate_overflow()) { 7926 // simulate a stack overflow 7927 simulate_overflow = true; 7928 } 7929 ) 7930 if (simulate_overflow || 7931 !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) { 7932 // stack overflow 7933 if (PrintCMSStatistics != 0) { 7934 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 7935 SIZE_FORMAT, _overflow_stack->capacity()); 7936 } 7937 // We cannot assert that the overflow stack is full because 7938 // it may have been emptied since. 7939 assert(simulate_overflow || 7940 _work_queue->size() == _work_queue->max_elems(), 7941 "Else push should have succeeded"); 7942 handle_stack_overflow(addr); 7943 } 7944 do_yield_check(); 7945 } 7946 } 7947 7948 void Par_PushOrMarkClosure::do_oop(oop* p) { Par_PushOrMarkClosure::do_oop_work(p); } 7949 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); } 7950 7951 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector, 7952 MemRegion span, 7953 ReferenceProcessor* rp, 7954 CMSBitMap* bit_map, 7955 CMSBitMap* mod_union_table, 7956 CMSMarkStack* mark_stack, 7957 bool concurrent_precleaning): 7958 CMSOopClosure(rp), 7959 _collector(collector), 7960 _span(span), 7961 _bit_map(bit_map), 7962 _mod_union_table(mod_union_table), 7963 _mark_stack(mark_stack), 7964 _concurrent_precleaning(concurrent_precleaning) 7965 { 7966 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 7967 } 7968 7969 // Grey object rescan during pre-cleaning and second checkpoint phases -- 7970 // the non-parallel version (the parallel version appears further below.) 7971 void PushAndMarkClosure::do_oop(oop obj) { 7972 // Ignore mark word verification. If during concurrent precleaning, 7973 // the object monitor may be locked. If during the checkpoint 7974 // phases, the object may already have been reached by a different 7975 // path and may be at the end of the global overflow list (so 7976 // the mark word may be NULL). 7977 assert(obj->is_oop_or_null(true /* ignore mark word */), 7978 "expected an oop or NULL"); 7979 HeapWord* addr = (HeapWord*)obj; 7980 // Check if oop points into the CMS generation 7981 // and is not marked 7982 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 7983 // a white object ... 7984 _bit_map->mark(addr); // ... now grey 7985 // push on the marking stack (grey set) 7986 bool simulate_overflow = false; 7987 NOT_PRODUCT( 7988 if (CMSMarkStackOverflowALot && 7989 _collector->simulate_overflow()) { 7990 // simulate a stack overflow 7991 simulate_overflow = true; 7992 } 7993 ) 7994 if (simulate_overflow || !_mark_stack->push(obj)) { 7995 if (_concurrent_precleaning) { 7996 // During precleaning we can just dirty the appropriate card(s) 7997 // in the mod union table, thus ensuring that the object remains 7998 // in the grey set and continue. In the case of object arrays 7999 // we need to dirty all of the cards that the object spans, 8000 // since the rescan of object arrays will be limited to the 8001 // dirty cards. 8002 // Note that no one can be interfering with us in this action 8003 // of dirtying the mod union table, so no locking or atomics 8004 // are required. 8005 if (obj->is_objArray()) { 8006 size_t sz = obj->size(); 8007 HeapWord* end_card_addr = (HeapWord*)round_to( 8008 (intptr_t)(addr+sz), CardTableModRefBS::card_size); 8009 MemRegion redirty_range = MemRegion(addr, end_card_addr); 8010 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 8011 _mod_union_table->mark_range(redirty_range); 8012 } else { 8013 _mod_union_table->mark(addr); 8014 } 8015 _collector->_ser_pmc_preclean_ovflw++; 8016 } else { 8017 // During the remark phase, we need to remember this oop 8018 // in the overflow list. 8019 _collector->push_on_overflow_list(obj); 8020 _collector->_ser_pmc_remark_ovflw++; 8021 } 8022 } 8023 } 8024 } 8025 8026 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector, 8027 MemRegion span, 8028 ReferenceProcessor* rp, 8029 CMSBitMap* bit_map, 8030 OopTaskQueue* work_queue): 8031 CMSOopClosure(rp), 8032 _collector(collector), 8033 _span(span), 8034 _bit_map(bit_map), 8035 _work_queue(work_queue) 8036 { 8037 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 8038 } 8039 8040 void PushAndMarkClosure::do_oop(oop* p) { PushAndMarkClosure::do_oop_work(p); } 8041 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); } 8042 8043 // Grey object rescan during second checkpoint phase -- 8044 // the parallel version. 8045 void Par_PushAndMarkClosure::do_oop(oop obj) { 8046 // In the assert below, we ignore the mark word because 8047 // this oop may point to an already visited object that is 8048 // on the overflow stack (in which case the mark word has 8049 // been hijacked for chaining into the overflow stack -- 8050 // if this is the last object in the overflow stack then 8051 // its mark word will be NULL). Because this object may 8052 // have been subsequently popped off the global overflow 8053 // stack, and the mark word possibly restored to the prototypical 8054 // value, by the time we get to examined this failing assert in 8055 // the debugger, is_oop_or_null(false) may subsequently start 8056 // to hold. 8057 assert(obj->is_oop_or_null(true), 8058 "expected an oop or NULL"); 8059 HeapWord* addr = (HeapWord*)obj; 8060 // Check if oop points into the CMS generation 8061 // and is not marked 8062 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 8063 // a white object ... 8064 // If we manage to "claim" the object, by being the 8065 // first thread to mark it, then we push it on our 8066 // marking stack 8067 if (_bit_map->par_mark(addr)) { // ... now grey 8068 // push on work queue (grey set) 8069 bool simulate_overflow = false; 8070 NOT_PRODUCT( 8071 if (CMSMarkStackOverflowALot && 8072 _collector->par_simulate_overflow()) { 8073 // simulate a stack overflow 8074 simulate_overflow = true; 8075 } 8076 ) 8077 if (simulate_overflow || !_work_queue->push(obj)) { 8078 _collector->par_push_on_overflow_list(obj); 8079 _collector->_par_pmc_remark_ovflw++; // imprecise OK: no need to CAS 8080 } 8081 } // Else, some other thread got there first 8082 } 8083 } 8084 8085 void Par_PushAndMarkClosure::do_oop(oop* p) { Par_PushAndMarkClosure::do_oop_work(p); } 8086 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); } 8087 8088 void CMSPrecleanRefsYieldClosure::do_yield_work() { 8089 Mutex* bml = _collector->bitMapLock(); 8090 assert_lock_strong(bml); 8091 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 8092 "CMS thread should hold CMS token"); 8093 8094 bml->unlock(); 8095 ConcurrentMarkSweepThread::desynchronize(true); 8096 8097 ConcurrentMarkSweepThread::acknowledge_yield_request(); 8098 8099 _collector->stopTimer(); 8100 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 8101 if (PrintCMSStatistics != 0) { 8102 _collector->incrementYields(); 8103 } 8104 _collector->icms_wait(); 8105 8106 // See the comment in coordinator_yield() 8107 for (unsigned i = 0; i < CMSYieldSleepCount && 8108 ConcurrentMarkSweepThread::should_yield() && 8109 !CMSCollector::foregroundGCIsActive(); ++i) { 8110 os::sleep(Thread::current(), 1, false); 8111 ConcurrentMarkSweepThread::acknowledge_yield_request(); 8112 } 8113 8114 ConcurrentMarkSweepThread::synchronize(true); 8115 bml->lock(); 8116 8117 _collector->startTimer(); 8118 } 8119 8120 bool CMSPrecleanRefsYieldClosure::should_return() { 8121 if (ConcurrentMarkSweepThread::should_yield()) { 8122 do_yield_work(); 8123 } 8124 return _collector->foregroundGCIsActive(); 8125 } 8126 8127 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) { 8128 assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0, 8129 "mr should be aligned to start at a card boundary"); 8130 // We'd like to assert: 8131 // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0, 8132 // "mr should be a range of cards"); 8133 // However, that would be too strong in one case -- the last 8134 // partition ends at _unallocated_block which, in general, can be 8135 // an arbitrary boundary, not necessarily card aligned. 8136 if (PrintCMSStatistics != 0) { 8137 _num_dirty_cards += 8138 mr.word_size()/CardTableModRefBS::card_size_in_words; 8139 } 8140 _space->object_iterate_mem(mr, &_scan_cl); 8141 } 8142 8143 SweepClosure::SweepClosure(CMSCollector* collector, 8144 ConcurrentMarkSweepGeneration* g, 8145 CMSBitMap* bitMap, bool should_yield) : 8146 _collector(collector), 8147 _g(g), 8148 _sp(g->cmsSpace()), 8149 _limit(_sp->sweep_limit()), 8150 _freelistLock(_sp->freelistLock()), 8151 _bitMap(bitMap), 8152 _yield(should_yield), 8153 _inFreeRange(false), // No free range at beginning of sweep 8154 _freeRangeInFreeLists(false), // No free range at beginning of sweep 8155 _lastFreeRangeCoalesced(false), 8156 _freeFinger(g->used_region().start()) 8157 { 8158 NOT_PRODUCT( 8159 _numObjectsFreed = 0; 8160 _numWordsFreed = 0; 8161 _numObjectsLive = 0; 8162 _numWordsLive = 0; 8163 _numObjectsAlreadyFree = 0; 8164 _numWordsAlreadyFree = 0; 8165 _last_fc = NULL; 8166 8167 _sp->initializeIndexedFreeListArrayReturnedBytes(); 8168 _sp->dictionary()->initialize_dict_returned_bytes(); 8169 ) 8170 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 8171 "sweep _limit out of bounds"); 8172 if (CMSTraceSweeper) { 8173 gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT, 8174 _limit); 8175 } 8176 } 8177 8178 void SweepClosure::print_on(outputStream* st) const { 8179 tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")", 8180 _sp->bottom(), _sp->end()); 8181 tty->print_cr("_limit = " PTR_FORMAT, _limit); 8182 tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger); 8183 NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);) 8184 tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d", 8185 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced); 8186 } 8187 8188 #ifndef PRODUCT 8189 // Assertion checking only: no useful work in product mode -- 8190 // however, if any of the flags below become product flags, 8191 // you may need to review this code to see if it needs to be 8192 // enabled in product mode. 8193 SweepClosure::~SweepClosure() { 8194 assert_lock_strong(_freelistLock); 8195 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 8196 "sweep _limit out of bounds"); 8197 if (inFreeRange()) { 8198 warning("inFreeRange() should have been reset; dumping state of SweepClosure"); 8199 print(); 8200 ShouldNotReachHere(); 8201 } 8202 if (Verbose && PrintGC) { 8203 gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes", 8204 _numObjectsFreed, _numWordsFreed*sizeof(HeapWord)); 8205 gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects, " 8206 SIZE_FORMAT" bytes " 8207 "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes", 8208 _numObjectsLive, _numWordsLive*sizeof(HeapWord), 8209 _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord)); 8210 size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) 8211 * sizeof(HeapWord); 8212 gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes); 8213 8214 if (PrintCMSStatistics && CMSVerifyReturnedBytes) { 8215 size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes(); 8216 size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes(); 8217 size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes; 8218 gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes); 8219 gclog_or_tty->print(" Indexed List Returned "SIZE_FORMAT" bytes", 8220 indexListReturnedBytes); 8221 gclog_or_tty->print_cr(" Dictionary Returned "SIZE_FORMAT" bytes", 8222 dict_returned_bytes); 8223 } 8224 } 8225 if (CMSTraceSweeper) { 8226 gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================", 8227 _limit); 8228 } 8229 } 8230 #endif // PRODUCT 8231 8232 void SweepClosure::initialize_free_range(HeapWord* freeFinger, 8233 bool freeRangeInFreeLists) { 8234 if (CMSTraceSweeper) { 8235 gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n", 8236 freeFinger, freeRangeInFreeLists); 8237 } 8238 assert(!inFreeRange(), "Trampling existing free range"); 8239 set_inFreeRange(true); 8240 set_lastFreeRangeCoalesced(false); 8241 8242 set_freeFinger(freeFinger); 8243 set_freeRangeInFreeLists(freeRangeInFreeLists); 8244 if (CMSTestInFreeList) { 8245 if (freeRangeInFreeLists) { 8246 FreeChunk* fc = (FreeChunk*) freeFinger; 8247 assert(fc->is_free(), "A chunk on the free list should be free."); 8248 assert(fc->size() > 0, "Free range should have a size"); 8249 assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists"); 8250 } 8251 } 8252 } 8253 8254 // Note that the sweeper runs concurrently with mutators. Thus, 8255 // it is possible for direct allocation in this generation to happen 8256 // in the middle of the sweep. Note that the sweeper also coalesces 8257 // contiguous free blocks. Thus, unless the sweeper and the allocator 8258 // synchronize appropriately freshly allocated blocks may get swept up. 8259 // This is accomplished by the sweeper locking the free lists while 8260 // it is sweeping. Thus blocks that are determined to be free are 8261 // indeed free. There is however one additional complication: 8262 // blocks that have been allocated since the final checkpoint and 8263 // mark, will not have been marked and so would be treated as 8264 // unreachable and swept up. To prevent this, the allocator marks 8265 // the bit map when allocating during the sweep phase. This leads, 8266 // however, to a further complication -- objects may have been allocated 8267 // but not yet initialized -- in the sense that the header isn't yet 8268 // installed. The sweeper can not then determine the size of the block 8269 // in order to skip over it. To deal with this case, we use a technique 8270 // (due to Printezis) to encode such uninitialized block sizes in the 8271 // bit map. Since the bit map uses a bit per every HeapWord, but the 8272 // CMS generation has a minimum object size of 3 HeapWords, it follows 8273 // that "normal marks" won't be adjacent in the bit map (there will 8274 // always be at least two 0 bits between successive 1 bits). We make use 8275 // of these "unused" bits to represent uninitialized blocks -- the bit 8276 // corresponding to the start of the uninitialized object and the next 8277 // bit are both set. Finally, a 1 bit marks the end of the object that 8278 // started with the two consecutive 1 bits to indicate its potentially 8279 // uninitialized state. 8280 8281 size_t SweepClosure::do_blk_careful(HeapWord* addr) { 8282 FreeChunk* fc = (FreeChunk*)addr; 8283 size_t res; 8284 8285 // Check if we are done sweeping. Below we check "addr >= _limit" rather 8286 // than "addr == _limit" because although _limit was a block boundary when 8287 // we started the sweep, it may no longer be one because heap expansion 8288 // may have caused us to coalesce the block ending at the address _limit 8289 // with a newly expanded chunk (this happens when _limit was set to the 8290 // previous _end of the space), so we may have stepped past _limit: 8291 // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740. 8292 if (addr >= _limit) { // we have swept up to or past the limit: finish up 8293 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 8294 "sweep _limit out of bounds"); 8295 assert(addr < _sp->end(), "addr out of bounds"); 8296 // Flush any free range we might be holding as a single 8297 // coalesced chunk to the appropriate free list. 8298 if (inFreeRange()) { 8299 assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit, 8300 err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger())); 8301 flush_cur_free_chunk(freeFinger(), 8302 pointer_delta(addr, freeFinger())); 8303 if (CMSTraceSweeper) { 8304 gclog_or_tty->print("Sweep: last chunk: "); 8305 gclog_or_tty->print("put_free_blk " PTR_FORMAT " ("SIZE_FORMAT") " 8306 "[coalesced:%d]\n", 8307 freeFinger(), pointer_delta(addr, freeFinger()), 8308 lastFreeRangeCoalesced() ? 1 : 0); 8309 } 8310 } 8311 8312 // help the iterator loop finish 8313 return pointer_delta(_sp->end(), addr); 8314 } 8315 8316 assert(addr < _limit, "sweep invariant"); 8317 // check if we should yield 8318 do_yield_check(addr); 8319 if (fc->is_free()) { 8320 // Chunk that is already free 8321 res = fc->size(); 8322 do_already_free_chunk(fc); 8323 debug_only(_sp->verifyFreeLists()); 8324 // If we flush the chunk at hand in lookahead_and_flush() 8325 // and it's coalesced with a preceding chunk, then the 8326 // process of "mangling" the payload of the coalesced block 8327 // will cause erasure of the size information from the 8328 // (erstwhile) header of all the coalesced blocks but the 8329 // first, so the first disjunct in the assert will not hold 8330 // in that specific case (in which case the second disjunct 8331 // will hold). 8332 assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit, 8333 "Otherwise the size info doesn't change at this step"); 8334 NOT_PRODUCT( 8335 _numObjectsAlreadyFree++; 8336 _numWordsAlreadyFree += res; 8337 ) 8338 NOT_PRODUCT(_last_fc = fc;) 8339 } else if (!_bitMap->isMarked(addr)) { 8340 // Chunk is fresh garbage 8341 res = do_garbage_chunk(fc); 8342 debug_only(_sp->verifyFreeLists()); 8343 NOT_PRODUCT( 8344 _numObjectsFreed++; 8345 _numWordsFreed += res; 8346 ) 8347 } else { 8348 // Chunk that is alive. 8349 res = do_live_chunk(fc); 8350 debug_only(_sp->verifyFreeLists()); 8351 NOT_PRODUCT( 8352 _numObjectsLive++; 8353 _numWordsLive += res; 8354 ) 8355 } 8356 return res; 8357 } 8358 8359 // For the smart allocation, record following 8360 // split deaths - a free chunk is removed from its free list because 8361 // it is being split into two or more chunks. 8362 // split birth - a free chunk is being added to its free list because 8363 // a larger free chunk has been split and resulted in this free chunk. 8364 // coal death - a free chunk is being removed from its free list because 8365 // it is being coalesced into a large free chunk. 8366 // coal birth - a free chunk is being added to its free list because 8367 // it was created when two or more free chunks where coalesced into 8368 // this free chunk. 8369 // 8370 // These statistics are used to determine the desired number of free 8371 // chunks of a given size. The desired number is chosen to be relative 8372 // to the end of a CMS sweep. The desired number at the end of a sweep 8373 // is the 8374 // count-at-end-of-previous-sweep (an amount that was enough) 8375 // - count-at-beginning-of-current-sweep (the excess) 8376 // + split-births (gains in this size during interval) 8377 // - split-deaths (demands on this size during interval) 8378 // where the interval is from the end of one sweep to the end of the 8379 // next. 8380 // 8381 // When sweeping the sweeper maintains an accumulated chunk which is 8382 // the chunk that is made up of chunks that have been coalesced. That 8383 // will be termed the left-hand chunk. A new chunk of garbage that 8384 // is being considered for coalescing will be referred to as the 8385 // right-hand chunk. 8386 // 8387 // When making a decision on whether to coalesce a right-hand chunk with 8388 // the current left-hand chunk, the current count vs. the desired count 8389 // of the left-hand chunk is considered. Also if the right-hand chunk 8390 // is near the large chunk at the end of the heap (see 8391 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the 8392 // left-hand chunk is coalesced. 8393 // 8394 // When making a decision about whether to split a chunk, the desired count 8395 // vs. the current count of the candidate to be split is also considered. 8396 // If the candidate is underpopulated (currently fewer chunks than desired) 8397 // a chunk of an overpopulated (currently more chunks than desired) size may 8398 // be chosen. The "hint" associated with a free list, if non-null, points 8399 // to a free list which may be overpopulated. 8400 // 8401 8402 void SweepClosure::do_already_free_chunk(FreeChunk* fc) { 8403 const size_t size = fc->size(); 8404 // Chunks that cannot be coalesced are not in the 8405 // free lists. 8406 if (CMSTestInFreeList && !fc->cantCoalesce()) { 8407 assert(_sp->verify_chunk_in_free_list(fc), 8408 "free chunk should be in free lists"); 8409 } 8410 // a chunk that is already free, should not have been 8411 // marked in the bit map 8412 HeapWord* const addr = (HeapWord*) fc; 8413 assert(!_bitMap->isMarked(addr), "free chunk should be unmarked"); 8414 // Verify that the bit map has no bits marked between 8415 // addr and purported end of this block. 8416 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 8417 8418 // Some chunks cannot be coalesced under any circumstances. 8419 // See the definition of cantCoalesce(). 8420 if (!fc->cantCoalesce()) { 8421 // This chunk can potentially be coalesced. 8422 if (_sp->adaptive_freelists()) { 8423 // All the work is done in 8424 do_post_free_or_garbage_chunk(fc, size); 8425 } else { // Not adaptive free lists 8426 // this is a free chunk that can potentially be coalesced by the sweeper; 8427 if (!inFreeRange()) { 8428 // if the next chunk is a free block that can't be coalesced 8429 // it doesn't make sense to remove this chunk from the free lists 8430 FreeChunk* nextChunk = (FreeChunk*)(addr + size); 8431 assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?"); 8432 if ((HeapWord*)nextChunk < _sp->end() && // There is another free chunk to the right ... 8433 nextChunk->is_free() && // ... which is free... 8434 nextChunk->cantCoalesce()) { // ... but can't be coalesced 8435 // nothing to do 8436 } else { 8437 // Potentially the start of a new free range: 8438 // Don't eagerly remove it from the free lists. 8439 // No need to remove it if it will just be put 8440 // back again. (Also from a pragmatic point of view 8441 // if it is a free block in a region that is beyond 8442 // any allocated blocks, an assertion will fail) 8443 // Remember the start of a free run. 8444 initialize_free_range(addr, true); 8445 // end - can coalesce with next chunk 8446 } 8447 } else { 8448 // the midst of a free range, we are coalescing 8449 print_free_block_coalesced(fc); 8450 if (CMSTraceSweeper) { 8451 gclog_or_tty->print(" -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", fc, size); 8452 } 8453 // remove it from the free lists 8454 _sp->removeFreeChunkFromFreeLists(fc); 8455 set_lastFreeRangeCoalesced(true); 8456 // If the chunk is being coalesced and the current free range is 8457 // in the free lists, remove the current free range so that it 8458 // will be returned to the free lists in its entirety - all 8459 // the coalesced pieces included. 8460 if (freeRangeInFreeLists()) { 8461 FreeChunk* ffc = (FreeChunk*) freeFinger(); 8462 assert(ffc->size() == pointer_delta(addr, freeFinger()), 8463 "Size of free range is inconsistent with chunk size."); 8464 if (CMSTestInFreeList) { 8465 assert(_sp->verify_chunk_in_free_list(ffc), 8466 "free range is not in free lists"); 8467 } 8468 _sp->removeFreeChunkFromFreeLists(ffc); 8469 set_freeRangeInFreeLists(false); 8470 } 8471 } 8472 } 8473 // Note that if the chunk is not coalescable (the else arm 8474 // below), we unconditionally flush, without needing to do 8475 // a "lookahead," as we do below. 8476 if (inFreeRange()) lookahead_and_flush(fc, size); 8477 } else { 8478 // Code path common to both original and adaptive free lists. 8479 8480 // cant coalesce with previous block; this should be treated 8481 // as the end of a free run if any 8482 if (inFreeRange()) { 8483 // we kicked some butt; time to pick up the garbage 8484 assert(freeFinger() < addr, "freeFinger points too high"); 8485 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 8486 } 8487 // else, nothing to do, just continue 8488 } 8489 } 8490 8491 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) { 8492 // This is a chunk of garbage. It is not in any free list. 8493 // Add it to a free list or let it possibly be coalesced into 8494 // a larger chunk. 8495 HeapWord* const addr = (HeapWord*) fc; 8496 const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()); 8497 8498 if (_sp->adaptive_freelists()) { 8499 // Verify that the bit map has no bits marked between 8500 // addr and purported end of just dead object. 8501 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 8502 8503 do_post_free_or_garbage_chunk(fc, size); 8504 } else { 8505 if (!inFreeRange()) { 8506 // start of a new free range 8507 assert(size > 0, "A free range should have a size"); 8508 initialize_free_range(addr, false); 8509 } else { 8510 // this will be swept up when we hit the end of the 8511 // free range 8512 if (CMSTraceSweeper) { 8513 gclog_or_tty->print(" -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", fc, size); 8514 } 8515 // If the chunk is being coalesced and the current free range is 8516 // in the free lists, remove the current free range so that it 8517 // will be returned to the free lists in its entirety - all 8518 // the coalesced pieces included. 8519 if (freeRangeInFreeLists()) { 8520 FreeChunk* ffc = (FreeChunk*)freeFinger(); 8521 assert(ffc->size() == pointer_delta(addr, freeFinger()), 8522 "Size of free range is inconsistent with chunk size."); 8523 if (CMSTestInFreeList) { 8524 assert(_sp->verify_chunk_in_free_list(ffc), 8525 "free range is not in free lists"); 8526 } 8527 _sp->removeFreeChunkFromFreeLists(ffc); 8528 set_freeRangeInFreeLists(false); 8529 } 8530 set_lastFreeRangeCoalesced(true); 8531 } 8532 // this will be swept up when we hit the end of the free range 8533 8534 // Verify that the bit map has no bits marked between 8535 // addr and purported end of just dead object. 8536 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 8537 } 8538 assert(_limit >= addr + size, 8539 "A freshly garbage chunk can't possibly straddle over _limit"); 8540 if (inFreeRange()) lookahead_and_flush(fc, size); 8541 return size; 8542 } 8543 8544 size_t SweepClosure::do_live_chunk(FreeChunk* fc) { 8545 HeapWord* addr = (HeapWord*) fc; 8546 // The sweeper has just found a live object. Return any accumulated 8547 // left hand chunk to the free lists. 8548 if (inFreeRange()) { 8549 assert(freeFinger() < addr, "freeFinger points too high"); 8550 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 8551 } 8552 8553 // This object is live: we'd normally expect this to be 8554 // an oop, and like to assert the following: 8555 // assert(oop(addr)->is_oop(), "live block should be an oop"); 8556 // However, as we commented above, this may be an object whose 8557 // header hasn't yet been initialized. 8558 size_t size; 8559 assert(_bitMap->isMarked(addr), "Tautology for this control point"); 8560 if (_bitMap->isMarked(addr + 1)) { 8561 // Determine the size from the bit map, rather than trying to 8562 // compute it from the object header. 8563 HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2); 8564 size = pointer_delta(nextOneAddr + 1, addr); 8565 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 8566 "alignment problem"); 8567 8568 #ifdef ASSERT 8569 if (oop(addr)->klass_or_null() != NULL) { 8570 // Ignore mark word because we are running concurrent with mutators 8571 assert(oop(addr)->is_oop(true), "live block should be an oop"); 8572 assert(size == 8573 CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()), 8574 "P-mark and computed size do not agree"); 8575 } 8576 #endif 8577 8578 } else { 8579 // This should be an initialized object that's alive. 8580 assert(oop(addr)->klass_or_null() != NULL, 8581 "Should be an initialized object"); 8582 // Ignore mark word because we are running concurrent with mutators 8583 assert(oop(addr)->is_oop(true), "live block should be an oop"); 8584 // Verify that the bit map has no bits marked between 8585 // addr and purported end of this block. 8586 size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()); 8587 assert(size >= 3, "Necessary for Printezis marks to work"); 8588 assert(!_bitMap->isMarked(addr+1), "Tautology for this control point"); 8589 DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);) 8590 } 8591 return size; 8592 } 8593 8594 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc, 8595 size_t chunkSize) { 8596 // do_post_free_or_garbage_chunk() should only be called in the case 8597 // of the adaptive free list allocator. 8598 const bool fcInFreeLists = fc->is_free(); 8599 assert(_sp->adaptive_freelists(), "Should only be used in this case."); 8600 assert((HeapWord*)fc <= _limit, "sweep invariant"); 8601 if (CMSTestInFreeList && fcInFreeLists) { 8602 assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists"); 8603 } 8604 8605 if (CMSTraceSweeper) { 8606 gclog_or_tty->print_cr(" -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", fc, chunkSize); 8607 } 8608 8609 HeapWord* const fc_addr = (HeapWord*) fc; 8610 8611 bool coalesce; 8612 const size_t left = pointer_delta(fc_addr, freeFinger()); 8613 const size_t right = chunkSize; 8614 switch (FLSCoalescePolicy) { 8615 // numeric value forms a coalition aggressiveness metric 8616 case 0: { // never coalesce 8617 coalesce = false; 8618 break; 8619 } 8620 case 1: { // coalesce if left & right chunks on overpopulated lists 8621 coalesce = _sp->coalOverPopulated(left) && 8622 _sp->coalOverPopulated(right); 8623 break; 8624 } 8625 case 2: { // coalesce if left chunk on overpopulated list (default) 8626 coalesce = _sp->coalOverPopulated(left); 8627 break; 8628 } 8629 case 3: { // coalesce if left OR right chunk on overpopulated list 8630 coalesce = _sp->coalOverPopulated(left) || 8631 _sp->coalOverPopulated(right); 8632 break; 8633 } 8634 case 4: { // always coalesce 8635 coalesce = true; 8636 break; 8637 } 8638 default: 8639 ShouldNotReachHere(); 8640 } 8641 8642 // Should the current free range be coalesced? 8643 // If the chunk is in a free range and either we decided to coalesce above 8644 // or the chunk is near the large block at the end of the heap 8645 // (isNearLargestChunk() returns true), then coalesce this chunk. 8646 const bool doCoalesce = inFreeRange() 8647 && (coalesce || _g->isNearLargestChunk(fc_addr)); 8648 if (doCoalesce) { 8649 // Coalesce the current free range on the left with the new 8650 // chunk on the right. If either is on a free list, 8651 // it must be removed from the list and stashed in the closure. 8652 if (freeRangeInFreeLists()) { 8653 FreeChunk* const ffc = (FreeChunk*)freeFinger(); 8654 assert(ffc->size() == pointer_delta(fc_addr, freeFinger()), 8655 "Size of free range is inconsistent with chunk size."); 8656 if (CMSTestInFreeList) { 8657 assert(_sp->verify_chunk_in_free_list(ffc), 8658 "Chunk is not in free lists"); 8659 } 8660 _sp->coalDeath(ffc->size()); 8661 _sp->removeFreeChunkFromFreeLists(ffc); 8662 set_freeRangeInFreeLists(false); 8663 } 8664 if (fcInFreeLists) { 8665 _sp->coalDeath(chunkSize); 8666 assert(fc->size() == chunkSize, 8667 "The chunk has the wrong size or is not in the free lists"); 8668 _sp->removeFreeChunkFromFreeLists(fc); 8669 } 8670 set_lastFreeRangeCoalesced(true); 8671 print_free_block_coalesced(fc); 8672 } else { // not in a free range and/or should not coalesce 8673 // Return the current free range and start a new one. 8674 if (inFreeRange()) { 8675 // In a free range but cannot coalesce with the right hand chunk. 8676 // Put the current free range into the free lists. 8677 flush_cur_free_chunk(freeFinger(), 8678 pointer_delta(fc_addr, freeFinger())); 8679 } 8680 // Set up for new free range. Pass along whether the right hand 8681 // chunk is in the free lists. 8682 initialize_free_range((HeapWord*)fc, fcInFreeLists); 8683 } 8684 } 8685 8686 // Lookahead flush: 8687 // If we are tracking a free range, and this is the last chunk that 8688 // we'll look at because its end crosses past _limit, we'll preemptively 8689 // flush it along with any free range we may be holding on to. Note that 8690 // this can be the case only for an already free or freshly garbage 8691 // chunk. If this block is an object, it can never straddle 8692 // over _limit. The "straddling" occurs when _limit is set at 8693 // the previous end of the space when this cycle started, and 8694 // a subsequent heap expansion caused the previously co-terminal 8695 // free block to be coalesced with the newly expanded portion, 8696 // thus rendering _limit a non-block-boundary making it dangerous 8697 // for the sweeper to step over and examine. 8698 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) { 8699 assert(inFreeRange(), "Should only be called if currently in a free range."); 8700 HeapWord* const eob = ((HeapWord*)fc) + chunk_size; 8701 assert(_sp->used_region().contains(eob - 1), 8702 err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT 8703 " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")" 8704 " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")", 8705 eob, eob-1, _limit, _sp->bottom(), _sp->end(), fc, chunk_size)); 8706 if (eob >= _limit) { 8707 assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit"); 8708 if (CMSTraceSweeper) { 8709 gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block " 8710 "[" PTR_FORMAT "," PTR_FORMAT ") in space " 8711 "[" PTR_FORMAT "," PTR_FORMAT ")", 8712 _limit, fc, eob, _sp->bottom(), _sp->end()); 8713 } 8714 // Return the storage we are tracking back into the free lists. 8715 if (CMSTraceSweeper) { 8716 gclog_or_tty->print_cr("Flushing ... "); 8717 } 8718 assert(freeFinger() < eob, "Error"); 8719 flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger())); 8720 } 8721 } 8722 8723 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) { 8724 assert(inFreeRange(), "Should only be called if currently in a free range."); 8725 assert(size > 0, 8726 "A zero sized chunk cannot be added to the free lists."); 8727 if (!freeRangeInFreeLists()) { 8728 if (CMSTestInFreeList) { 8729 FreeChunk* fc = (FreeChunk*) chunk; 8730 fc->set_size(size); 8731 assert(!_sp->verify_chunk_in_free_list(fc), 8732 "chunk should not be in free lists yet"); 8733 } 8734 if (CMSTraceSweeper) { 8735 gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", 8736 chunk, size); 8737 } 8738 // A new free range is going to be starting. The current 8739 // free range has not been added to the free lists yet or 8740 // was removed so add it back. 8741 // If the current free range was coalesced, then the death 8742 // of the free range was recorded. Record a birth now. 8743 if (lastFreeRangeCoalesced()) { 8744 _sp->coalBirth(size); 8745 } 8746 _sp->addChunkAndRepairOffsetTable(chunk, size, 8747 lastFreeRangeCoalesced()); 8748 } else if (CMSTraceSweeper) { 8749 gclog_or_tty->print_cr("Already in free list: nothing to flush"); 8750 } 8751 set_inFreeRange(false); 8752 set_freeRangeInFreeLists(false); 8753 } 8754 8755 // We take a break if we've been at this for a while, 8756 // so as to avoid monopolizing the locks involved. 8757 void SweepClosure::do_yield_work(HeapWord* addr) { 8758 // Return current free chunk being used for coalescing (if any) 8759 // to the appropriate freelist. After yielding, the next 8760 // free block encountered will start a coalescing range of 8761 // free blocks. If the next free block is adjacent to the 8762 // chunk just flushed, they will need to wait for the next 8763 // sweep to be coalesced. 8764 if (inFreeRange()) { 8765 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 8766 } 8767 8768 // First give up the locks, then yield, then re-lock. 8769 // We should probably use a constructor/destructor idiom to 8770 // do this unlock/lock or modify the MutexUnlocker class to 8771 // serve our purpose. XXX 8772 assert_lock_strong(_bitMap->lock()); 8773 assert_lock_strong(_freelistLock); 8774 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 8775 "CMS thread should hold CMS token"); 8776 _bitMap->lock()->unlock(); 8777 _freelistLock->unlock(); 8778 ConcurrentMarkSweepThread::desynchronize(true); 8779 ConcurrentMarkSweepThread::acknowledge_yield_request(); 8780 _collector->stopTimer(); 8781 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 8782 if (PrintCMSStatistics != 0) { 8783 _collector->incrementYields(); 8784 } 8785 _collector->icms_wait(); 8786 8787 // See the comment in coordinator_yield() 8788 for (unsigned i = 0; i < CMSYieldSleepCount && 8789 ConcurrentMarkSweepThread::should_yield() && 8790 !CMSCollector::foregroundGCIsActive(); ++i) { 8791 os::sleep(Thread::current(), 1, false); 8792 ConcurrentMarkSweepThread::acknowledge_yield_request(); 8793 } 8794 8795 ConcurrentMarkSweepThread::synchronize(true); 8796 _freelistLock->lock(); 8797 _bitMap->lock()->lock_without_safepoint_check(); 8798 _collector->startTimer(); 8799 } 8800 8801 #ifndef PRODUCT 8802 // This is actually very useful in a product build if it can 8803 // be called from the debugger. Compile it into the product 8804 // as needed. 8805 bool debug_verify_chunk_in_free_list(FreeChunk* fc) { 8806 return debug_cms_space->verify_chunk_in_free_list(fc); 8807 } 8808 #endif 8809 8810 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const { 8811 if (CMSTraceSweeper) { 8812 gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")", 8813 fc, fc->size()); 8814 } 8815 } 8816 8817 // CMSIsAliveClosure 8818 bool CMSIsAliveClosure::do_object_b(oop obj) { 8819 HeapWord* addr = (HeapWord*)obj; 8820 return addr != NULL && 8821 (!_span.contains(addr) || _bit_map->isMarked(addr)); 8822 } 8823 8824 8825 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector, 8826 MemRegion span, 8827 CMSBitMap* bit_map, CMSMarkStack* mark_stack, 8828 bool cpc): 8829 _collector(collector), 8830 _span(span), 8831 _bit_map(bit_map), 8832 _mark_stack(mark_stack), 8833 _concurrent_precleaning(cpc) { 8834 assert(!_span.is_empty(), "Empty span could spell trouble"); 8835 } 8836 8837 8838 // CMSKeepAliveClosure: the serial version 8839 void CMSKeepAliveClosure::do_oop(oop obj) { 8840 HeapWord* addr = (HeapWord*)obj; 8841 if (_span.contains(addr) && 8842 !_bit_map->isMarked(addr)) { 8843 _bit_map->mark(addr); 8844 bool simulate_overflow = false; 8845 NOT_PRODUCT( 8846 if (CMSMarkStackOverflowALot && 8847 _collector->simulate_overflow()) { 8848 // simulate a stack overflow 8849 simulate_overflow = true; 8850 } 8851 ) 8852 if (simulate_overflow || !_mark_stack->push(obj)) { 8853 if (_concurrent_precleaning) { 8854 // We dirty the overflown object and let the remark 8855 // phase deal with it. 8856 assert(_collector->overflow_list_is_empty(), "Error"); 8857 // In the case of object arrays, we need to dirty all of 8858 // the cards that the object spans. No locking or atomics 8859 // are needed since no one else can be mutating the mod union 8860 // table. 8861 if (obj->is_objArray()) { 8862 size_t sz = obj->size(); 8863 HeapWord* end_card_addr = 8864 (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size); 8865 MemRegion redirty_range = MemRegion(addr, end_card_addr); 8866 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 8867 _collector->_modUnionTable.mark_range(redirty_range); 8868 } else { 8869 _collector->_modUnionTable.mark(addr); 8870 } 8871 _collector->_ser_kac_preclean_ovflw++; 8872 } else { 8873 _collector->push_on_overflow_list(obj); 8874 _collector->_ser_kac_ovflw++; 8875 } 8876 } 8877 } 8878 } 8879 8880 void CMSKeepAliveClosure::do_oop(oop* p) { CMSKeepAliveClosure::do_oop_work(p); } 8881 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); } 8882 8883 // CMSParKeepAliveClosure: a parallel version of the above. 8884 // The work queues are private to each closure (thread), 8885 // but (may be) available for stealing by other threads. 8886 void CMSParKeepAliveClosure::do_oop(oop obj) { 8887 HeapWord* addr = (HeapWord*)obj; 8888 if (_span.contains(addr) && 8889 !_bit_map->isMarked(addr)) { 8890 // In general, during recursive tracing, several threads 8891 // may be concurrently getting here; the first one to 8892 // "tag" it, claims it. 8893 if (_bit_map->par_mark(addr)) { 8894 bool res = _work_queue->push(obj); 8895 assert(res, "Low water mark should be much less than capacity"); 8896 // Do a recursive trim in the hope that this will keep 8897 // stack usage lower, but leave some oops for potential stealers 8898 trim_queue(_low_water_mark); 8899 } // Else, another thread got there first 8900 } 8901 } 8902 8903 void CMSParKeepAliveClosure::do_oop(oop* p) { CMSParKeepAliveClosure::do_oop_work(p); } 8904 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); } 8905 8906 void CMSParKeepAliveClosure::trim_queue(uint max) { 8907 while (_work_queue->size() > max) { 8908 oop new_oop; 8909 if (_work_queue->pop_local(new_oop)) { 8910 assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop"); 8911 assert(_bit_map->isMarked((HeapWord*)new_oop), 8912 "no white objects on this stack!"); 8913 assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop"); 8914 // iterate over the oops in this oop, marking and pushing 8915 // the ones in CMS heap (i.e. in _span). 8916 new_oop->oop_iterate(&_mark_and_push); 8917 } 8918 } 8919 } 8920 8921 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure( 8922 CMSCollector* collector, 8923 MemRegion span, CMSBitMap* bit_map, 8924 OopTaskQueue* work_queue): 8925 _collector(collector), 8926 _span(span), 8927 _bit_map(bit_map), 8928 _work_queue(work_queue) { } 8929 8930 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) { 8931 HeapWord* addr = (HeapWord*)obj; 8932 if (_span.contains(addr) && 8933 !_bit_map->isMarked(addr)) { 8934 if (_bit_map->par_mark(addr)) { 8935 bool simulate_overflow = false; 8936 NOT_PRODUCT( 8937 if (CMSMarkStackOverflowALot && 8938 _collector->par_simulate_overflow()) { 8939 // simulate a stack overflow 8940 simulate_overflow = true; 8941 } 8942 ) 8943 if (simulate_overflow || !_work_queue->push(obj)) { 8944 _collector->par_push_on_overflow_list(obj); 8945 _collector->_par_kac_ovflw++; 8946 } 8947 } // Else another thread got there already 8948 } 8949 } 8950 8951 void CMSInnerParMarkAndPushClosure::do_oop(oop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); } 8952 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); } 8953 8954 ////////////////////////////////////////////////////////////////// 8955 // CMSExpansionCause ///////////////////////////// 8956 ////////////////////////////////////////////////////////////////// 8957 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) { 8958 switch (cause) { 8959 case _no_expansion: 8960 return "No expansion"; 8961 case _satisfy_free_ratio: 8962 return "Free ratio"; 8963 case _satisfy_promotion: 8964 return "Satisfy promotion"; 8965 case _satisfy_allocation: 8966 return "allocation"; 8967 case _allocate_par_lab: 8968 return "Par LAB"; 8969 case _allocate_par_spooling_space: 8970 return "Par Spooling Space"; 8971 case _adaptive_size_policy: 8972 return "Ergonomics"; 8973 default: 8974 return "unknown"; 8975 } 8976 } 8977 8978 void CMSDrainMarkingStackClosure::do_void() { 8979 // the max number to take from overflow list at a time 8980 const size_t num = _mark_stack->capacity()/4; 8981 assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(), 8982 "Overflow list should be NULL during concurrent phases"); 8983 while (!_mark_stack->isEmpty() || 8984 // if stack is empty, check the overflow list 8985 _collector->take_from_overflow_list(num, _mark_stack)) { 8986 oop obj = _mark_stack->pop(); 8987 HeapWord* addr = (HeapWord*)obj; 8988 assert(_span.contains(addr), "Should be within span"); 8989 assert(_bit_map->isMarked(addr), "Should be marked"); 8990 assert(obj->is_oop(), "Should be an oop"); 8991 obj->oop_iterate(_keep_alive); 8992 } 8993 } 8994 8995 void CMSParDrainMarkingStackClosure::do_void() { 8996 // drain queue 8997 trim_queue(0); 8998 } 8999 9000 // Trim our work_queue so its length is below max at return 9001 void CMSParDrainMarkingStackClosure::trim_queue(uint max) { 9002 while (_work_queue->size() > max) { 9003 oop new_oop; 9004 if (_work_queue->pop_local(new_oop)) { 9005 assert(new_oop->is_oop(), "Expected an oop"); 9006 assert(_bit_map->isMarked((HeapWord*)new_oop), 9007 "no white objects on this stack!"); 9008 assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop"); 9009 // iterate over the oops in this oop, marking and pushing 9010 // the ones in CMS heap (i.e. in _span). 9011 new_oop->oop_iterate(&_mark_and_push); 9012 } 9013 } 9014 } 9015 9016 //////////////////////////////////////////////////////////////////// 9017 // Support for Marking Stack Overflow list handling and related code 9018 //////////////////////////////////////////////////////////////////// 9019 // Much of the following code is similar in shape and spirit to the 9020 // code used in ParNewGC. We should try and share that code 9021 // as much as possible in the future. 9022 9023 #ifndef PRODUCT 9024 // Debugging support for CMSStackOverflowALot 9025 9026 // It's OK to call this multi-threaded; the worst thing 9027 // that can happen is that we'll get a bunch of closely 9028 // spaced simulated overflows, but that's OK, in fact 9029 // probably good as it would exercise the overflow code 9030 // under contention. 9031 bool CMSCollector::simulate_overflow() { 9032 if (_overflow_counter-- <= 0) { // just being defensive 9033 _overflow_counter = CMSMarkStackOverflowInterval; 9034 return true; 9035 } else { 9036 return false; 9037 } 9038 } 9039 9040 bool CMSCollector::par_simulate_overflow() { 9041 return simulate_overflow(); 9042 } 9043 #endif 9044 9045 // Single-threaded 9046 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) { 9047 assert(stack->isEmpty(), "Expected precondition"); 9048 assert(stack->capacity() > num, "Shouldn't bite more than can chew"); 9049 size_t i = num; 9050 oop cur = _overflow_list; 9051 const markOop proto = markOopDesc::prototype(); 9052 NOT_PRODUCT(ssize_t n = 0;) 9053 for (oop next; i > 0 && cur != NULL; cur = next, i--) { 9054 next = oop(cur->mark()); 9055 cur->set_mark(proto); // until proven otherwise 9056 assert(cur->is_oop(), "Should be an oop"); 9057 bool res = stack->push(cur); 9058 assert(res, "Bit off more than can chew?"); 9059 NOT_PRODUCT(n++;) 9060 } 9061 _overflow_list = cur; 9062 #ifndef PRODUCT 9063 assert(_num_par_pushes >= n, "Too many pops?"); 9064 _num_par_pushes -=n; 9065 #endif 9066 return !stack->isEmpty(); 9067 } 9068 9069 #define BUSY (cast_to_oop<intptr_t>(0x1aff1aff)) 9070 // (MT-safe) Get a prefix of at most "num" from the list. 9071 // The overflow list is chained through the mark word of 9072 // each object in the list. We fetch the entire list, 9073 // break off a prefix of the right size and return the 9074 // remainder. If other threads try to take objects from 9075 // the overflow list at that time, they will wait for 9076 // some time to see if data becomes available. If (and 9077 // only if) another thread places one or more object(s) 9078 // on the global list before we have returned the suffix 9079 // to the global list, we will walk down our local list 9080 // to find its end and append the global list to 9081 // our suffix before returning it. This suffix walk can 9082 // prove to be expensive (quadratic in the amount of traffic) 9083 // when there are many objects in the overflow list and 9084 // there is much producer-consumer contention on the list. 9085 // *NOTE*: The overflow list manipulation code here and 9086 // in ParNewGeneration:: are very similar in shape, 9087 // except that in the ParNew case we use the old (from/eden) 9088 // copy of the object to thread the list via its klass word. 9089 // Because of the common code, if you make any changes in 9090 // the code below, please check the ParNew version to see if 9091 // similar changes might be needed. 9092 // CR 6797058 has been filed to consolidate the common code. 9093 bool CMSCollector::par_take_from_overflow_list(size_t num, 9094 OopTaskQueue* work_q, 9095 int no_of_gc_threads) { 9096 assert(work_q->size() == 0, "First empty local work queue"); 9097 assert(num < work_q->max_elems(), "Can't bite more than we can chew"); 9098 if (_overflow_list == NULL) { 9099 return false; 9100 } 9101 // Grab the entire list; we'll put back a suffix 9102 oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list)); 9103 Thread* tid = Thread::current(); 9104 // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was 9105 // set to ParallelGCThreads. 9106 size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads; 9107 size_t sleep_time_millis = MAX2((size_t)1, num/100); 9108 // If the list is busy, we spin for a short while, 9109 // sleeping between attempts to get the list. 9110 for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) { 9111 os::sleep(tid, sleep_time_millis, false); 9112 if (_overflow_list == NULL) { 9113 // Nothing left to take 9114 return false; 9115 } else if (_overflow_list != BUSY) { 9116 // Try and grab the prefix 9117 prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list)); 9118 } 9119 } 9120 // If the list was found to be empty, or we spun long 9121 // enough, we give up and return empty-handed. If we leave 9122 // the list in the BUSY state below, it must be the case that 9123 // some other thread holds the overflow list and will set it 9124 // to a non-BUSY state in the future. 9125 if (prefix == NULL || prefix == BUSY) { 9126 // Nothing to take or waited long enough 9127 if (prefix == NULL) { 9128 // Write back the NULL in case we overwrote it with BUSY above 9129 // and it is still the same value. 9130 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY); 9131 } 9132 return false; 9133 } 9134 assert(prefix != NULL && prefix != BUSY, "Error"); 9135 size_t i = num; 9136 oop cur = prefix; 9137 // Walk down the first "num" objects, unless we reach the end. 9138 for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--); 9139 if (cur->mark() == NULL) { 9140 // We have "num" or fewer elements in the list, so there 9141 // is nothing to return to the global list. 9142 // Write back the NULL in lieu of the BUSY we wrote 9143 // above, if it is still the same value. 9144 if (_overflow_list == BUSY) { 9145 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY); 9146 } 9147 } else { 9148 // Chop off the suffix and return it to the global list. 9149 assert(cur->mark() != BUSY, "Error"); 9150 oop suffix_head = cur->mark(); // suffix will be put back on global list 9151 cur->set_mark(NULL); // break off suffix 9152 // It's possible that the list is still in the empty(busy) state 9153 // we left it in a short while ago; in that case we may be 9154 // able to place back the suffix without incurring the cost 9155 // of a walk down the list. 9156 oop observed_overflow_list = _overflow_list; 9157 oop cur_overflow_list = observed_overflow_list; 9158 bool attached = false; 9159 while (observed_overflow_list == BUSY || observed_overflow_list == NULL) { 9160 observed_overflow_list = 9161 (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list); 9162 if (cur_overflow_list == observed_overflow_list) { 9163 attached = true; 9164 break; 9165 } else cur_overflow_list = observed_overflow_list; 9166 } 9167 if (!attached) { 9168 // Too bad, someone else sneaked in (at least) an element; we'll need 9169 // to do a splice. Find tail of suffix so we can prepend suffix to global 9170 // list. 9171 for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark())); 9172 oop suffix_tail = cur; 9173 assert(suffix_tail != NULL && suffix_tail->mark() == NULL, 9174 "Tautology"); 9175 observed_overflow_list = _overflow_list; 9176 do { 9177 cur_overflow_list = observed_overflow_list; 9178 if (cur_overflow_list != BUSY) { 9179 // Do the splice ... 9180 suffix_tail->set_mark(markOop(cur_overflow_list)); 9181 } else { // cur_overflow_list == BUSY 9182 suffix_tail->set_mark(NULL); 9183 } 9184 // ... and try to place spliced list back on overflow_list ... 9185 observed_overflow_list = 9186 (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list); 9187 } while (cur_overflow_list != observed_overflow_list); 9188 // ... until we have succeeded in doing so. 9189 } 9190 } 9191 9192 // Push the prefix elements on work_q 9193 assert(prefix != NULL, "control point invariant"); 9194 const markOop proto = markOopDesc::prototype(); 9195 oop next; 9196 NOT_PRODUCT(ssize_t n = 0;) 9197 for (cur = prefix; cur != NULL; cur = next) { 9198 next = oop(cur->mark()); 9199 cur->set_mark(proto); // until proven otherwise 9200 assert(cur->is_oop(), "Should be an oop"); 9201 bool res = work_q->push(cur); 9202 assert(res, "Bit off more than we can chew?"); 9203 NOT_PRODUCT(n++;) 9204 } 9205 #ifndef PRODUCT 9206 assert(_num_par_pushes >= n, "Too many pops?"); 9207 Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes); 9208 #endif 9209 return true; 9210 } 9211 9212 // Single-threaded 9213 void CMSCollector::push_on_overflow_list(oop p) { 9214 NOT_PRODUCT(_num_par_pushes++;) 9215 assert(p->is_oop(), "Not an oop"); 9216 preserve_mark_if_necessary(p); 9217 p->set_mark((markOop)_overflow_list); 9218 _overflow_list = p; 9219 } 9220 9221 // Multi-threaded; use CAS to prepend to overflow list 9222 void CMSCollector::par_push_on_overflow_list(oop p) { 9223 NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);) 9224 assert(p->is_oop(), "Not an oop"); 9225 par_preserve_mark_if_necessary(p); 9226 oop observed_overflow_list = _overflow_list; 9227 oop cur_overflow_list; 9228 do { 9229 cur_overflow_list = observed_overflow_list; 9230 if (cur_overflow_list != BUSY) { 9231 p->set_mark(markOop(cur_overflow_list)); 9232 } else { 9233 p->set_mark(NULL); 9234 } 9235 observed_overflow_list = 9236 (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list); 9237 } while (cur_overflow_list != observed_overflow_list); 9238 } 9239 #undef BUSY 9240 9241 // Single threaded 9242 // General Note on GrowableArray: pushes may silently fail 9243 // because we are (temporarily) out of C-heap for expanding 9244 // the stack. The problem is quite ubiquitous and affects 9245 // a lot of code in the JVM. The prudent thing for GrowableArray 9246 // to do (for now) is to exit with an error. However, that may 9247 // be too draconian in some cases because the caller may be 9248 // able to recover without much harm. For such cases, we 9249 // should probably introduce a "soft_push" method which returns 9250 // an indication of success or failure with the assumption that 9251 // the caller may be able to recover from a failure; code in 9252 // the VM can then be changed, incrementally, to deal with such 9253 // failures where possible, thus, incrementally hardening the VM 9254 // in such low resource situations. 9255 void CMSCollector::preserve_mark_work(oop p, markOop m) { 9256 _preserved_oop_stack.push(p); 9257 _preserved_mark_stack.push(m); 9258 assert(m == p->mark(), "Mark word changed"); 9259 assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(), 9260 "bijection"); 9261 } 9262 9263 // Single threaded 9264 void CMSCollector::preserve_mark_if_necessary(oop p) { 9265 markOop m = p->mark(); 9266 if (m->must_be_preserved(p)) { 9267 preserve_mark_work(p, m); 9268 } 9269 } 9270 9271 void CMSCollector::par_preserve_mark_if_necessary(oop p) { 9272 markOop m = p->mark(); 9273 if (m->must_be_preserved(p)) { 9274 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 9275 // Even though we read the mark word without holding 9276 // the lock, we are assured that it will not change 9277 // because we "own" this oop, so no other thread can 9278 // be trying to push it on the overflow list; see 9279 // the assertion in preserve_mark_work() that checks 9280 // that m == p->mark(). 9281 preserve_mark_work(p, m); 9282 } 9283 } 9284 9285 // We should be able to do this multi-threaded, 9286 // a chunk of stack being a task (this is 9287 // correct because each oop only ever appears 9288 // once in the overflow list. However, it's 9289 // not very easy to completely overlap this with 9290 // other operations, so will generally not be done 9291 // until all work's been completed. Because we 9292 // expect the preserved oop stack (set) to be small, 9293 // it's probably fine to do this single-threaded. 9294 // We can explore cleverer concurrent/overlapped/parallel 9295 // processing of preserved marks if we feel the 9296 // need for this in the future. Stack overflow should 9297 // be so rare in practice and, when it happens, its 9298 // effect on performance so great that this will 9299 // likely just be in the noise anyway. 9300 void CMSCollector::restore_preserved_marks_if_any() { 9301 assert(SafepointSynchronize::is_at_safepoint(), 9302 "world should be stopped"); 9303 assert(Thread::current()->is_ConcurrentGC_thread() || 9304 Thread::current()->is_VM_thread(), 9305 "should be single-threaded"); 9306 assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(), 9307 "bijection"); 9308 9309 while (!_preserved_oop_stack.is_empty()) { 9310 oop p = _preserved_oop_stack.pop(); 9311 assert(p->is_oop(), "Should be an oop"); 9312 assert(_span.contains(p), "oop should be in _span"); 9313 assert(p->mark() == markOopDesc::prototype(), 9314 "Set when taken from overflow list"); 9315 markOop m = _preserved_mark_stack.pop(); 9316 p->set_mark(m); 9317 } 9318 assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(), 9319 "stacks were cleared above"); 9320 } 9321 9322 #ifndef PRODUCT 9323 bool CMSCollector::no_preserved_marks() const { 9324 return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(); 9325 } 9326 #endif 9327 9328 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const 9329 { 9330 GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap(); 9331 CMSAdaptiveSizePolicy* size_policy = 9332 (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy(); 9333 assert(size_policy->is_gc_cms_adaptive_size_policy(), 9334 "Wrong type for size policy"); 9335 return size_policy; 9336 } 9337 9338 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size, 9339 size_t desired_promo_size) { 9340 if (cur_promo_size < desired_promo_size) { 9341 size_t expand_bytes = desired_promo_size - cur_promo_size; 9342 if (PrintAdaptiveSizePolicy && Verbose) { 9343 gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize " 9344 "Expanding tenured generation by " SIZE_FORMAT " (bytes)", 9345 expand_bytes); 9346 } 9347 expand(expand_bytes, 9348 MinHeapDeltaBytes, 9349 CMSExpansionCause::_adaptive_size_policy); 9350 } else if (desired_promo_size < cur_promo_size) { 9351 size_t shrink_bytes = cur_promo_size - desired_promo_size; 9352 if (PrintAdaptiveSizePolicy && Verbose) { 9353 gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize " 9354 "Shrinking tenured generation by " SIZE_FORMAT " (bytes)", 9355 shrink_bytes); 9356 } 9357 shrink(shrink_bytes); 9358 } 9359 } 9360 9361 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() { 9362 GenCollectedHeap* gch = GenCollectedHeap::heap(); 9363 CMSGCAdaptivePolicyCounters* counters = 9364 (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters(); 9365 assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind, 9366 "Wrong kind of counters"); 9367 return counters; 9368 } 9369 9370 9371 void ASConcurrentMarkSweepGeneration::update_counters() { 9372 if (UsePerfData) { 9373 _space_counters->update_all(); 9374 _gen_counters->update_all(); 9375 CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters(); 9376 GenCollectedHeap* gch = GenCollectedHeap::heap(); 9377 CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats(); 9378 assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind, 9379 "Wrong gc statistics type"); 9380 counters->update_counters(gc_stats_l); 9381 } 9382 } 9383 9384 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) { 9385 if (UsePerfData) { 9386 _space_counters->update_used(used); 9387 _space_counters->update_capacity(); 9388 _gen_counters->update_all(); 9389 9390 CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters(); 9391 GenCollectedHeap* gch = GenCollectedHeap::heap(); 9392 CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats(); 9393 assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind, 9394 "Wrong gc statistics type"); 9395 counters->update_counters(gc_stats_l); 9396 } 9397 } 9398 9399 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) { 9400 assert_locked_or_safepoint(Heap_lock); 9401 assert_lock_strong(freelistLock()); 9402 HeapWord* old_end = _cmsSpace->end(); 9403 HeapWord* unallocated_start = _cmsSpace->unallocated_block(); 9404 assert(old_end >= unallocated_start, "Miscalculation of unallocated_start"); 9405 FreeChunk* chunk_at_end = find_chunk_at_end(); 9406 if (chunk_at_end == NULL) { 9407 // No room to shrink 9408 if (PrintGCDetails && Verbose) { 9409 gclog_or_tty->print_cr("No room to shrink: old_end " 9410 PTR_FORMAT " unallocated_start " PTR_FORMAT 9411 " chunk_at_end " PTR_FORMAT, 9412 old_end, unallocated_start, chunk_at_end); 9413 } 9414 return; 9415 } else { 9416 9417 // Find the chunk at the end of the space and determine 9418 // how much it can be shrunk. 9419 size_t shrinkable_size_in_bytes = chunk_at_end->size(); 9420 size_t aligned_shrinkable_size_in_bytes = 9421 align_size_down(shrinkable_size_in_bytes, os::vm_page_size()); 9422 assert(unallocated_start <= (HeapWord*) chunk_at_end->end(), 9423 "Inconsistent chunk at end of space"); 9424 size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes); 9425 size_t word_size_before = heap_word_size(_virtual_space.committed_size()); 9426 9427 // Shrink the underlying space 9428 _virtual_space.shrink_by(bytes); 9429 if (PrintGCDetails && Verbose) { 9430 gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:" 9431 " desired_bytes " SIZE_FORMAT 9432 " shrinkable_size_in_bytes " SIZE_FORMAT 9433 " aligned_shrinkable_size_in_bytes " SIZE_FORMAT 9434 " bytes " SIZE_FORMAT, 9435 desired_bytes, shrinkable_size_in_bytes, 9436 aligned_shrinkable_size_in_bytes, bytes); 9437 gclog_or_tty->print_cr(" old_end " SIZE_FORMAT 9438 " unallocated_start " SIZE_FORMAT, 9439 old_end, unallocated_start); 9440 } 9441 9442 // If the space did shrink (shrinking is not guaranteed), 9443 // shrink the chunk at the end by the appropriate amount. 9444 if (((HeapWord*)_virtual_space.high()) < old_end) { 9445 size_t new_word_size = 9446 heap_word_size(_virtual_space.committed_size()); 9447 9448 // Have to remove the chunk from the dictionary because it is changing 9449 // size and might be someplace elsewhere in the dictionary. 9450 9451 // Get the chunk at end, shrink it, and put it 9452 // back. 9453 _cmsSpace->removeChunkFromDictionary(chunk_at_end); 9454 size_t word_size_change = word_size_before - new_word_size; 9455 size_t chunk_at_end_old_size = chunk_at_end->size(); 9456 assert(chunk_at_end_old_size >= word_size_change, 9457 "Shrink is too large"); 9458 chunk_at_end->set_size(chunk_at_end_old_size - 9459 word_size_change); 9460 _cmsSpace->freed((HeapWord*) chunk_at_end->end(), 9461 word_size_change); 9462 9463 _cmsSpace->returnChunkToDictionary(chunk_at_end); 9464 9465 MemRegion mr(_cmsSpace->bottom(), new_word_size); 9466 _bts->resize(new_word_size); // resize the block offset shared array 9467 Universe::heap()->barrier_set()->resize_covered_region(mr); 9468 _cmsSpace->assert_locked(); 9469 _cmsSpace->set_end((HeapWord*)_virtual_space.high()); 9470 9471 NOT_PRODUCT(_cmsSpace->dictionary()->verify()); 9472 9473 // update the space and generation capacity counters 9474 if (UsePerfData) { 9475 _space_counters->update_capacity(); 9476 _gen_counters->update_all(); 9477 } 9478 9479 if (Verbose && PrintGCDetails) { 9480 size_t new_mem_size = _virtual_space.committed_size(); 9481 size_t old_mem_size = new_mem_size + bytes; 9482 gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K", 9483 name(), old_mem_size/K, bytes/K, new_mem_size/K); 9484 } 9485 } 9486 9487 assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(), 9488 "Inconsistency at end of space"); 9489 assert(chunk_at_end->end() == (uintptr_t*) _cmsSpace->end(), 9490 "Shrinking is inconsistent"); 9491 return; 9492 } 9493 } 9494 // Transfer some number of overflown objects to usual marking 9495 // stack. Return true if some objects were transferred. 9496 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() { 9497 size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4, 9498 (size_t)ParGCDesiredObjsFromOverflowList); 9499 9500 bool res = _collector->take_from_overflow_list(num, _mark_stack); 9501 assert(_collector->overflow_list_is_empty() || res, 9502 "If list is not empty, we should have taken something"); 9503 assert(!res || !_mark_stack->isEmpty(), 9504 "If we took something, it should now be on our stack"); 9505 return res; 9506 } 9507 9508 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) { 9509 size_t res = _sp->block_size_no_stall(addr, _collector); 9510 if (_sp->block_is_obj(addr)) { 9511 if (_live_bit_map->isMarked(addr)) { 9512 // It can't have been dead in a previous cycle 9513 guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!"); 9514 } else { 9515 _dead_bit_map->mark(addr); // mark the dead object 9516 } 9517 } 9518 // Could be 0, if the block size could not be computed without stalling. 9519 return res; 9520 } 9521 9522 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() { 9523 9524 switch (phase) { 9525 case CMSCollector::InitialMarking: 9526 initialize(true /* fullGC */ , 9527 cause /* cause of the GC */, 9528 true /* recordGCBeginTime */, 9529 true /* recordPreGCUsage */, 9530 false /* recordPeakUsage */, 9531 false /* recordPostGCusage */, 9532 true /* recordAccumulatedGCTime */, 9533 false /* recordGCEndTime */, 9534 false /* countCollection */ ); 9535 break; 9536 9537 case CMSCollector::FinalMarking: 9538 initialize(true /* fullGC */ , 9539 cause /* cause of the GC */, 9540 false /* recordGCBeginTime */, 9541 false /* recordPreGCUsage */, 9542 false /* recordPeakUsage */, 9543 false /* recordPostGCusage */, 9544 true /* recordAccumulatedGCTime */, 9545 false /* recordGCEndTime */, 9546 false /* countCollection */ ); 9547 break; 9548 9549 case CMSCollector::Sweeping: 9550 initialize(true /* fullGC */ , 9551 cause /* cause of the GC */, 9552 false /* recordGCBeginTime */, 9553 false /* recordPreGCUsage */, 9554 true /* recordPeakUsage */, 9555 true /* recordPostGCusage */, 9556 false /* recordAccumulatedGCTime */, 9557 true /* recordGCEndTime */, 9558 true /* countCollection */ ); 9559 break; 9560 9561 default: 9562 ShouldNotReachHere(); 9563 } 9564 }