1 /* 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #if !defined(__clang_major__) && defined(__GNUC__) 26 // FIXME, formats have issues. Disable this macro definition, compile, and study warnings for more information. 27 #define ATTRIBUTE_PRINTF(x,y) 28 #endif 29 30 #include "precompiled.hpp" 31 #include "classfile/stringTable.hpp" 32 #include "code/codeCache.hpp" 33 #include "code/icBuffer.hpp" 34 #include "gc_implementation/g1/bufferingOopClosure.hpp" 35 #include "gc_implementation/g1/concurrentG1Refine.hpp" 36 #include "gc_implementation/g1/concurrentG1RefineThread.hpp" 37 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp" 38 #include "gc_implementation/g1/g1AllocRegion.inline.hpp" 39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" 40 #include "gc_implementation/g1/g1CollectorPolicy.hpp" 41 #include "gc_implementation/g1/g1ErgoVerbose.hpp" 42 #include "gc_implementation/g1/g1EvacFailure.hpp" 43 #include "gc_implementation/g1/g1GCPhaseTimes.hpp" 44 #include "gc_implementation/g1/g1Log.hpp" 45 #include "gc_implementation/g1/g1MarkSweep.hpp" 46 #include "gc_implementation/g1/g1OopClosures.inline.hpp" 47 #include "gc_implementation/g1/g1RemSet.inline.hpp" 48 #include "gc_implementation/g1/g1StringDedup.hpp" 49 #include "gc_implementation/g1/g1YCTypes.hpp" 50 #include "gc_implementation/g1/heapRegion.inline.hpp" 51 #include "gc_implementation/g1/heapRegionRemSet.hpp" 52 #include "gc_implementation/g1/heapRegionSeq.inline.hpp" 53 #include "gc_implementation/g1/vm_operations_g1.hpp" 54 #include "gc_implementation/shared/gcHeapSummary.hpp" 55 #include "gc_implementation/shared/gcTimer.hpp" 56 #include "gc_implementation/shared/gcTrace.hpp" 57 #include "gc_implementation/shared/gcTraceTime.hpp" 58 #include "gc_implementation/shared/isGCActiveMark.hpp" 59 #include "memory/gcLocker.inline.hpp" 60 #include "memory/generationSpec.hpp" 61 #include "memory/iterator.hpp" 62 #include "memory/referenceProcessor.hpp" 63 #include "oops/oop.inline.hpp" 64 #include "oops/oop.pcgc.inline.hpp" 65 #include "runtime/orderAccess.inline.hpp" 66 #include "runtime/vmThread.hpp" 67 #include "utilities/globalDefinitions.hpp" 68 #include "utilities/ticks.hpp" 69 70 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; 71 72 // turn it on so that the contents of the young list (scan-only / 73 // to-be-collected) are printed at "strategic" points before / during 74 // / after the collection --- this is useful for debugging 75 #define YOUNG_LIST_VERBOSE 0 76 // CURRENT STATUS 77 // This file is under construction. Search for "FIXME". 78 79 // INVARIANTS/NOTES 80 // 81 // All allocation activity covered by the G1CollectedHeap interface is 82 // serialized by acquiring the HeapLock. This happens in mem_allocate 83 // and allocate_new_tlab, which are the "entry" points to the 84 // allocation code from the rest of the JVM. (Note that this does not 85 // apply to TLAB allocation, which is not part of this interface: it 86 // is done by clients of this interface.) 87 88 // Notes on implementation of parallelism in different tasks. 89 // 90 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism. 91 // The number of GC workers is passed to heap_region_par_iterate_chunked(). 92 // It does use run_task() which sets _n_workers in the task. 93 // G1ParTask executes g1_process_strong_roots() -> 94 // SharedHeap::process_strong_roots() which calls eventually to 95 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses 96 // SequentialSubTasksDone. SharedHeap::process_strong_roots() also 97 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap). 98 // 99 100 // Local to this file. 101 102 class RefineCardTableEntryClosure: public CardTableEntryClosure { 103 bool _concurrent; 104 public: 105 RefineCardTableEntryClosure() : _concurrent(true) { } 106 107 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 108 bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false); 109 // This path is executed by the concurrent refine or mutator threads, 110 // concurrently, and so we do not care if card_ptr contains references 111 // that point into the collection set. 112 assert(!oops_into_cset, "should be"); 113 114 if (_concurrent && SuspendibleThreadSet::should_yield()) { 115 // Caller will actually yield. 116 return false; 117 } 118 // Otherwise, we finished successfully; return true. 119 return true; 120 } 121 122 void set_concurrent(bool b) { _concurrent = b; } 123 }; 124 125 126 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure { 127 size_t _num_processed; 128 CardTableModRefBS* _ctbs; 129 int _histo[256]; 130 131 public: 132 ClearLoggedCardTableEntryClosure() : 133 _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set()) 134 { 135 for (int i = 0; i < 256; i++) _histo[i] = 0; 136 } 137 138 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 139 unsigned char* ujb = (unsigned char*)card_ptr; 140 int ind = (int)(*ujb); 141 _histo[ind]++; 142 143 *card_ptr = (jbyte)CardTableModRefBS::clean_card_val(); 144 _num_processed++; 145 146 return true; 147 } 148 149 size_t num_processed() { return _num_processed; } 150 151 void print_histo() { 152 gclog_or_tty->print_cr("Card table value histogram:"); 153 for (int i = 0; i < 256; i++) { 154 if (_histo[i] != 0) { 155 gclog_or_tty->print_cr(" %d: %d", i, _histo[i]); 156 } 157 } 158 } 159 }; 160 161 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure { 162 private: 163 size_t _num_processed; 164 165 public: 166 RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { } 167 168 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 169 *card_ptr = CardTableModRefBS::dirty_card_val(); 170 _num_processed++; 171 return true; 172 } 173 174 size_t num_processed() const { return _num_processed; } 175 }; 176 177 YoungList::YoungList(G1CollectedHeap* g1h) : 178 _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0), 179 _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) { 180 guarantee(check_list_empty(false), "just making sure..."); 181 } 182 183 void YoungList::push_region(HeapRegion *hr) { 184 assert(!hr->is_young(), "should not already be young"); 185 assert(hr->get_next_young_region() == NULL, "cause it should!"); 186 187 hr->set_next_young_region(_head); 188 _head = hr; 189 190 _g1h->g1_policy()->set_region_eden(hr, (int) _length); 191 ++_length; 192 } 193 194 void YoungList::add_survivor_region(HeapRegion* hr) { 195 assert(hr->is_survivor(), "should be flagged as survivor region"); 196 assert(hr->get_next_young_region() == NULL, "cause it should!"); 197 198 hr->set_next_young_region(_survivor_head); 199 if (_survivor_head == NULL) { 200 _survivor_tail = hr; 201 } 202 _survivor_head = hr; 203 ++_survivor_length; 204 } 205 206 void YoungList::empty_list(HeapRegion* list) { 207 while (list != NULL) { 208 HeapRegion* next = list->get_next_young_region(); 209 list->set_next_young_region(NULL); 210 list->uninstall_surv_rate_group(); 211 list->set_not_young(); 212 list = next; 213 } 214 } 215 216 void YoungList::empty_list() { 217 assert(check_list_well_formed(), "young list should be well formed"); 218 219 empty_list(_head); 220 _head = NULL; 221 _length = 0; 222 223 empty_list(_survivor_head); 224 _survivor_head = NULL; 225 _survivor_tail = NULL; 226 _survivor_length = 0; 227 228 _last_sampled_rs_lengths = 0; 229 230 assert(check_list_empty(false), "just making sure..."); 231 } 232 233 bool YoungList::check_list_well_formed() { 234 bool ret = true; 235 236 uint length = 0; 237 HeapRegion* curr = _head; 238 HeapRegion* last = NULL; 239 while (curr != NULL) { 240 if (!curr->is_young()) { 241 gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" " 242 "incorrectly tagged (y: %d, surv: %d)", 243 curr->bottom(), curr->end(), 244 curr->is_young(), curr->is_survivor()); 245 ret = false; 246 } 247 ++length; 248 last = curr; 249 curr = curr->get_next_young_region(); 250 } 251 ret = ret && (length == _length); 252 253 if (!ret) { 254 gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!"); 255 gclog_or_tty->print_cr("### list has %u entries, _length is %u", 256 length, _length); 257 } 258 259 return ret; 260 } 261 262 bool YoungList::check_list_empty(bool check_sample) { 263 bool ret = true; 264 265 if (_length != 0) { 266 gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u", 267 _length); 268 ret = false; 269 } 270 if (check_sample && _last_sampled_rs_lengths != 0) { 271 gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths"); 272 ret = false; 273 } 274 if (_head != NULL) { 275 gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head"); 276 ret = false; 277 } 278 if (!ret) { 279 gclog_or_tty->print_cr("### YOUNG LIST does not seem empty"); 280 } 281 282 return ret; 283 } 284 285 void 286 YoungList::rs_length_sampling_init() { 287 _sampled_rs_lengths = 0; 288 _curr = _head; 289 } 290 291 bool 292 YoungList::rs_length_sampling_more() { 293 return _curr != NULL; 294 } 295 296 void 297 YoungList::rs_length_sampling_next() { 298 assert( _curr != NULL, "invariant" ); 299 size_t rs_length = _curr->rem_set()->occupied(); 300 301 _sampled_rs_lengths += rs_length; 302 303 // The current region may not yet have been added to the 304 // incremental collection set (it gets added when it is 305 // retired as the current allocation region). 306 if (_curr->in_collection_set()) { 307 // Update the collection set policy information for this region 308 _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length); 309 } 310 311 _curr = _curr->get_next_young_region(); 312 if (_curr == NULL) { 313 _last_sampled_rs_lengths = _sampled_rs_lengths; 314 // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths); 315 } 316 } 317 318 void 319 YoungList::reset_auxilary_lists() { 320 guarantee( is_empty(), "young list should be empty" ); 321 assert(check_list_well_formed(), "young list should be well formed"); 322 323 // Add survivor regions to SurvRateGroup. 324 _g1h->g1_policy()->note_start_adding_survivor_regions(); 325 _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */); 326 327 int young_index_in_cset = 0; 328 for (HeapRegion* curr = _survivor_head; 329 curr != NULL; 330 curr = curr->get_next_young_region()) { 331 _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset); 332 333 // The region is a non-empty survivor so let's add it to 334 // the incremental collection set for the next evacuation 335 // pause. 336 _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr); 337 young_index_in_cset += 1; 338 } 339 assert((uint) young_index_in_cset == _survivor_length, "post-condition"); 340 _g1h->g1_policy()->note_stop_adding_survivor_regions(); 341 342 _head = _survivor_head; 343 _length = _survivor_length; 344 if (_survivor_head != NULL) { 345 assert(_survivor_tail != NULL, "cause it shouldn't be"); 346 assert(_survivor_length > 0, "invariant"); 347 _survivor_tail->set_next_young_region(NULL); 348 } 349 350 // Don't clear the survivor list handles until the start of 351 // the next evacuation pause - we need it in order to re-tag 352 // the survivor regions from this evacuation pause as 'young' 353 // at the start of the next. 354 355 _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */); 356 357 assert(check_list_well_formed(), "young list should be well formed"); 358 } 359 360 void YoungList::print() { 361 HeapRegion* lists[] = {_head, _survivor_head}; 362 const char* names[] = {"YOUNG", "SURVIVOR"}; 363 364 for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) { 365 gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]); 366 HeapRegion *curr = lists[list]; 367 if (curr == NULL) 368 gclog_or_tty->print_cr(" empty"); 369 while (curr != NULL) { 370 gclog_or_tty->print_cr(" "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d", 371 HR_FORMAT_PARAMS(curr), 372 curr->prev_top_at_mark_start(), 373 curr->next_top_at_mark_start(), 374 curr->age_in_surv_rate_group_cond()); 375 curr = curr->get_next_young_region(); 376 } 377 } 378 379 gclog_or_tty->cr(); 380 } 381 382 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr) 383 { 384 // Claim the right to put the region on the dirty cards region list 385 // by installing a self pointer. 386 HeapRegion* next = hr->get_next_dirty_cards_region(); 387 if (next == NULL) { 388 HeapRegion* res = (HeapRegion*) 389 Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(), 390 NULL); 391 if (res == NULL) { 392 HeapRegion* head; 393 do { 394 // Put the region to the dirty cards region list. 395 head = _dirty_cards_region_list; 396 next = (HeapRegion*) 397 Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head); 398 if (next == head) { 399 assert(hr->get_next_dirty_cards_region() == hr, 400 "hr->get_next_dirty_cards_region() != hr"); 401 if (next == NULL) { 402 // The last region in the list points to itself. 403 hr->set_next_dirty_cards_region(hr); 404 } else { 405 hr->set_next_dirty_cards_region(next); 406 } 407 } 408 } while (next != head); 409 } 410 } 411 } 412 413 HeapRegion* G1CollectedHeap::pop_dirty_cards_region() 414 { 415 HeapRegion* head; 416 HeapRegion* hr; 417 do { 418 head = _dirty_cards_region_list; 419 if (head == NULL) { 420 return NULL; 421 } 422 HeapRegion* new_head = head->get_next_dirty_cards_region(); 423 if (head == new_head) { 424 // The last region. 425 new_head = NULL; 426 } 427 hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list, 428 head); 429 } while (hr != head); 430 assert(hr != NULL, "invariant"); 431 hr->set_next_dirty_cards_region(NULL); 432 return hr; 433 } 434 435 void G1CollectedHeap::stop_conc_gc_threads() { 436 _cg1r->stop(); 437 _cmThread->stop(); 438 if (G1StringDedup::is_enabled()) { 439 G1StringDedup::stop(); 440 } 441 } 442 443 #ifdef ASSERT 444 // A region is added to the collection set as it is retired 445 // so an address p can point to a region which will be in the 446 // collection set but has not yet been retired. This method 447 // therefore is only accurate during a GC pause after all 448 // regions have been retired. It is used for debugging 449 // to check if an nmethod has references to objects that can 450 // be move during a partial collection. Though it can be 451 // inaccurate, it is sufficient for G1 because the conservative 452 // implementation of is_scavengable() for G1 will indicate that 453 // all nmethods must be scanned during a partial collection. 454 bool G1CollectedHeap::is_in_partial_collection(const void* p) { 455 if (p == NULL) { 456 return false; 457 } 458 return heap_region_containing(p)->in_collection_set(); 459 } 460 #endif 461 462 // Returns true if the reference points to an object that 463 // can move in an incremental collection. 464 bool G1CollectedHeap::is_scavengable(const void* p) { 465 HeapRegion* hr = heap_region_containing(p); 466 return !hr->isHumongous(); 467 } 468 469 void G1CollectedHeap::check_ct_logs_at_safepoint() { 470 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 471 CardTableModRefBS* ct_bs = g1_barrier_set(); 472 473 // Count the dirty cards at the start. 474 CountNonCleanMemRegionClosure count1(this); 475 ct_bs->mod_card_iterate(&count1); 476 int orig_count = count1.n(); 477 478 // First clear the logged cards. 479 ClearLoggedCardTableEntryClosure clear; 480 dcqs.apply_closure_to_all_completed_buffers(&clear); 481 dcqs.iterate_closure_all_threads(&clear, false); 482 clear.print_histo(); 483 484 // Now ensure that there's no dirty cards. 485 CountNonCleanMemRegionClosure count2(this); 486 ct_bs->mod_card_iterate(&count2); 487 if (count2.n() != 0) { 488 gclog_or_tty->print_cr("Card table has %d entries; %d originally", 489 count2.n(), orig_count); 490 } 491 guarantee(count2.n() == 0, "Card table should be clean."); 492 493 RedirtyLoggedCardTableEntryClosure redirty; 494 dcqs.apply_closure_to_all_completed_buffers(&redirty); 495 dcqs.iterate_closure_all_threads(&redirty, false); 496 gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.", 497 clear.num_processed(), orig_count); 498 guarantee(redirty.num_processed() == clear.num_processed(), 499 err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT, 500 redirty.num_processed(), clear.num_processed())); 501 502 CountNonCleanMemRegionClosure count3(this); 503 ct_bs->mod_card_iterate(&count3); 504 if (count3.n() != orig_count) { 505 gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.", 506 orig_count, count3.n()); 507 guarantee(count3.n() >= orig_count, "Should have restored them all."); 508 } 509 } 510 511 // Private class members. 512 513 G1CollectedHeap* G1CollectedHeap::_g1h; 514 515 // Private methods. 516 517 HeapRegion* 518 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) { 519 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 520 while (!_secondary_free_list.is_empty() || free_regions_coming()) { 521 if (!_secondary_free_list.is_empty()) { 522 if (G1ConcRegionFreeingVerbose) { 523 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 524 "secondary_free_list has %u entries", 525 _secondary_free_list.length()); 526 } 527 // It looks as if there are free regions available on the 528 // secondary_free_list. Let's move them to the free_list and try 529 // again to allocate from it. 530 append_secondary_free_list(); 531 532 assert(!_free_list.is_empty(), "if the secondary_free_list was not " 533 "empty we should have moved at least one entry to the free_list"); 534 HeapRegion* res = _free_list.remove_region(is_old); 535 if (G1ConcRegionFreeingVerbose) { 536 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 537 "allocated "HR_FORMAT" from secondary_free_list", 538 HR_FORMAT_PARAMS(res)); 539 } 540 return res; 541 } 542 543 // Wait here until we get notified either when (a) there are no 544 // more free regions coming or (b) some regions have been moved on 545 // the secondary_free_list. 546 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 547 } 548 549 if (G1ConcRegionFreeingVerbose) { 550 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 551 "could not allocate from secondary_free_list"); 552 } 553 return NULL; 554 } 555 556 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) { 557 assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords, 558 "the only time we use this to allocate a humongous region is " 559 "when we are allocating a single humongous region"); 560 561 HeapRegion* res; 562 if (G1StressConcRegionFreeing) { 563 if (!_secondary_free_list.is_empty()) { 564 if (G1ConcRegionFreeingVerbose) { 565 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 566 "forced to look at the secondary_free_list"); 567 } 568 res = new_region_try_secondary_free_list(is_old); 569 if (res != NULL) { 570 return res; 571 } 572 } 573 } 574 575 res = _free_list.remove_region(is_old); 576 577 if (res == NULL) { 578 if (G1ConcRegionFreeingVerbose) { 579 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 580 "res == NULL, trying the secondary_free_list"); 581 } 582 res = new_region_try_secondary_free_list(is_old); 583 } 584 if (res == NULL && do_expand && _expand_heap_after_alloc_failure) { 585 // Currently, only attempts to allocate GC alloc regions set 586 // do_expand to true. So, we should only reach here during a 587 // safepoint. If this assumption changes we might have to 588 // reconsider the use of _expand_heap_after_alloc_failure. 589 assert(SafepointSynchronize::is_at_safepoint(), "invariant"); 590 591 ergo_verbose1(ErgoHeapSizing, 592 "attempt heap expansion", 593 ergo_format_reason("region allocation request failed") 594 ergo_format_byte("allocation request"), 595 word_size * HeapWordSize); 596 if (expand(word_size * HeapWordSize)) { 597 // Given that expand() succeeded in expanding the heap, and we 598 // always expand the heap by an amount aligned to the heap 599 // region size, the free list should in theory not be empty. 600 // In either case remove_region() will check for NULL. 601 res = _free_list.remove_region(is_old); 602 } else { 603 _expand_heap_after_alloc_failure = false; 604 } 605 } 606 return res; 607 } 608 609 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions, 610 size_t word_size) { 611 assert(isHumongous(word_size), "word_size should be humongous"); 612 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); 613 614 uint first = G1_NULL_HRS_INDEX; 615 if (num_regions == 1) { 616 // Only one region to allocate, no need to go through the slower 617 // path. The caller will attempt the expansion if this fails, so 618 // let's not try to expand here too. 619 HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */); 620 if (hr != NULL) { 621 first = hr->hrs_index(); 622 } else { 623 first = G1_NULL_HRS_INDEX; 624 } 625 } else { 626 // We can't allocate humongous regions while cleanupComplete() is 627 // running, since some of the regions we find to be empty might not 628 // yet be added to the free list and it is not straightforward to 629 // know which list they are on so that we can remove them. Note 630 // that we only need to do this if we need to allocate more than 631 // one region to satisfy the current humongous allocation 632 // request. If we are only allocating one region we use the common 633 // region allocation code (see above). 634 wait_while_free_regions_coming(); 635 append_secondary_free_list_if_not_empty_with_lock(); 636 637 if (free_regions() >= num_regions) { 638 first = _hrs.find_contiguous(num_regions); 639 if (first != G1_NULL_HRS_INDEX) { 640 for (uint i = first; i < first + num_regions; ++i) { 641 HeapRegion* hr = region_at(i); 642 assert(hr->is_empty(), "sanity"); 643 assert(is_on_master_free_list(hr), "sanity"); 644 hr->set_pending_removal(true); 645 } 646 _free_list.remove_all_pending(num_regions); 647 } 648 } 649 } 650 return first; 651 } 652 653 HeapWord* 654 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first, 655 uint num_regions, 656 size_t word_size) { 657 assert(first != G1_NULL_HRS_INDEX, "pre-condition"); 658 assert(isHumongous(word_size), "word_size should be humongous"); 659 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); 660 661 // Index of last region in the series + 1. 662 uint last = first + num_regions; 663 664 // We need to initialize the region(s) we just discovered. This is 665 // a bit tricky given that it can happen concurrently with 666 // refinement threads refining cards on these regions and 667 // potentially wanting to refine the BOT as they are scanning 668 // those cards (this can happen shortly after a cleanup; see CR 669 // 6991377). So we have to set up the region(s) carefully and in 670 // a specific order. 671 672 // The word size sum of all the regions we will allocate. 673 size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords; 674 assert(word_size <= word_size_sum, "sanity"); 675 676 // This will be the "starts humongous" region. 677 HeapRegion* first_hr = region_at(first); 678 // The header of the new object will be placed at the bottom of 679 // the first region. 680 HeapWord* new_obj = first_hr->bottom(); 681 // This will be the new end of the first region in the series that 682 // should also match the end of the last region in the series. 683 HeapWord* new_end = new_obj + word_size_sum; 684 // This will be the new top of the first region that will reflect 685 // this allocation. 686 HeapWord* new_top = new_obj + word_size; 687 688 // First, we need to zero the header of the space that we will be 689 // allocating. When we update top further down, some refinement 690 // threads might try to scan the region. By zeroing the header we 691 // ensure that any thread that will try to scan the region will 692 // come across the zero klass word and bail out. 693 // 694 // NOTE: It would not have been correct to have used 695 // CollectedHeap::fill_with_object() and make the space look like 696 // an int array. The thread that is doing the allocation will 697 // later update the object header to a potentially different array 698 // type and, for a very short period of time, the klass and length 699 // fields will be inconsistent. This could cause a refinement 700 // thread to calculate the object size incorrectly. 701 Copy::fill_to_words(new_obj, oopDesc::header_size(), 0); 702 703 // We will set up the first region as "starts humongous". This 704 // will also update the BOT covering all the regions to reflect 705 // that there is a single object that starts at the bottom of the 706 // first region. 707 first_hr->set_startsHumongous(new_top, new_end); 708 709 // Then, if there are any, we will set up the "continues 710 // humongous" regions. 711 HeapRegion* hr = NULL; 712 for (uint i = first + 1; i < last; ++i) { 713 hr = region_at(i); 714 hr->set_continuesHumongous(first_hr); 715 } 716 // If we have "continues humongous" regions (hr != NULL), then the 717 // end of the last one should match new_end. 718 assert(hr == NULL || hr->end() == new_end, "sanity"); 719 720 // Up to this point no concurrent thread would have been able to 721 // do any scanning on any region in this series. All the top 722 // fields still point to bottom, so the intersection between 723 // [bottom,top] and [card_start,card_end] will be empty. Before we 724 // update the top fields, we'll do a storestore to make sure that 725 // no thread sees the update to top before the zeroing of the 726 // object header and the BOT initialization. 727 OrderAccess::storestore(); 728 729 // Now that the BOT and the object header have been initialized, 730 // we can update top of the "starts humongous" region. 731 assert(first_hr->bottom() < new_top && new_top <= first_hr->end(), 732 "new_top should be in this region"); 733 first_hr->set_top(new_top); 734 if (_hr_printer.is_active()) { 735 HeapWord* bottom = first_hr->bottom(); 736 HeapWord* end = first_hr->orig_end(); 737 if ((first + 1) == last) { 738 // the series has a single humongous region 739 _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top); 740 } else { 741 // the series has more than one humongous regions 742 _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end); 743 } 744 } 745 746 // Now, we will update the top fields of the "continues humongous" 747 // regions. The reason we need to do this is that, otherwise, 748 // these regions would look empty and this will confuse parts of 749 // G1. For example, the code that looks for a consecutive number 750 // of empty regions will consider them empty and try to 751 // re-allocate them. We can extend is_empty() to also include 752 // !continuesHumongous(), but it is easier to just update the top 753 // fields here. The way we set top for all regions (i.e., top == 754 // end for all regions but the last one, top == new_top for the 755 // last one) is actually used when we will free up the humongous 756 // region in free_humongous_region(). 757 hr = NULL; 758 for (uint i = first + 1; i < last; ++i) { 759 hr = region_at(i); 760 if ((i + 1) == last) { 761 // last continues humongous region 762 assert(hr->bottom() < new_top && new_top <= hr->end(), 763 "new_top should fall on this region"); 764 hr->set_top(new_top); 765 _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top); 766 } else { 767 // not last one 768 assert(new_top > hr->end(), "new_top should be above this region"); 769 hr->set_top(hr->end()); 770 _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end()); 771 } 772 } 773 // If we have continues humongous regions (hr != NULL), then the 774 // end of the last one should match new_end and its top should 775 // match new_top. 776 assert(hr == NULL || 777 (hr->end() == new_end && hr->top() == new_top), "sanity"); 778 check_bitmaps("Humongous Region Allocation", first_hr); 779 780 assert(first_hr->used() == word_size * HeapWordSize, "invariant"); 781 _summary_bytes_used += first_hr->used(); 782 _humongous_set.add(first_hr); 783 784 return new_obj; 785 } 786 787 // If could fit into free regions w/o expansion, try. 788 // Otherwise, if can expand, do so. 789 // Otherwise, if using ex regions might help, try with ex given back. 790 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) { 791 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 792 793 verify_region_sets_optional(); 794 795 size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords); 796 uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords); 797 uint x_num = expansion_regions(); 798 uint fs = _hrs.free_suffix(); 799 uint first = humongous_obj_allocate_find_first(num_regions, word_size); 800 if (first == G1_NULL_HRS_INDEX) { 801 // The only thing we can do now is attempt expansion. 802 if (fs + x_num >= num_regions) { 803 // If the number of regions we're trying to allocate for this 804 // object is at most the number of regions in the free suffix, 805 // then the call to humongous_obj_allocate_find_first() above 806 // should have succeeded and we wouldn't be here. 807 // 808 // We should only be trying to expand when the free suffix is 809 // not sufficient for the object _and_ we have some expansion 810 // room available. 811 assert(num_regions > fs, "earlier allocation should have succeeded"); 812 813 ergo_verbose1(ErgoHeapSizing, 814 "attempt heap expansion", 815 ergo_format_reason("humongous allocation request failed") 816 ergo_format_byte("allocation request"), 817 word_size * HeapWordSize); 818 if (expand((num_regions - fs) * HeapRegion::GrainBytes)) { 819 // Even though the heap was expanded, it might not have 820 // reached the desired size. So, we cannot assume that the 821 // allocation will succeed. 822 first = humongous_obj_allocate_find_first(num_regions, word_size); 823 } 824 } 825 } 826 827 HeapWord* result = NULL; 828 if (first != G1_NULL_HRS_INDEX) { 829 result = 830 humongous_obj_allocate_initialize_regions(first, num_regions, word_size); 831 assert(result != NULL, "it should always return a valid result"); 832 833 // A successful humongous object allocation changes the used space 834 // information of the old generation so we need to recalculate the 835 // sizes and update the jstat counters here. 836 g1mm()->update_sizes(); 837 } 838 839 verify_region_sets_optional(); 840 841 return result; 842 } 843 844 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) { 845 assert_heap_not_locked_and_not_at_safepoint(); 846 assert(!isHumongous(word_size), "we do not allow humongous TLABs"); 847 848 unsigned int dummy_gc_count_before; 849 int dummy_gclocker_retry_count = 0; 850 return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count); 851 } 852 853 HeapWord* 854 G1CollectedHeap::mem_allocate(size_t word_size, 855 bool* gc_overhead_limit_was_exceeded) { 856 assert_heap_not_locked_and_not_at_safepoint(); 857 858 // Loop until the allocation is satisfied, or unsatisfied after GC. 859 for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { 860 unsigned int gc_count_before; 861 862 HeapWord* result = NULL; 863 if (!isHumongous(word_size)) { 864 result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count); 865 } else { 866 result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count); 867 } 868 if (result != NULL) { 869 return result; 870 } 871 872 // Create the garbage collection operation... 873 VM_G1CollectForAllocation op(gc_count_before, word_size); 874 // ...and get the VM thread to execute it. 875 VMThread::execute(&op); 876 877 if (op.prologue_succeeded() && op.pause_succeeded()) { 878 // If the operation was successful we'll return the result even 879 // if it is NULL. If the allocation attempt failed immediately 880 // after a Full GC, it's unlikely we'll be able to allocate now. 881 HeapWord* result = op.result(); 882 if (result != NULL && !isHumongous(word_size)) { 883 // Allocations that take place on VM operations do not do any 884 // card dirtying and we have to do it here. We only have to do 885 // this for non-humongous allocations, though. 886 dirty_young_block(result, word_size); 887 } 888 return result; 889 } else { 890 if (gclocker_retry_count > GCLockerRetryAllocationCount) { 891 return NULL; 892 } 893 assert(op.result() == NULL, 894 "the result should be NULL if the VM op did not succeed"); 895 } 896 897 // Give a warning if we seem to be looping forever. 898 if ((QueuedAllocationWarningCount > 0) && 899 (try_count % QueuedAllocationWarningCount == 0)) { 900 warning("G1CollectedHeap::mem_allocate retries %d times", try_count); 901 } 902 } 903 904 ShouldNotReachHere(); 905 return NULL; 906 } 907 908 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size, 909 unsigned int *gc_count_before_ret, 910 int* gclocker_retry_count_ret) { 911 // Make sure you read the note in attempt_allocation_humongous(). 912 913 assert_heap_not_locked_and_not_at_safepoint(); 914 assert(!isHumongous(word_size), "attempt_allocation_slow() should not " 915 "be called for humongous allocation requests"); 916 917 // We should only get here after the first-level allocation attempt 918 // (attempt_allocation()) failed to allocate. 919 920 // We will loop until a) we manage to successfully perform the 921 // allocation or b) we successfully schedule a collection which 922 // fails to perform the allocation. b) is the only case when we'll 923 // return NULL. 924 HeapWord* result = NULL; 925 for (int try_count = 1; /* we'll return */; try_count += 1) { 926 bool should_try_gc; 927 unsigned int gc_count_before; 928 929 { 930 MutexLockerEx x(Heap_lock); 931 932 result = _mutator_alloc_region.attempt_allocation_locked(word_size, 933 false /* bot_updates */); 934 if (result != NULL) { 935 return result; 936 } 937 938 // If we reach here, attempt_allocation_locked() above failed to 939 // allocate a new region. So the mutator alloc region should be NULL. 940 assert(_mutator_alloc_region.get() == NULL, "only way to get here"); 941 942 if (GC_locker::is_active_and_needs_gc()) { 943 if (g1_policy()->can_expand_young_list()) { 944 // No need for an ergo verbose message here, 945 // can_expand_young_list() does this when it returns true. 946 result = _mutator_alloc_region.attempt_allocation_force(word_size, 947 false /* bot_updates */); 948 if (result != NULL) { 949 return result; 950 } 951 } 952 should_try_gc = false; 953 } else { 954 // The GCLocker may not be active but the GCLocker initiated 955 // GC may not yet have been performed (GCLocker::needs_gc() 956 // returns true). In this case we do not try this GC and 957 // wait until the GCLocker initiated GC is performed, and 958 // then retry the allocation. 959 if (GC_locker::needs_gc()) { 960 should_try_gc = false; 961 } else { 962 // Read the GC count while still holding the Heap_lock. 963 gc_count_before = total_collections(); 964 should_try_gc = true; 965 } 966 } 967 } 968 969 if (should_try_gc) { 970 bool succeeded; 971 result = do_collection_pause(word_size, gc_count_before, &succeeded, 972 GCCause::_g1_inc_collection_pause); 973 if (result != NULL) { 974 assert(succeeded, "only way to get back a non-NULL result"); 975 return result; 976 } 977 978 if (succeeded) { 979 // If we get here we successfully scheduled a collection which 980 // failed to allocate. No point in trying to allocate 981 // further. We'll just return NULL. 982 MutexLockerEx x(Heap_lock); 983 *gc_count_before_ret = total_collections(); 984 return NULL; 985 } 986 } else { 987 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 988 MutexLockerEx x(Heap_lock); 989 *gc_count_before_ret = total_collections(); 990 return NULL; 991 } 992 // The GCLocker is either active or the GCLocker initiated 993 // GC has not yet been performed. Stall until it is and 994 // then retry the allocation. 995 GC_locker::stall_until_clear(); 996 (*gclocker_retry_count_ret) += 1; 997 } 998 999 // We can reach here if we were unsuccessful in scheduling a 1000 // collection (because another thread beat us to it) or if we were 1001 // stalled due to the GC locker. In either can we should retry the 1002 // allocation attempt in case another thread successfully 1003 // performed a collection and reclaimed enough space. We do the 1004 // first attempt (without holding the Heap_lock) here and the 1005 // follow-on attempt will be at the start of the next loop 1006 // iteration (after taking the Heap_lock). 1007 result = _mutator_alloc_region.attempt_allocation(word_size, 1008 false /* bot_updates */); 1009 if (result != NULL) { 1010 return result; 1011 } 1012 1013 // Give a warning if we seem to be looping forever. 1014 if ((QueuedAllocationWarningCount > 0) && 1015 (try_count % QueuedAllocationWarningCount == 0)) { 1016 warning("G1CollectedHeap::attempt_allocation_slow() " 1017 "retries %d times", try_count); 1018 } 1019 } 1020 1021 ShouldNotReachHere(); 1022 return NULL; 1023 } 1024 1025 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size, 1026 unsigned int * gc_count_before_ret, 1027 int* gclocker_retry_count_ret) { 1028 // The structure of this method has a lot of similarities to 1029 // attempt_allocation_slow(). The reason these two were not merged 1030 // into a single one is that such a method would require several "if 1031 // allocation is not humongous do this, otherwise do that" 1032 // conditional paths which would obscure its flow. In fact, an early 1033 // version of this code did use a unified method which was harder to 1034 // follow and, as a result, it had subtle bugs that were hard to 1035 // track down. So keeping these two methods separate allows each to 1036 // be more readable. It will be good to keep these two in sync as 1037 // much as possible. 1038 1039 assert_heap_not_locked_and_not_at_safepoint(); 1040 assert(isHumongous(word_size), "attempt_allocation_humongous() " 1041 "should only be called for humongous allocations"); 1042 1043 // Humongous objects can exhaust the heap quickly, so we should check if we 1044 // need to start a marking cycle at each humongous object allocation. We do 1045 // the check before we do the actual allocation. The reason for doing it 1046 // before the allocation is that we avoid having to keep track of the newly 1047 // allocated memory while we do a GC. 1048 if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation", 1049 word_size)) { 1050 collect(GCCause::_g1_humongous_allocation); 1051 } 1052 1053 // We will loop until a) we manage to successfully perform the 1054 // allocation or b) we successfully schedule a collection which 1055 // fails to perform the allocation. b) is the only case when we'll 1056 // return NULL. 1057 HeapWord* result = NULL; 1058 for (int try_count = 1; /* we'll return */; try_count += 1) { 1059 bool should_try_gc; 1060 unsigned int gc_count_before; 1061 1062 { 1063 MutexLockerEx x(Heap_lock); 1064 1065 // Given that humongous objects are not allocated in young 1066 // regions, we'll first try to do the allocation without doing a 1067 // collection hoping that there's enough space in the heap. 1068 result = humongous_obj_allocate(word_size); 1069 if (result != NULL) { 1070 return result; 1071 } 1072 1073 if (GC_locker::is_active_and_needs_gc()) { 1074 should_try_gc = false; 1075 } else { 1076 // The GCLocker may not be active but the GCLocker initiated 1077 // GC may not yet have been performed (GCLocker::needs_gc() 1078 // returns true). In this case we do not try this GC and 1079 // wait until the GCLocker initiated GC is performed, and 1080 // then retry the allocation. 1081 if (GC_locker::needs_gc()) { 1082 should_try_gc = false; 1083 } else { 1084 // Read the GC count while still holding the Heap_lock. 1085 gc_count_before = total_collections(); 1086 should_try_gc = true; 1087 } 1088 } 1089 } 1090 1091 if (should_try_gc) { 1092 // If we failed to allocate the humongous object, we should try to 1093 // do a collection pause (if we're allowed) in case it reclaims 1094 // enough space for the allocation to succeed after the pause. 1095 1096 bool succeeded; 1097 result = do_collection_pause(word_size, gc_count_before, &succeeded, 1098 GCCause::_g1_humongous_allocation); 1099 if (result != NULL) { 1100 assert(succeeded, "only way to get back a non-NULL result"); 1101 return result; 1102 } 1103 1104 if (succeeded) { 1105 // If we get here we successfully scheduled a collection which 1106 // failed to allocate. No point in trying to allocate 1107 // further. We'll just return NULL. 1108 MutexLockerEx x(Heap_lock); 1109 *gc_count_before_ret = total_collections(); 1110 return NULL; 1111 } 1112 } else { 1113 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 1114 MutexLockerEx x(Heap_lock); 1115 *gc_count_before_ret = total_collections(); 1116 return NULL; 1117 } 1118 // The GCLocker is either active or the GCLocker initiated 1119 // GC has not yet been performed. Stall until it is and 1120 // then retry the allocation. 1121 GC_locker::stall_until_clear(); 1122 (*gclocker_retry_count_ret) += 1; 1123 } 1124 1125 // We can reach here if we were unsuccessful in scheduling a 1126 // collection (because another thread beat us to it) or if we were 1127 // stalled due to the GC locker. In either can we should retry the 1128 // allocation attempt in case another thread successfully 1129 // performed a collection and reclaimed enough space. Give a 1130 // warning if we seem to be looping forever. 1131 1132 if ((QueuedAllocationWarningCount > 0) && 1133 (try_count % QueuedAllocationWarningCount == 0)) { 1134 warning("G1CollectedHeap::attempt_allocation_humongous() " 1135 "retries %d times", try_count); 1136 } 1137 } 1138 1139 ShouldNotReachHere(); 1140 return NULL; 1141 } 1142 1143 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, 1144 bool expect_null_mutator_alloc_region) { 1145 assert_at_safepoint(true /* should_be_vm_thread */); 1146 assert(_mutator_alloc_region.get() == NULL || 1147 !expect_null_mutator_alloc_region, 1148 "the current alloc region was unexpectedly found to be non-NULL"); 1149 1150 if (!isHumongous(word_size)) { 1151 return _mutator_alloc_region.attempt_allocation_locked(word_size, 1152 false /* bot_updates */); 1153 } else { 1154 HeapWord* result = humongous_obj_allocate(word_size); 1155 if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) { 1156 g1_policy()->set_initiate_conc_mark_if_possible(); 1157 } 1158 return result; 1159 } 1160 1161 ShouldNotReachHere(); 1162 } 1163 1164 class PostMCRemSetClearClosure: public HeapRegionClosure { 1165 G1CollectedHeap* _g1h; 1166 ModRefBarrierSet* _mr_bs; 1167 public: 1168 PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) : 1169 _g1h(g1h), _mr_bs(mr_bs) {} 1170 1171 bool doHeapRegion(HeapRegion* r) { 1172 HeapRegionRemSet* hrrs = r->rem_set(); 1173 1174 if (r->continuesHumongous()) { 1175 // We'll assert that the strong code root list and RSet is empty 1176 assert(hrrs->strong_code_roots_list_length() == 0, "sanity"); 1177 assert(hrrs->occupied() == 0, "RSet should be empty"); 1178 return false; 1179 } 1180 1181 _g1h->reset_gc_time_stamps(r); 1182 hrrs->clear(); 1183 // You might think here that we could clear just the cards 1184 // corresponding to the used region. But no: if we leave a dirty card 1185 // in a region we might allocate into, then it would prevent that card 1186 // from being enqueued, and cause it to be missed. 1187 // Re: the performance cost: we shouldn't be doing full GC anyway! 1188 _mr_bs->clear(MemRegion(r->bottom(), r->end())); 1189 1190 return false; 1191 } 1192 }; 1193 1194 void G1CollectedHeap::clear_rsets_post_compaction() { 1195 PostMCRemSetClearClosure rs_clear(this, g1_barrier_set()); 1196 heap_region_iterate(&rs_clear); 1197 } 1198 1199 class RebuildRSOutOfRegionClosure: public HeapRegionClosure { 1200 G1CollectedHeap* _g1h; 1201 UpdateRSOopClosure _cl; 1202 int _worker_i; 1203 public: 1204 RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) : 1205 _cl(g1->g1_rem_set(), worker_i), 1206 _worker_i(worker_i), 1207 _g1h(g1) 1208 { } 1209 1210 bool doHeapRegion(HeapRegion* r) { 1211 if (!r->continuesHumongous()) { 1212 _cl.set_from(r); 1213 r->oop_iterate(&_cl); 1214 } 1215 return false; 1216 } 1217 }; 1218 1219 class ParRebuildRSTask: public AbstractGangTask { 1220 G1CollectedHeap* _g1; 1221 public: 1222 ParRebuildRSTask(G1CollectedHeap* g1) 1223 : AbstractGangTask("ParRebuildRSTask"), 1224 _g1(g1) 1225 { } 1226 1227 void work(uint worker_id) { 1228 RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id); 1229 _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id, 1230 _g1->workers()->active_workers(), 1231 HeapRegion::RebuildRSClaimValue); 1232 } 1233 }; 1234 1235 class PostCompactionPrinterClosure: public HeapRegionClosure { 1236 private: 1237 G1HRPrinter* _hr_printer; 1238 public: 1239 bool doHeapRegion(HeapRegion* hr) { 1240 assert(!hr->is_young(), "not expecting to find young regions"); 1241 // We only generate output for non-empty regions. 1242 if (!hr->is_empty()) { 1243 if (!hr->isHumongous()) { 1244 _hr_printer->post_compaction(hr, G1HRPrinter::Old); 1245 } else if (hr->startsHumongous()) { 1246 if (hr->region_num() == 1) { 1247 // single humongous region 1248 _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous); 1249 } else { 1250 _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous); 1251 } 1252 } else { 1253 assert(hr->continuesHumongous(), "only way to get here"); 1254 _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous); 1255 } 1256 } 1257 return false; 1258 } 1259 1260 PostCompactionPrinterClosure(G1HRPrinter* hr_printer) 1261 : _hr_printer(hr_printer) { } 1262 }; 1263 1264 void G1CollectedHeap::print_hrs_post_compaction() { 1265 PostCompactionPrinterClosure cl(hr_printer()); 1266 heap_region_iterate(&cl); 1267 } 1268 1269 bool G1CollectedHeap::do_collection(bool explicit_gc, 1270 bool clear_all_soft_refs, 1271 size_t word_size) { 1272 assert_at_safepoint(true /* should_be_vm_thread */); 1273 1274 if (GC_locker::check_active_before_gc()) { 1275 return false; 1276 } 1277 1278 STWGCTimer* gc_timer = G1MarkSweep::gc_timer(); 1279 gc_timer->register_gc_start(); 1280 1281 SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer(); 1282 gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start()); 1283 1284 SvcGCMarker sgcm(SvcGCMarker::FULL); 1285 ResourceMark rm; 1286 1287 print_heap_before_gc(); 1288 trace_heap_before_gc(gc_tracer); 1289 1290 size_t metadata_prev_used = MetaspaceAux::used_bytes(); 1291 1292 verify_region_sets_optional(); 1293 1294 const bool do_clear_all_soft_refs = clear_all_soft_refs || 1295 collector_policy()->should_clear_all_soft_refs(); 1296 1297 ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy()); 1298 1299 { 1300 IsGCActiveMark x; 1301 1302 // Timing 1303 assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant"); 1304 gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps); 1305 TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty); 1306 1307 { 1308 GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL); 1309 TraceCollectorStats tcs(g1mm()->full_collection_counters()); 1310 TraceMemoryManagerStats tms(true /* fullGC */, gc_cause()); 1311 1312 double start = os::elapsedTime(); 1313 g1_policy()->record_full_collection_start(); 1314 1315 // Note: When we have a more flexible GC logging framework that 1316 // allows us to add optional attributes to a GC log record we 1317 // could consider timing and reporting how long we wait in the 1318 // following two methods. 1319 wait_while_free_regions_coming(); 1320 // If we start the compaction before the CM threads finish 1321 // scanning the root regions we might trip them over as we'll 1322 // be moving objects / updating references. So let's wait until 1323 // they are done. By telling them to abort, they should complete 1324 // early. 1325 _cm->root_regions()->abort(); 1326 _cm->root_regions()->wait_until_scan_finished(); 1327 append_secondary_free_list_if_not_empty_with_lock(); 1328 1329 gc_prologue(true); 1330 increment_total_collections(true /* full gc */); 1331 increment_old_marking_cycles_started(); 1332 1333 assert(used() == recalculate_used(), "Should be equal"); 1334 1335 verify_before_gc(); 1336 1337 check_bitmaps("Full GC Start"); 1338 pre_full_gc_dump(gc_timer); 1339 1340 COMPILER2_PRESENT(DerivedPointerTable::clear()); 1341 1342 // Disable discovery and empty the discovered lists 1343 // for the CM ref processor. 1344 ref_processor_cm()->disable_discovery(); 1345 ref_processor_cm()->abandon_partial_discovery(); 1346 ref_processor_cm()->verify_no_references_recorded(); 1347 1348 // Abandon current iterations of concurrent marking and concurrent 1349 // refinement, if any are in progress. We have to do this before 1350 // wait_until_scan_finished() below. 1351 concurrent_mark()->abort(); 1352 1353 // Make sure we'll choose a new allocation region afterwards. 1354 release_mutator_alloc_region(); 1355 abandon_gc_alloc_regions(); 1356 g1_rem_set()->cleanupHRRS(); 1357 1358 // We should call this after we retire any currently active alloc 1359 // regions so that all the ALLOC / RETIRE events are generated 1360 // before the start GC event. 1361 _hr_printer.start_gc(true /* full */, (size_t) total_collections()); 1362 1363 // We may have added regions to the current incremental collection 1364 // set between the last GC or pause and now. We need to clear the 1365 // incremental collection set and then start rebuilding it afresh 1366 // after this full GC. 1367 abandon_collection_set(g1_policy()->inc_cset_head()); 1368 g1_policy()->clear_incremental_cset(); 1369 g1_policy()->stop_incremental_cset_building(); 1370 1371 tear_down_region_sets(false /* free_list_only */); 1372 g1_policy()->set_gcs_are_young(true); 1373 1374 // See the comments in g1CollectedHeap.hpp and 1375 // G1CollectedHeap::ref_processing_init() about 1376 // how reference processing currently works in G1. 1377 1378 // Temporarily make discovery by the STW ref processor single threaded (non-MT). 1379 ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false); 1380 1381 // Temporarily clear the STW ref processor's _is_alive_non_header field. 1382 ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL); 1383 1384 ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/); 1385 ref_processor_stw()->setup_policy(do_clear_all_soft_refs); 1386 1387 // Do collection work 1388 { 1389 HandleMark hm; // Discard invalid handles created during gc 1390 G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs); 1391 } 1392 1393 assert(free_regions() == 0, "we should not have added any free regions"); 1394 rebuild_region_sets(false /* free_list_only */); 1395 1396 // Enqueue any discovered reference objects that have 1397 // not been removed from the discovered lists. 1398 ref_processor_stw()->enqueue_discovered_references(); 1399 1400 COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); 1401 1402 MemoryService::track_memory_usage(); 1403 1404 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 1405 ref_processor_stw()->verify_no_references_recorded(); 1406 1407 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1408 ClassLoaderDataGraph::purge(); 1409 MetaspaceAux::verify_metrics(); 1410 1411 // Note: since we've just done a full GC, concurrent 1412 // marking is no longer active. Therefore we need not 1413 // re-enable reference discovery for the CM ref processor. 1414 // That will be done at the start of the next marking cycle. 1415 assert(!ref_processor_cm()->discovery_enabled(), "Postcondition"); 1416 ref_processor_cm()->verify_no_references_recorded(); 1417 1418 reset_gc_time_stamp(); 1419 // Since everything potentially moved, we will clear all remembered 1420 // sets, and clear all cards. Later we will rebuild remembered 1421 // sets. We will also reset the GC time stamps of the regions. 1422 clear_rsets_post_compaction(); 1423 check_gc_time_stamps(); 1424 1425 // Resize the heap if necessary. 1426 resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size); 1427 1428 if (_hr_printer.is_active()) { 1429 // We should do this after we potentially resize the heap so 1430 // that all the COMMIT / UNCOMMIT events are generated before 1431 // the end GC event. 1432 1433 print_hrs_post_compaction(); 1434 _hr_printer.end_gc(true /* full */, (size_t) total_collections()); 1435 } 1436 1437 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 1438 if (hot_card_cache->use_cache()) { 1439 hot_card_cache->reset_card_counts(); 1440 hot_card_cache->reset_hot_cache(); 1441 } 1442 1443 // Rebuild remembered sets of all regions. 1444 if (G1CollectedHeap::use_parallel_gc_threads()) { 1445 uint n_workers = 1446 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 1447 workers()->active_workers(), 1448 Threads::number_of_non_daemon_threads()); 1449 assert(UseDynamicNumberOfGCThreads || 1450 n_workers == workers()->total_workers(), 1451 "If not dynamic should be using all the workers"); 1452 workers()->set_active_workers(n_workers); 1453 // Set parallel threads in the heap (_n_par_threads) only 1454 // before a parallel phase and always reset it to 0 after 1455 // the phase so that the number of parallel threads does 1456 // no get carried forward to a serial phase where there 1457 // may be code that is "possibly_parallel". 1458 set_par_threads(n_workers); 1459 1460 ParRebuildRSTask rebuild_rs_task(this); 1461 assert(check_heap_region_claim_values( 1462 HeapRegion::InitialClaimValue), "sanity check"); 1463 assert(UseDynamicNumberOfGCThreads || 1464 workers()->active_workers() == workers()->total_workers(), 1465 "Unless dynamic should use total workers"); 1466 // Use the most recent number of active workers 1467 assert(workers()->active_workers() > 0, 1468 "Active workers not properly set"); 1469 set_par_threads(workers()->active_workers()); 1470 workers()->run_task(&rebuild_rs_task); 1471 set_par_threads(0); 1472 assert(check_heap_region_claim_values( 1473 HeapRegion::RebuildRSClaimValue), "sanity check"); 1474 reset_heap_region_claim_values(); 1475 } else { 1476 RebuildRSOutOfRegionClosure rebuild_rs(this); 1477 heap_region_iterate(&rebuild_rs); 1478 } 1479 1480 // Rebuild the strong code root lists for each region 1481 rebuild_strong_code_roots(); 1482 1483 if (true) { // FIXME 1484 MetaspaceGC::compute_new_size(); 1485 } 1486 1487 #ifdef TRACESPINNING 1488 ParallelTaskTerminator::print_termination_counts(); 1489 #endif 1490 1491 // Discard all rset updates 1492 JavaThread::dirty_card_queue_set().abandon_logs(); 1493 assert(!G1DeferredRSUpdate 1494 || (G1DeferredRSUpdate && 1495 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any"); 1496 1497 _young_list->reset_sampled_info(); 1498 // At this point there should be no regions in the 1499 // entire heap tagged as young. 1500 assert(check_young_list_empty(true /* check_heap */), 1501 "young list should be empty at this point"); 1502 1503 // Update the number of full collections that have been completed. 1504 increment_old_marking_cycles_completed(false /* concurrent */); 1505 1506 _hrs.verify_optional(); 1507 verify_region_sets_optional(); 1508 1509 verify_after_gc(); 1510 1511 // Clear the previous marking bitmap, if needed for bitmap verification. 1512 // Note we cannot do this when we clear the next marking bitmap in 1513 // ConcurrentMark::abort() above since VerifyDuringGC verifies the 1514 // objects marked during a full GC against the previous bitmap. 1515 // But we need to clear it before calling check_bitmaps below since 1516 // the full GC has compacted objects and updated TAMS but not updated 1517 // the prev bitmap. 1518 if (G1VerifyBitmaps) { 1519 ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll(); 1520 } 1521 check_bitmaps("Full GC End"); 1522 1523 // Start a new incremental collection set for the next pause 1524 assert(g1_policy()->collection_set() == NULL, "must be"); 1525 g1_policy()->start_incremental_cset_building(); 1526 1527 clear_cset_fast_test(); 1528 1529 init_mutator_alloc_region(); 1530 1531 double end = os::elapsedTime(); 1532 g1_policy()->record_full_collection_end(); 1533 1534 if (G1Log::fine()) { 1535 g1_policy()->print_heap_transition(); 1536 } 1537 1538 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 1539 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 1540 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 1541 // before any GC notifications are raised. 1542 g1mm()->update_sizes(); 1543 1544 gc_epilogue(true); 1545 } 1546 1547 if (G1Log::finer()) { 1548 g1_policy()->print_detailed_heap_transition(true /* full */); 1549 } 1550 1551 print_heap_after_gc(); 1552 trace_heap_after_gc(gc_tracer); 1553 1554 post_full_gc_dump(gc_timer); 1555 1556 gc_timer->register_gc_end(); 1557 gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions()); 1558 } 1559 1560 return true; 1561 } 1562 1563 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { 1564 // do_collection() will return whether it succeeded in performing 1565 // the GC. Currently, there is no facility on the 1566 // do_full_collection() API to notify the caller than the collection 1567 // did not succeed (e.g., because it was locked out by the GC 1568 // locker). So, right now, we'll ignore the return value. 1569 bool dummy = do_collection(true, /* explicit_gc */ 1570 clear_all_soft_refs, 1571 0 /* word_size */); 1572 } 1573 1574 // This code is mostly copied from TenuredGeneration. 1575 void 1576 G1CollectedHeap:: 1577 resize_if_necessary_after_full_collection(size_t word_size) { 1578 // Include the current allocation, if any, and bytes that will be 1579 // pre-allocated to support collections, as "used". 1580 const size_t used_after_gc = used(); 1581 const size_t capacity_after_gc = capacity(); 1582 const size_t free_after_gc = capacity_after_gc - used_after_gc; 1583 1584 // This is enforced in arguments.cpp. 1585 assert(MinHeapFreeRatio <= MaxHeapFreeRatio, 1586 "otherwise the code below doesn't make sense"); 1587 1588 // We don't have floating point command-line arguments 1589 const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0; 1590 const double maximum_used_percentage = 1.0 - minimum_free_percentage; 1591 const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0; 1592 const double minimum_used_percentage = 1.0 - maximum_free_percentage; 1593 1594 const size_t min_heap_size = collector_policy()->min_heap_byte_size(); 1595 const size_t max_heap_size = collector_policy()->max_heap_byte_size(); 1596 1597 // We have to be careful here as these two calculations can overflow 1598 // 32-bit size_t's. 1599 double used_after_gc_d = (double) used_after_gc; 1600 double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage; 1601 double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage; 1602 1603 // Let's make sure that they are both under the max heap size, which 1604 // by default will make them fit into a size_t. 1605 double desired_capacity_upper_bound = (double) max_heap_size; 1606 minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d, 1607 desired_capacity_upper_bound); 1608 maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d, 1609 desired_capacity_upper_bound); 1610 1611 // We can now safely turn them into size_t's. 1612 size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d; 1613 size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d; 1614 1615 // This assert only makes sense here, before we adjust them 1616 // with respect to the min and max heap size. 1617 assert(minimum_desired_capacity <= maximum_desired_capacity, 1618 err_msg("minimum_desired_capacity = "SIZE_FORMAT", " 1619 "maximum_desired_capacity = "SIZE_FORMAT, 1620 minimum_desired_capacity, maximum_desired_capacity)); 1621 1622 // Should not be greater than the heap max size. No need to adjust 1623 // it with respect to the heap min size as it's a lower bound (i.e., 1624 // we'll try to make the capacity larger than it, not smaller). 1625 minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size); 1626 // Should not be less than the heap min size. No need to adjust it 1627 // with respect to the heap max size as it's an upper bound (i.e., 1628 // we'll try to make the capacity smaller than it, not greater). 1629 maximum_desired_capacity = MAX2(maximum_desired_capacity, min_heap_size); 1630 1631 if (capacity_after_gc < minimum_desired_capacity) { 1632 // Don't expand unless it's significant 1633 size_t expand_bytes = minimum_desired_capacity - capacity_after_gc; 1634 ergo_verbose4(ErgoHeapSizing, 1635 "attempt heap expansion", 1636 ergo_format_reason("capacity lower than " 1637 "min desired capacity after Full GC") 1638 ergo_format_byte("capacity") 1639 ergo_format_byte("occupancy") 1640 ergo_format_byte_perc("min desired capacity"), 1641 capacity_after_gc, used_after_gc, 1642 minimum_desired_capacity, (double) MinHeapFreeRatio); 1643 expand(expand_bytes); 1644 1645 // No expansion, now see if we want to shrink 1646 } else if (capacity_after_gc > maximum_desired_capacity) { 1647 // Capacity too large, compute shrinking size 1648 size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity; 1649 ergo_verbose4(ErgoHeapSizing, 1650 "attempt heap shrinking", 1651 ergo_format_reason("capacity higher than " 1652 "max desired capacity after Full GC") 1653 ergo_format_byte("capacity") 1654 ergo_format_byte("occupancy") 1655 ergo_format_byte_perc("max desired capacity"), 1656 capacity_after_gc, used_after_gc, 1657 maximum_desired_capacity, (double) MaxHeapFreeRatio); 1658 shrink(shrink_bytes); 1659 } 1660 } 1661 1662 1663 HeapWord* 1664 G1CollectedHeap::satisfy_failed_allocation(size_t word_size, 1665 bool* succeeded) { 1666 assert_at_safepoint(true /* should_be_vm_thread */); 1667 1668 *succeeded = true; 1669 // Let's attempt the allocation first. 1670 HeapWord* result = 1671 attempt_allocation_at_safepoint(word_size, 1672 false /* expect_null_mutator_alloc_region */); 1673 if (result != NULL) { 1674 assert(*succeeded, "sanity"); 1675 return result; 1676 } 1677 1678 // In a G1 heap, we're supposed to keep allocation from failing by 1679 // incremental pauses. Therefore, at least for now, we'll favor 1680 // expansion over collection. (This might change in the future if we can 1681 // do something smarter than full collection to satisfy a failed alloc.) 1682 result = expand_and_allocate(word_size); 1683 if (result != NULL) { 1684 assert(*succeeded, "sanity"); 1685 return result; 1686 } 1687 1688 // Expansion didn't work, we'll try to do a Full GC. 1689 bool gc_succeeded = do_collection(false, /* explicit_gc */ 1690 false, /* clear_all_soft_refs */ 1691 word_size); 1692 if (!gc_succeeded) { 1693 *succeeded = false; 1694 return NULL; 1695 } 1696 1697 // Retry the allocation 1698 result = attempt_allocation_at_safepoint(word_size, 1699 true /* expect_null_mutator_alloc_region */); 1700 if (result != NULL) { 1701 assert(*succeeded, "sanity"); 1702 return result; 1703 } 1704 1705 // Then, try a Full GC that will collect all soft references. 1706 gc_succeeded = do_collection(false, /* explicit_gc */ 1707 true, /* clear_all_soft_refs */ 1708 word_size); 1709 if (!gc_succeeded) { 1710 *succeeded = false; 1711 return NULL; 1712 } 1713 1714 // Retry the allocation once more 1715 result = attempt_allocation_at_safepoint(word_size, 1716 true /* expect_null_mutator_alloc_region */); 1717 if (result != NULL) { 1718 assert(*succeeded, "sanity"); 1719 return result; 1720 } 1721 1722 assert(!collector_policy()->should_clear_all_soft_refs(), 1723 "Flag should have been handled and cleared prior to this point"); 1724 1725 // What else? We might try synchronous finalization later. If the total 1726 // space available is large enough for the allocation, then a more 1727 // complete compaction phase than we've tried so far might be 1728 // appropriate. 1729 assert(*succeeded, "sanity"); 1730 return NULL; 1731 } 1732 1733 // Attempting to expand the heap sufficiently 1734 // to support an allocation of the given "word_size". If 1735 // successful, perform the allocation and return the address of the 1736 // allocated block, or else "NULL". 1737 1738 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) { 1739 assert_at_safepoint(true /* should_be_vm_thread */); 1740 1741 verify_region_sets_optional(); 1742 1743 size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes); 1744 ergo_verbose1(ErgoHeapSizing, 1745 "attempt heap expansion", 1746 ergo_format_reason("allocation request failed") 1747 ergo_format_byte("allocation request"), 1748 word_size * HeapWordSize); 1749 if (expand(expand_bytes)) { 1750 _hrs.verify_optional(); 1751 verify_region_sets_optional(); 1752 return attempt_allocation_at_safepoint(word_size, 1753 false /* expect_null_mutator_alloc_region */); 1754 } 1755 return NULL; 1756 } 1757 1758 void G1CollectedHeap::update_committed_space(HeapWord* old_end, 1759 HeapWord* new_end) { 1760 assert(old_end != new_end, "don't call this otherwise"); 1761 assert((HeapWord*) _g1_storage.high() == new_end, "invariant"); 1762 1763 // Update the committed mem region. 1764 _g1_committed.set_end(new_end); 1765 // Tell the card table about the update. 1766 Universe::heap()->barrier_set()->resize_covered_region(_g1_committed); 1767 // Tell the BOT about the update. 1768 _bot_shared->resize(_g1_committed.word_size()); 1769 // Tell the hot card cache about the update 1770 _cg1r->hot_card_cache()->resize_card_counts(capacity()); 1771 } 1772 1773 bool G1CollectedHeap::expand(size_t expand_bytes) { 1774 size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); 1775 aligned_expand_bytes = align_size_up(aligned_expand_bytes, 1776 HeapRegion::GrainBytes); 1777 ergo_verbose2(ErgoHeapSizing, 1778 "expand the heap", 1779 ergo_format_byte("requested expansion amount") 1780 ergo_format_byte("attempted expansion amount"), 1781 expand_bytes, aligned_expand_bytes); 1782 1783 if (_g1_storage.uncommitted_size() == 0) { 1784 ergo_verbose0(ErgoHeapSizing, 1785 "did not expand the heap", 1786 ergo_format_reason("heap already fully expanded")); 1787 return false; 1788 } 1789 1790 // First commit the memory. 1791 HeapWord* old_end = (HeapWord*) _g1_storage.high(); 1792 bool successful = _g1_storage.expand_by(aligned_expand_bytes); 1793 if (successful) { 1794 // Then propagate this update to the necessary data structures. 1795 HeapWord* new_end = (HeapWord*) _g1_storage.high(); 1796 update_committed_space(old_end, new_end); 1797 1798 FreeRegionList expansion_list("Local Expansion List"); 1799 MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list); 1800 assert(mr.start() == old_end, "post-condition"); 1801 // mr might be a smaller region than what was requested if 1802 // expand_by() was unable to allocate the HeapRegion instances 1803 assert(mr.end() <= new_end, "post-condition"); 1804 1805 size_t actual_expand_bytes = mr.byte_size(); 1806 assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition"); 1807 assert(actual_expand_bytes == expansion_list.total_capacity_bytes(), 1808 "post-condition"); 1809 if (actual_expand_bytes < aligned_expand_bytes) { 1810 // We could not expand _hrs to the desired size. In this case we 1811 // need to shrink the committed space accordingly. 1812 assert(mr.end() < new_end, "invariant"); 1813 1814 size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes; 1815 // First uncommit the memory. 1816 _g1_storage.shrink_by(diff_bytes); 1817 // Then propagate this update to the necessary data structures. 1818 update_committed_space(new_end, mr.end()); 1819 } 1820 _free_list.add_as_tail(&expansion_list); 1821 1822 if (_hr_printer.is_active()) { 1823 HeapWord* curr = mr.start(); 1824 while (curr < mr.end()) { 1825 HeapWord* curr_end = curr + HeapRegion::GrainWords; 1826 _hr_printer.commit(curr, curr_end); 1827 curr = curr_end; 1828 } 1829 assert(curr == mr.end(), "post-condition"); 1830 } 1831 g1_policy()->record_new_heap_size(n_regions()); 1832 } else { 1833 ergo_verbose0(ErgoHeapSizing, 1834 "did not expand the heap", 1835 ergo_format_reason("heap expansion operation failed")); 1836 // The expansion of the virtual storage space was unsuccessful. 1837 // Let's see if it was because we ran out of swap. 1838 if (G1ExitOnExpansionFailure && 1839 _g1_storage.uncommitted_size() >= aligned_expand_bytes) { 1840 // We had head room... 1841 vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion"); 1842 } 1843 } 1844 return successful; 1845 } 1846 1847 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) { 1848 size_t aligned_shrink_bytes = 1849 ReservedSpace::page_align_size_down(shrink_bytes); 1850 aligned_shrink_bytes = align_size_down(aligned_shrink_bytes, 1851 HeapRegion::GrainBytes); 1852 uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes); 1853 1854 uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove); 1855 HeapWord* old_end = (HeapWord*) _g1_storage.high(); 1856 size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes; 1857 1858 ergo_verbose3(ErgoHeapSizing, 1859 "shrink the heap", 1860 ergo_format_byte("requested shrinking amount") 1861 ergo_format_byte("aligned shrinking amount") 1862 ergo_format_byte("attempted shrinking amount"), 1863 shrink_bytes, aligned_shrink_bytes, shrunk_bytes); 1864 if (num_regions_removed > 0) { 1865 _g1_storage.shrink_by(shrunk_bytes); 1866 HeapWord* new_end = (HeapWord*) _g1_storage.high(); 1867 1868 if (_hr_printer.is_active()) { 1869 HeapWord* curr = old_end; 1870 while (curr > new_end) { 1871 HeapWord* curr_end = curr; 1872 curr -= HeapRegion::GrainWords; 1873 _hr_printer.uncommit(curr, curr_end); 1874 } 1875 } 1876 1877 _expansion_regions += num_regions_removed; 1878 update_committed_space(old_end, new_end); 1879 HeapRegionRemSet::shrink_heap(n_regions()); 1880 g1_policy()->record_new_heap_size(n_regions()); 1881 } else { 1882 ergo_verbose0(ErgoHeapSizing, 1883 "did not shrink the heap", 1884 ergo_format_reason("heap shrinking operation failed")); 1885 } 1886 } 1887 1888 void G1CollectedHeap::shrink(size_t shrink_bytes) { 1889 verify_region_sets_optional(); 1890 1891 // We should only reach here at the end of a Full GC which means we 1892 // should not not be holding to any GC alloc regions. The method 1893 // below will make sure of that and do any remaining clean up. 1894 abandon_gc_alloc_regions(); 1895 1896 // Instead of tearing down / rebuilding the free lists here, we 1897 // could instead use the remove_all_pending() method on free_list to 1898 // remove only the ones that we need to remove. 1899 tear_down_region_sets(true /* free_list_only */); 1900 shrink_helper(shrink_bytes); 1901 rebuild_region_sets(true /* free_list_only */); 1902 1903 _hrs.verify_optional(); 1904 verify_region_sets_optional(); 1905 } 1906 1907 // Public methods. 1908 1909 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away 1910 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 1911 #endif // _MSC_VER 1912 1913 1914 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) : 1915 SharedHeap(policy_), 1916 _g1_policy(policy_), 1917 _dirty_card_queue_set(false), 1918 _into_cset_dirty_card_queue_set(false), 1919 _is_alive_closure_cm(this), 1920 _is_alive_closure_stw(this), 1921 _ref_processor_cm(NULL), 1922 _ref_processor_stw(NULL), 1923 _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)), 1924 _bot_shared(NULL), 1925 _evac_failure_scan_stack(NULL), 1926 _mark_in_progress(false), 1927 _cg1r(NULL), _summary_bytes_used(0), 1928 _g1mm(NULL), 1929 _refine_cte_cl(NULL), 1930 _full_collection(false), 1931 _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()), 1932 _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()), 1933 _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()), 1934 _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()), 1935 _free_regions_coming(false), 1936 _young_list(new YoungList(this)), 1937 _gc_time_stamp(0), 1938 _retained_old_gc_alloc_region(NULL), 1939 _survivor_plab_stats(YoungPLABSize, PLABWeight), 1940 _old_plab_stats(OldPLABSize, PLABWeight), 1941 _expand_heap_after_alloc_failure(true), 1942 _surviving_young_words(NULL), 1943 _old_marking_cycles_started(0), 1944 _old_marking_cycles_completed(0), 1945 _concurrent_cycle_started(false), 1946 _in_cset_fast_test(), 1947 _dirty_cards_region_list(NULL), 1948 _worker_cset_start_region(NULL), 1949 _worker_cset_start_region_time_stamp(NULL), 1950 _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()), 1951 _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), 1952 _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()), 1953 _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) { 1954 1955 _g1h = this; 1956 if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) { 1957 vm_exit_during_initialization("Failed necessary allocation."); 1958 } 1959 1960 _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2; 1961 1962 int n_queues = MAX2((int)ParallelGCThreads, 1); 1963 _task_queues = new RefToScanQueueSet(n_queues); 1964 1965 uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets(); 1966 assert(n_rem_sets > 0, "Invariant."); 1967 1968 _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC); 1969 _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC); 1970 _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC); 1971 1972 for (int i = 0; i < n_queues; i++) { 1973 RefToScanQueue* q = new RefToScanQueue(); 1974 q->initialize(); 1975 _task_queues->register_queue(i, q); 1976 ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo(); 1977 } 1978 clear_cset_start_regions(); 1979 1980 // Initialize the G1EvacuationFailureALot counters and flags. 1981 NOT_PRODUCT(reset_evacuation_should_fail();) 1982 1983 guarantee(_task_queues != NULL, "task_queues allocation failure."); 1984 } 1985 1986 jint G1CollectedHeap::initialize() { 1987 CollectedHeap::pre_initialize(); 1988 os::enable_vtime(); 1989 1990 G1Log::init(); 1991 1992 // Necessary to satisfy locking discipline assertions. 1993 1994 MutexLocker x(Heap_lock); 1995 1996 // We have to initialize the printer before committing the heap, as 1997 // it will be used then. 1998 _hr_printer.set_active(G1PrintHeapRegions); 1999 2000 // While there are no constraints in the GC code that HeapWordSize 2001 // be any particular value, there are multiple other areas in the 2002 // system which believe this to be true (e.g. oop->object_size in some 2003 // cases incorrectly returns the size in wordSize units rather than 2004 // HeapWordSize). 2005 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); 2006 2007 size_t init_byte_size = collector_policy()->initial_heap_byte_size(); 2008 size_t max_byte_size = collector_policy()->max_heap_byte_size(); 2009 size_t heap_alignment = collector_policy()->heap_alignment(); 2010 2011 // Ensure that the sizes are properly aligned. 2012 Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); 2013 Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap"); 2014 Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap"); 2015 2016 _refine_cte_cl = new RefineCardTableEntryClosure(); 2017 2018 _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl); 2019 2020 // Reserve the maximum. 2021 2022 // When compressed oops are enabled, the preferred heap base 2023 // is calculated by subtracting the requested size from the 2024 // 32Gb boundary and using the result as the base address for 2025 // heap reservation. If the requested size is not aligned to 2026 // HeapRegion::GrainBytes (i.e. the alignment that is passed 2027 // into the ReservedHeapSpace constructor) then the actual 2028 // base of the reserved heap may end up differing from the 2029 // address that was requested (i.e. the preferred heap base). 2030 // If this happens then we could end up using a non-optimal 2031 // compressed oops mode. 2032 2033 ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, 2034 heap_alignment); 2035 2036 // It is important to do this in a way such that concurrent readers can't 2037 // temporarily think something is in the heap. (I've actually seen this 2038 // happen in asserts: DLD.) 2039 _reserved.set_word_size(0); 2040 _reserved.set_start((HeapWord*)heap_rs.base()); 2041 _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size())); 2042 2043 _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes); 2044 2045 // Create the gen rem set (and barrier set) for the entire reserved region. 2046 _rem_set = collector_policy()->create_rem_set(_reserved, 2); 2047 set_barrier_set(rem_set()->bs()); 2048 if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) { 2049 vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS"); 2050 return JNI_ENOMEM; 2051 } 2052 2053 // Also create a G1 rem set. 2054 _g1_rem_set = new G1RemSet(this, g1_barrier_set()); 2055 2056 // Carve out the G1 part of the heap. 2057 2058 ReservedSpace g1_rs = heap_rs.first_part(max_byte_size); 2059 _g1_reserved = MemRegion((HeapWord*)g1_rs.base(), 2060 g1_rs.size()/HeapWordSize); 2061 2062 _g1_storage.initialize(g1_rs, 0); 2063 _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0); 2064 _hrs.initialize((HeapWord*) _g1_reserved.start(), 2065 (HeapWord*) _g1_reserved.end()); 2066 assert(_hrs.max_length() == _expansion_regions, 2067 err_msg("max length: %u expansion regions: %u", 2068 _hrs.max_length(), _expansion_regions)); 2069 2070 // Do later initialization work for concurrent refinement. 2071 _cg1r->init(); 2072 2073 // 6843694 - ensure that the maximum region index can fit 2074 // in the remembered set structures. 2075 const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; 2076 guarantee((max_regions() - 1) <= max_region_idx, "too many regions"); 2077 2078 size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; 2079 guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized"); 2080 guarantee(HeapRegion::CardsPerRegion < max_cards_per_region, 2081 "too many cards per region"); 2082 2083 FreeRegionList::set_unrealistically_long_length(max_regions() + 1); 2084 2085 _bot_shared = new G1BlockOffsetSharedArray(_reserved, 2086 heap_word_size(init_byte_size)); 2087 2088 _g1h = this; 2089 2090 _in_cset_fast_test.initialize(_g1_reserved.start(), _g1_reserved.end(), HeapRegion::GrainBytes); 2091 2092 // Create the ConcurrentMark data structure and thread. 2093 // (Must do this late, so that "max_regions" is defined.) 2094 _cm = new ConcurrentMark(this, heap_rs); 2095 if (_cm == NULL || !_cm->completed_initialization()) { 2096 vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark"); 2097 return JNI_ENOMEM; 2098 } 2099 _cmThread = _cm->cmThread(); 2100 2101 // Initialize the from_card cache structure of HeapRegionRemSet. 2102 HeapRegionRemSet::init_heap(max_regions()); 2103 2104 // Now expand into the initial heap size. 2105 if (!expand(init_byte_size)) { 2106 vm_shutdown_during_initialization("Failed to allocate initial heap."); 2107 return JNI_ENOMEM; 2108 } 2109 2110 // Perform any initialization actions delegated to the policy. 2111 g1_policy()->init(); 2112 2113 JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon, 2114 SATB_Q_FL_lock, 2115 G1SATBProcessCompletedThreshold, 2116 Shared_SATB_Q_lock); 2117 2118 JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl, 2119 DirtyCardQ_CBL_mon, 2120 DirtyCardQ_FL_lock, 2121 concurrent_g1_refine()->yellow_zone(), 2122 concurrent_g1_refine()->red_zone(), 2123 Shared_DirtyCardQ_lock); 2124 2125 if (G1DeferredRSUpdate) { 2126 dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code 2127 DirtyCardQ_CBL_mon, 2128 DirtyCardQ_FL_lock, 2129 -1, // never trigger processing 2130 -1, // no limit on length 2131 Shared_DirtyCardQ_lock, 2132 &JavaThread::dirty_card_queue_set()); 2133 } 2134 2135 // Initialize the card queue set used to hold cards containing 2136 // references into the collection set. 2137 _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code 2138 DirtyCardQ_CBL_mon, 2139 DirtyCardQ_FL_lock, 2140 -1, // never trigger processing 2141 -1, // no limit on length 2142 Shared_DirtyCardQ_lock, 2143 &JavaThread::dirty_card_queue_set()); 2144 2145 // In case we're keeping closure specialization stats, initialize those 2146 // counts and that mechanism. 2147 SpecializationStats::clear(); 2148 2149 // Here we allocate the dummy full region that is required by the 2150 // G1AllocRegion class. If we don't pass an address in the reserved 2151 // space here, lots of asserts fire. 2152 2153 HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */, 2154 _g1_reserved.start()); 2155 // We'll re-use the same region whether the alloc region will 2156 // require BOT updates or not and, if it doesn't, then a non-young 2157 // region will complain that it cannot support allocations without 2158 // BOT updates. So we'll tag the dummy region as young to avoid that. 2159 dummy_region->set_young(); 2160 // Make sure it's full. 2161 dummy_region->set_top(dummy_region->end()); 2162 G1AllocRegion::setup(this, dummy_region); 2163 2164 init_mutator_alloc_region(); 2165 2166 // Do create of the monitoring and management support so that 2167 // values in the heap have been properly initialized. 2168 _g1mm = new G1MonitoringSupport(this); 2169 2170 G1StringDedup::initialize(); 2171 2172 return JNI_OK; 2173 } 2174 2175 void G1CollectedHeap::stop() { 2176 #if 0 2177 // Stopping concurrent worker threads is currently disabled until 2178 // some bugs in concurrent mark has been resolve. Without fixing 2179 // those bugs first we risk haning during VM exit when trying to 2180 // stop these threads. 2181 2182 // Abort any ongoing concurrent root region scanning and stop all 2183 // concurrent threads. We do this to make sure these threads do 2184 // not continue to execute and access resources (e.g. gclog_or_tty) 2185 // that are destroyed during shutdown. 2186 _cm->root_regions()->abort(); 2187 _cm->root_regions()->wait_until_scan_finished(); 2188 stop_conc_gc_threads(); 2189 #endif 2190 } 2191 2192 size_t G1CollectedHeap::conservative_max_heap_alignment() { 2193 return HeapRegion::max_region_size(); 2194 } 2195 2196 void G1CollectedHeap::ref_processing_init() { 2197 // Reference processing in G1 currently works as follows: 2198 // 2199 // * There are two reference processor instances. One is 2200 // used to record and process discovered references 2201 // during concurrent marking; the other is used to 2202 // record and process references during STW pauses 2203 // (both full and incremental). 2204 // * Both ref processors need to 'span' the entire heap as 2205 // the regions in the collection set may be dotted around. 2206 // 2207 // * For the concurrent marking ref processor: 2208 // * Reference discovery is enabled at initial marking. 2209 // * Reference discovery is disabled and the discovered 2210 // references processed etc during remarking. 2211 // * Reference discovery is MT (see below). 2212 // * Reference discovery requires a barrier (see below). 2213 // * Reference processing may or may not be MT 2214 // (depending on the value of ParallelRefProcEnabled 2215 // and ParallelGCThreads). 2216 // * A full GC disables reference discovery by the CM 2217 // ref processor and abandons any entries on it's 2218 // discovered lists. 2219 // 2220 // * For the STW processor: 2221 // * Non MT discovery is enabled at the start of a full GC. 2222 // * Processing and enqueueing during a full GC is non-MT. 2223 // * During a full GC, references are processed after marking. 2224 // 2225 // * Discovery (may or may not be MT) is enabled at the start 2226 // of an incremental evacuation pause. 2227 // * References are processed near the end of a STW evacuation pause. 2228 // * For both types of GC: 2229 // * Discovery is atomic - i.e. not concurrent. 2230 // * Reference discovery will not need a barrier. 2231 2232 SharedHeap::ref_processing_init(); 2233 MemRegion mr = reserved_region(); 2234 2235 // Concurrent Mark ref processor 2236 _ref_processor_cm = 2237 new ReferenceProcessor(mr, // span 2238 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2239 // mt processing 2240 (int) ParallelGCThreads, 2241 // degree of mt processing 2242 (ParallelGCThreads > 1) || (ConcGCThreads > 1), 2243 // mt discovery 2244 (int) MAX2(ParallelGCThreads, ConcGCThreads), 2245 // degree of mt discovery 2246 false, 2247 // Reference discovery is not atomic 2248 &_is_alive_closure_cm, 2249 // is alive closure 2250 // (for efficiency/performance) 2251 true); 2252 // Setting next fields of discovered 2253 // lists requires a barrier. 2254 2255 // STW ref processor 2256 _ref_processor_stw = 2257 new ReferenceProcessor(mr, // span 2258 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2259 // mt processing 2260 MAX2((int)ParallelGCThreads, 1), 2261 // degree of mt processing 2262 (ParallelGCThreads > 1), 2263 // mt discovery 2264 MAX2((int)ParallelGCThreads, 1), 2265 // degree of mt discovery 2266 true, 2267 // Reference discovery is atomic 2268 &_is_alive_closure_stw, 2269 // is alive closure 2270 // (for efficiency/performance) 2271 false); 2272 // Setting next fields of discovered 2273 // lists does not require a barrier. 2274 } 2275 2276 size_t G1CollectedHeap::capacity() const { 2277 return _g1_committed.byte_size(); 2278 } 2279 2280 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) { 2281 assert(!hr->continuesHumongous(), "pre-condition"); 2282 hr->reset_gc_time_stamp(); 2283 if (hr->startsHumongous()) { 2284 uint first_index = hr->hrs_index() + 1; 2285 uint last_index = hr->last_hc_index(); 2286 for (uint i = first_index; i < last_index; i += 1) { 2287 HeapRegion* chr = region_at(i); 2288 assert(chr->continuesHumongous(), "sanity"); 2289 chr->reset_gc_time_stamp(); 2290 } 2291 } 2292 } 2293 2294 #ifndef PRODUCT 2295 class CheckGCTimeStampsHRClosure : public HeapRegionClosure { 2296 private: 2297 unsigned _gc_time_stamp; 2298 bool _failures; 2299 2300 public: 2301 CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) : 2302 _gc_time_stamp(gc_time_stamp), _failures(false) { } 2303 2304 virtual bool doHeapRegion(HeapRegion* hr) { 2305 unsigned region_gc_time_stamp = hr->get_gc_time_stamp(); 2306 if (_gc_time_stamp != region_gc_time_stamp) { 2307 gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, " 2308 "expected %d", HR_FORMAT_PARAMS(hr), 2309 region_gc_time_stamp, _gc_time_stamp); 2310 _failures = true; 2311 } 2312 return false; 2313 } 2314 2315 bool failures() { return _failures; } 2316 }; 2317 2318 void G1CollectedHeap::check_gc_time_stamps() { 2319 CheckGCTimeStampsHRClosure cl(_gc_time_stamp); 2320 heap_region_iterate(&cl); 2321 guarantee(!cl.failures(), "all GC time stamps should have been reset"); 2322 } 2323 #endif // PRODUCT 2324 2325 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, 2326 DirtyCardQueue* into_cset_dcq, 2327 bool concurrent, 2328 uint worker_i) { 2329 // Clean cards in the hot card cache 2330 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 2331 hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq); 2332 2333 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 2334 int n_completed_buffers = 0; 2335 while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) { 2336 n_completed_buffers++; 2337 } 2338 g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers); 2339 dcqs.clear_n_completed_buffers(); 2340 assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!"); 2341 } 2342 2343 2344 // Computes the sum of the storage used by the various regions. 2345 2346 size_t G1CollectedHeap::used() const { 2347 assert(Heap_lock->owner() != NULL, 2348 "Should be owned on this thread's behalf."); 2349 size_t result = _summary_bytes_used; 2350 // Read only once in case it is set to NULL concurrently 2351 HeapRegion* hr = _mutator_alloc_region.get(); 2352 if (hr != NULL) 2353 result += hr->used(); 2354 return result; 2355 } 2356 2357 size_t G1CollectedHeap::used_unlocked() const { 2358 size_t result = _summary_bytes_used; 2359 return result; 2360 } 2361 2362 class SumUsedClosure: public HeapRegionClosure { 2363 size_t _used; 2364 public: 2365 SumUsedClosure() : _used(0) {} 2366 bool doHeapRegion(HeapRegion* r) { 2367 if (!r->continuesHumongous()) { 2368 _used += r->used(); 2369 } 2370 return false; 2371 } 2372 size_t result() { return _used; } 2373 }; 2374 2375 size_t G1CollectedHeap::recalculate_used() const { 2376 double recalculate_used_start = os::elapsedTime(); 2377 2378 SumUsedClosure blk; 2379 heap_region_iterate(&blk); 2380 2381 g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0); 2382 return blk.result(); 2383 } 2384 2385 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { 2386 switch (cause) { 2387 case GCCause::_gc_locker: return GCLockerInvokesConcurrent; 2388 case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent; 2389 case GCCause::_g1_humongous_allocation: return true; 2390 default: return false; 2391 } 2392 } 2393 2394 #ifndef PRODUCT 2395 void G1CollectedHeap::allocate_dummy_regions() { 2396 // Let's fill up most of the region 2397 size_t word_size = HeapRegion::GrainWords - 1024; 2398 // And as a result the region we'll allocate will be humongous. 2399 guarantee(isHumongous(word_size), "sanity"); 2400 2401 for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) { 2402 // Let's use the existing mechanism for the allocation 2403 HeapWord* dummy_obj = humongous_obj_allocate(word_size); 2404 if (dummy_obj != NULL) { 2405 MemRegion mr(dummy_obj, word_size); 2406 CollectedHeap::fill_with_object(mr); 2407 } else { 2408 // If we can't allocate once, we probably cannot allocate 2409 // again. Let's get out of the loop. 2410 break; 2411 } 2412 } 2413 } 2414 #endif // !PRODUCT 2415 2416 void G1CollectedHeap::increment_old_marking_cycles_started() { 2417 assert(_old_marking_cycles_started == _old_marking_cycles_completed || 2418 _old_marking_cycles_started == _old_marking_cycles_completed + 1, 2419 err_msg("Wrong marking cycle count (started: %d, completed: %d)", 2420 _old_marking_cycles_started, _old_marking_cycles_completed)); 2421 2422 _old_marking_cycles_started++; 2423 } 2424 2425 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) { 2426 MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag); 2427 2428 // We assume that if concurrent == true, then the caller is a 2429 // concurrent thread that was joined the Suspendible Thread 2430 // Set. If there's ever a cheap way to check this, we should add an 2431 // assert here. 2432 2433 // Given that this method is called at the end of a Full GC or of a 2434 // concurrent cycle, and those can be nested (i.e., a Full GC can 2435 // interrupt a concurrent cycle), the number of full collections 2436 // completed should be either one (in the case where there was no 2437 // nesting) or two (when a Full GC interrupted a concurrent cycle) 2438 // behind the number of full collections started. 2439 2440 // This is the case for the inner caller, i.e. a Full GC. 2441 assert(concurrent || 2442 (_old_marking_cycles_started == _old_marking_cycles_completed + 1) || 2443 (_old_marking_cycles_started == _old_marking_cycles_completed + 2), 2444 err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u " 2445 "is inconsistent with _old_marking_cycles_completed = %u", 2446 _old_marking_cycles_started, _old_marking_cycles_completed)); 2447 2448 // This is the case for the outer caller, i.e. the concurrent cycle. 2449 assert(!concurrent || 2450 (_old_marking_cycles_started == _old_marking_cycles_completed + 1), 2451 err_msg("for outer caller (concurrent cycle): " 2452 "_old_marking_cycles_started = %u " 2453 "is inconsistent with _old_marking_cycles_completed = %u", 2454 _old_marking_cycles_started, _old_marking_cycles_completed)); 2455 2456 _old_marking_cycles_completed += 1; 2457 2458 // We need to clear the "in_progress" flag in the CM thread before 2459 // we wake up any waiters (especially when ExplicitInvokesConcurrent 2460 // is set) so that if a waiter requests another System.gc() it doesn't 2461 // incorrectly see that a marking cycle is still in progress. 2462 if (concurrent) { 2463 _cmThread->clear_in_progress(); 2464 } 2465 2466 // This notify_all() will ensure that a thread that called 2467 // System.gc() with (with ExplicitGCInvokesConcurrent set or not) 2468 // and it's waiting for a full GC to finish will be woken up. It is 2469 // waiting in VM_G1IncCollectionPause::doit_epilogue(). 2470 FullGCCount_lock->notify_all(); 2471 } 2472 2473 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) { 2474 _concurrent_cycle_started = true; 2475 _gc_timer_cm->register_gc_start(start_time); 2476 2477 _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start()); 2478 trace_heap_before_gc(_gc_tracer_cm); 2479 } 2480 2481 void G1CollectedHeap::register_concurrent_cycle_end() { 2482 if (_concurrent_cycle_started) { 2483 if (_cm->has_aborted()) { 2484 _gc_tracer_cm->report_concurrent_mode_failure(); 2485 } 2486 2487 _gc_timer_cm->register_gc_end(); 2488 _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions()); 2489 2490 _concurrent_cycle_started = false; 2491 } 2492 } 2493 2494 void G1CollectedHeap::trace_heap_after_concurrent_cycle() { 2495 if (_concurrent_cycle_started) { 2496 trace_heap_after_gc(_gc_tracer_cm); 2497 } 2498 } 2499 2500 G1YCType G1CollectedHeap::yc_type() { 2501 bool is_young = g1_policy()->gcs_are_young(); 2502 bool is_initial_mark = g1_policy()->during_initial_mark_pause(); 2503 bool is_during_mark = mark_in_progress(); 2504 2505 if (is_initial_mark) { 2506 return InitialMark; 2507 } else if (is_during_mark) { 2508 return DuringMark; 2509 } else if (is_young) { 2510 return Normal; 2511 } else { 2512 return Mixed; 2513 } 2514 } 2515 2516 void G1CollectedHeap::collect(GCCause::Cause cause) { 2517 assert_heap_not_locked(); 2518 2519 unsigned int gc_count_before; 2520 unsigned int old_marking_count_before; 2521 bool retry_gc; 2522 2523 do { 2524 retry_gc = false; 2525 2526 { 2527 MutexLocker ml(Heap_lock); 2528 2529 // Read the GC count while holding the Heap_lock 2530 gc_count_before = total_collections(); 2531 old_marking_count_before = _old_marking_cycles_started; 2532 } 2533 2534 if (should_do_concurrent_full_gc(cause)) { 2535 // Schedule an initial-mark evacuation pause that will start a 2536 // concurrent cycle. We're setting word_size to 0 which means that 2537 // we are not requesting a post-GC allocation. 2538 VM_G1IncCollectionPause op(gc_count_before, 2539 0, /* word_size */ 2540 true, /* should_initiate_conc_mark */ 2541 g1_policy()->max_pause_time_ms(), 2542 cause); 2543 2544 VMThread::execute(&op); 2545 if (!op.pause_succeeded()) { 2546 if (old_marking_count_before == _old_marking_cycles_started) { 2547 retry_gc = op.should_retry_gc(); 2548 } else { 2549 // A Full GC happened while we were trying to schedule the 2550 // initial-mark GC. No point in starting a new cycle given 2551 // that the whole heap was collected anyway. 2552 } 2553 2554 if (retry_gc) { 2555 if (GC_locker::is_active_and_needs_gc()) { 2556 GC_locker::stall_until_clear(); 2557 } 2558 } 2559 } 2560 } else { 2561 if (cause == GCCause::_gc_locker 2562 DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { 2563 2564 // Schedule a standard evacuation pause. We're setting word_size 2565 // to 0 which means that we are not requesting a post-GC allocation. 2566 VM_G1IncCollectionPause op(gc_count_before, 2567 0, /* word_size */ 2568 false, /* should_initiate_conc_mark */ 2569 g1_policy()->max_pause_time_ms(), 2570 cause); 2571 VMThread::execute(&op); 2572 } else { 2573 // Schedule a Full GC. 2574 VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause); 2575 VMThread::execute(&op); 2576 } 2577 } 2578 } while (retry_gc); 2579 } 2580 2581 bool G1CollectedHeap::is_in(const void* p) const { 2582 if (_g1_committed.contains(p)) { 2583 // Given that we know that p is in the committed space, 2584 // heap_region_containing_raw() should successfully 2585 // return the containing region. 2586 HeapRegion* hr = heap_region_containing_raw(p); 2587 return hr->is_in(p); 2588 } else { 2589 return false; 2590 } 2591 } 2592 2593 // Iteration functions. 2594 2595 // Iterates an OopClosure over all ref-containing fields of objects 2596 // within a HeapRegion. 2597 2598 class IterateOopClosureRegionClosure: public HeapRegionClosure { 2599 MemRegion _mr; 2600 ExtendedOopClosure* _cl; 2601 public: 2602 IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl) 2603 : _mr(mr), _cl(cl) {} 2604 bool doHeapRegion(HeapRegion* r) { 2605 if (!r->continuesHumongous()) { 2606 r->oop_iterate(_cl); 2607 } 2608 return false; 2609 } 2610 }; 2611 2612 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) { 2613 IterateOopClosureRegionClosure blk(_g1_committed, cl); 2614 heap_region_iterate(&blk); 2615 } 2616 2617 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) { 2618 IterateOopClosureRegionClosure blk(mr, cl); 2619 heap_region_iterate(&blk); 2620 } 2621 2622 // Iterates an ObjectClosure over all objects within a HeapRegion. 2623 2624 class IterateObjectClosureRegionClosure: public HeapRegionClosure { 2625 ObjectClosure* _cl; 2626 public: 2627 IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} 2628 bool doHeapRegion(HeapRegion* r) { 2629 if (! r->continuesHumongous()) { 2630 r->object_iterate(_cl); 2631 } 2632 return false; 2633 } 2634 }; 2635 2636 void G1CollectedHeap::object_iterate(ObjectClosure* cl) { 2637 IterateObjectClosureRegionClosure blk(cl); 2638 heap_region_iterate(&blk); 2639 } 2640 2641 // Calls a SpaceClosure on a HeapRegion. 2642 2643 class SpaceClosureRegionClosure: public HeapRegionClosure { 2644 SpaceClosure* _cl; 2645 public: 2646 SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {} 2647 bool doHeapRegion(HeapRegion* r) { 2648 _cl->do_space(r); 2649 return false; 2650 } 2651 }; 2652 2653 void G1CollectedHeap::space_iterate(SpaceClosure* cl) { 2654 SpaceClosureRegionClosure blk(cl); 2655 heap_region_iterate(&blk); 2656 } 2657 2658 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { 2659 _hrs.iterate(cl); 2660 } 2661 2662 void 2663 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl, 2664 uint worker_id, 2665 uint no_of_par_workers, 2666 jint claim_value) { 2667 const uint regions = n_regions(); 2668 const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ? 2669 no_of_par_workers : 2670 1); 2671 assert(UseDynamicNumberOfGCThreads || 2672 no_of_par_workers == workers()->total_workers(), 2673 "Non dynamic should use fixed number of workers"); 2674 // try to spread out the starting points of the workers 2675 const HeapRegion* start_hr = 2676 start_region_for_worker(worker_id, no_of_par_workers); 2677 const uint start_index = start_hr->hrs_index(); 2678 2679 // each worker will actually look at all regions 2680 for (uint count = 0; count < regions; ++count) { 2681 const uint index = (start_index + count) % regions; 2682 assert(0 <= index && index < regions, "sanity"); 2683 HeapRegion* r = region_at(index); 2684 // we'll ignore "continues humongous" regions (we'll process them 2685 // when we come across their corresponding "start humongous" 2686 // region) and regions already claimed 2687 if (r->claim_value() == claim_value || r->continuesHumongous()) { 2688 continue; 2689 } 2690 // OK, try to claim it 2691 if (r->claimHeapRegion(claim_value)) { 2692 // success! 2693 assert(!r->continuesHumongous(), "sanity"); 2694 if (r->startsHumongous()) { 2695 // If the region is "starts humongous" we'll iterate over its 2696 // "continues humongous" first; in fact we'll do them 2697 // first. The order is important. In on case, calling the 2698 // closure on the "starts humongous" region might de-allocate 2699 // and clear all its "continues humongous" regions and, as a 2700 // result, we might end up processing them twice. So, we'll do 2701 // them first (notice: most closures will ignore them anyway) and 2702 // then we'll do the "starts humongous" region. 2703 for (uint ch_index = index + 1; ch_index < regions; ++ch_index) { 2704 HeapRegion* chr = region_at(ch_index); 2705 2706 // if the region has already been claimed or it's not 2707 // "continues humongous" we're done 2708 if (chr->claim_value() == claim_value || 2709 !chr->continuesHumongous()) { 2710 break; 2711 } 2712 2713 // No one should have claimed it directly. We can given 2714 // that we claimed its "starts humongous" region. 2715 assert(chr->claim_value() != claim_value, "sanity"); 2716 assert(chr->humongous_start_region() == r, "sanity"); 2717 2718 if (chr->claimHeapRegion(claim_value)) { 2719 // we should always be able to claim it; no one else should 2720 // be trying to claim this region 2721 2722 bool res2 = cl->doHeapRegion(chr); 2723 assert(!res2, "Should not abort"); 2724 2725 // Right now, this holds (i.e., no closure that actually 2726 // does something with "continues humongous" regions 2727 // clears them). We might have to weaken it in the future, 2728 // but let's leave these two asserts here for extra safety. 2729 assert(chr->continuesHumongous(), "should still be the case"); 2730 assert(chr->humongous_start_region() == r, "sanity"); 2731 } else { 2732 guarantee(false, "we should not reach here"); 2733 } 2734 } 2735 } 2736 2737 assert(!r->continuesHumongous(), "sanity"); 2738 bool res = cl->doHeapRegion(r); 2739 assert(!res, "Should not abort"); 2740 } 2741 } 2742 } 2743 2744 class ResetClaimValuesClosure: public HeapRegionClosure { 2745 public: 2746 bool doHeapRegion(HeapRegion* r) { 2747 r->set_claim_value(HeapRegion::InitialClaimValue); 2748 return false; 2749 } 2750 }; 2751 2752 void G1CollectedHeap::reset_heap_region_claim_values() { 2753 ResetClaimValuesClosure blk; 2754 heap_region_iterate(&blk); 2755 } 2756 2757 void G1CollectedHeap::reset_cset_heap_region_claim_values() { 2758 ResetClaimValuesClosure blk; 2759 collection_set_iterate(&blk); 2760 } 2761 2762 #ifdef ASSERT 2763 // This checks whether all regions in the heap have the correct claim 2764 // value. I also piggy-backed on this a check to ensure that the 2765 // humongous_start_region() information on "continues humongous" 2766 // regions is correct. 2767 2768 class CheckClaimValuesClosure : public HeapRegionClosure { 2769 private: 2770 jint _claim_value; 2771 uint _failures; 2772 HeapRegion* _sh_region; 2773 2774 public: 2775 CheckClaimValuesClosure(jint claim_value) : 2776 _claim_value(claim_value), _failures(0), _sh_region(NULL) { } 2777 bool doHeapRegion(HeapRegion* r) { 2778 if (r->claim_value() != _claim_value) { 2779 gclog_or_tty->print_cr("Region " HR_FORMAT ", " 2780 "claim value = %d, should be %d", 2781 HR_FORMAT_PARAMS(r), 2782 r->claim_value(), _claim_value); 2783 ++_failures; 2784 } 2785 if (!r->isHumongous()) { 2786 _sh_region = NULL; 2787 } else if (r->startsHumongous()) { 2788 _sh_region = r; 2789 } else if (r->continuesHumongous()) { 2790 if (r->humongous_start_region() != _sh_region) { 2791 gclog_or_tty->print_cr("Region " HR_FORMAT ", " 2792 "HS = "PTR_FORMAT", should be "PTR_FORMAT, 2793 HR_FORMAT_PARAMS(r), 2794 r->humongous_start_region(), 2795 _sh_region); 2796 ++_failures; 2797 } 2798 } 2799 return false; 2800 } 2801 uint failures() { return _failures; } 2802 }; 2803 2804 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) { 2805 CheckClaimValuesClosure cl(claim_value); 2806 heap_region_iterate(&cl); 2807 return cl.failures() == 0; 2808 } 2809 2810 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure { 2811 private: 2812 jint _claim_value; 2813 uint _failures; 2814 2815 public: 2816 CheckClaimValuesInCSetHRClosure(jint claim_value) : 2817 _claim_value(claim_value), _failures(0) { } 2818 2819 uint failures() { return _failures; } 2820 2821 bool doHeapRegion(HeapRegion* hr) { 2822 assert(hr->in_collection_set(), "how?"); 2823 assert(!hr->isHumongous(), "H-region in CSet"); 2824 if (hr->claim_value() != _claim_value) { 2825 gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", " 2826 "claim value = %d, should be %d", 2827 HR_FORMAT_PARAMS(hr), 2828 hr->claim_value(), _claim_value); 2829 _failures += 1; 2830 } 2831 return false; 2832 } 2833 }; 2834 2835 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) { 2836 CheckClaimValuesInCSetHRClosure cl(claim_value); 2837 collection_set_iterate(&cl); 2838 return cl.failures() == 0; 2839 } 2840 #endif // ASSERT 2841 2842 // Clear the cached CSet starting regions and (more importantly) 2843 // the time stamps. Called when we reset the GC time stamp. 2844 void G1CollectedHeap::clear_cset_start_regions() { 2845 assert(_worker_cset_start_region != NULL, "sanity"); 2846 assert(_worker_cset_start_region_time_stamp != NULL, "sanity"); 2847 2848 int n_queues = MAX2((int)ParallelGCThreads, 1); 2849 for (int i = 0; i < n_queues; i++) { 2850 _worker_cset_start_region[i] = NULL; 2851 _worker_cset_start_region_time_stamp[i] = 0; 2852 } 2853 } 2854 2855 // Given the id of a worker, obtain or calculate a suitable 2856 // starting region for iterating over the current collection set. 2857 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) { 2858 assert(get_gc_time_stamp() > 0, "should have been updated by now"); 2859 2860 HeapRegion* result = NULL; 2861 unsigned gc_time_stamp = get_gc_time_stamp(); 2862 2863 if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) { 2864 // Cached starting region for current worker was set 2865 // during the current pause - so it's valid. 2866 // Note: the cached starting heap region may be NULL 2867 // (when the collection set is empty). 2868 result = _worker_cset_start_region[worker_i]; 2869 assert(result == NULL || result->in_collection_set(), "sanity"); 2870 return result; 2871 } 2872 2873 // The cached entry was not valid so let's calculate 2874 // a suitable starting heap region for this worker. 2875 2876 // We want the parallel threads to start their collection 2877 // set iteration at different collection set regions to 2878 // avoid contention. 2879 // If we have: 2880 // n collection set regions 2881 // p threads 2882 // Then thread t will start at region floor ((t * n) / p) 2883 2884 result = g1_policy()->collection_set(); 2885 if (G1CollectedHeap::use_parallel_gc_threads()) { 2886 uint cs_size = g1_policy()->cset_region_length(); 2887 uint active_workers = workers()->active_workers(); 2888 assert(UseDynamicNumberOfGCThreads || 2889 active_workers == workers()->total_workers(), 2890 "Unless dynamic should use total workers"); 2891 2892 uint end_ind = (cs_size * worker_i) / active_workers; 2893 uint start_ind = 0; 2894 2895 if (worker_i > 0 && 2896 _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) { 2897 // Previous workers starting region is valid 2898 // so let's iterate from there 2899 start_ind = (cs_size * (worker_i - 1)) / active_workers; 2900 result = _worker_cset_start_region[worker_i - 1]; 2901 } 2902 2903 for (uint i = start_ind; i < end_ind; i++) { 2904 result = result->next_in_collection_set(); 2905 } 2906 } 2907 2908 // Note: the calculated starting heap region may be NULL 2909 // (when the collection set is empty). 2910 assert(result == NULL || result->in_collection_set(), "sanity"); 2911 assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp, 2912 "should be updated only once per pause"); 2913 _worker_cset_start_region[worker_i] = result; 2914 OrderAccess::storestore(); 2915 _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp; 2916 return result; 2917 } 2918 2919 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i, 2920 uint no_of_par_workers) { 2921 uint worker_num = 2922 G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U; 2923 assert(UseDynamicNumberOfGCThreads || 2924 no_of_par_workers == workers()->total_workers(), 2925 "Non dynamic should use fixed number of workers"); 2926 const uint start_index = n_regions() * worker_i / worker_num; 2927 return region_at(start_index); 2928 } 2929 2930 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) { 2931 HeapRegion* r = g1_policy()->collection_set(); 2932 while (r != NULL) { 2933 HeapRegion* next = r->next_in_collection_set(); 2934 if (cl->doHeapRegion(r)) { 2935 cl->incomplete(); 2936 return; 2937 } 2938 r = next; 2939 } 2940 } 2941 2942 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r, 2943 HeapRegionClosure *cl) { 2944 if (r == NULL) { 2945 // The CSet is empty so there's nothing to do. 2946 return; 2947 } 2948 2949 assert(r->in_collection_set(), 2950 "Start region must be a member of the collection set."); 2951 HeapRegion* cur = r; 2952 while (cur != NULL) { 2953 HeapRegion* next = cur->next_in_collection_set(); 2954 if (cl->doHeapRegion(cur) && false) { 2955 cl->incomplete(); 2956 return; 2957 } 2958 cur = next; 2959 } 2960 cur = g1_policy()->collection_set(); 2961 while (cur != r) { 2962 HeapRegion* next = cur->next_in_collection_set(); 2963 if (cl->doHeapRegion(cur) && false) { 2964 cl->incomplete(); 2965 return; 2966 } 2967 cur = next; 2968 } 2969 } 2970 2971 CompactibleSpace* G1CollectedHeap::first_compactible_space() { 2972 return n_regions() > 0 ? region_at(0) : NULL; 2973 } 2974 2975 2976 Space* G1CollectedHeap::space_containing(const void* addr) const { 2977 return heap_region_containing(addr); 2978 } 2979 2980 HeapWord* G1CollectedHeap::block_start(const void* addr) const { 2981 Space* sp = space_containing(addr); 2982 return sp->block_start(addr); 2983 } 2984 2985 size_t G1CollectedHeap::block_size(const HeapWord* addr) const { 2986 Space* sp = space_containing(addr); 2987 return sp->block_size(addr); 2988 } 2989 2990 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { 2991 Space* sp = space_containing(addr); 2992 return sp->block_is_obj(addr); 2993 } 2994 2995 bool G1CollectedHeap::supports_tlab_allocation() const { 2996 return true; 2997 } 2998 2999 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { 3000 return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes; 3001 } 3002 3003 size_t G1CollectedHeap::tlab_used(Thread* ignored) const { 3004 return young_list()->eden_used_bytes(); 3005 } 3006 3007 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size 3008 // must be smaller than the humongous object limit. 3009 size_t G1CollectedHeap::max_tlab_size() const { 3010 return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment); 3011 } 3012 3013 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { 3014 // Return the remaining space in the cur alloc region, but not less than 3015 // the min TLAB size. 3016 3017 // Also, this value can be at most the humongous object threshold, 3018 // since we can't allow tlabs to grow big enough to accommodate 3019 // humongous objects. 3020 3021 HeapRegion* hr = _mutator_alloc_region.get(); 3022 size_t max_tlab = max_tlab_size() * wordSize; 3023 if (hr == NULL) { 3024 return max_tlab; 3025 } else { 3026 return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab); 3027 } 3028 } 3029 3030 size_t G1CollectedHeap::max_capacity() const { 3031 return _g1_reserved.byte_size(); 3032 } 3033 3034 jlong G1CollectedHeap::millis_since_last_gc() { 3035 // assert(false, "NYI"); 3036 return 0; 3037 } 3038 3039 void G1CollectedHeap::prepare_for_verify() { 3040 if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) { 3041 ensure_parsability(false); 3042 } 3043 g1_rem_set()->prepare_for_verify(); 3044 } 3045 3046 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr, 3047 VerifyOption vo) { 3048 switch (vo) { 3049 case VerifyOption_G1UsePrevMarking: 3050 return hr->obj_allocated_since_prev_marking(obj); 3051 case VerifyOption_G1UseNextMarking: 3052 return hr->obj_allocated_since_next_marking(obj); 3053 case VerifyOption_G1UseMarkWord: 3054 return false; 3055 default: 3056 ShouldNotReachHere(); 3057 } 3058 return false; // keep some compilers happy 3059 } 3060 3061 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) { 3062 switch (vo) { 3063 case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start(); 3064 case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start(); 3065 case VerifyOption_G1UseMarkWord: return NULL; 3066 default: ShouldNotReachHere(); 3067 } 3068 return NULL; // keep some compilers happy 3069 } 3070 3071 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) { 3072 switch (vo) { 3073 case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj); 3074 case VerifyOption_G1UseNextMarking: return isMarkedNext(obj); 3075 case VerifyOption_G1UseMarkWord: return obj->is_gc_marked(); 3076 default: ShouldNotReachHere(); 3077 } 3078 return false; // keep some compilers happy 3079 } 3080 3081 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) { 3082 switch (vo) { 3083 case VerifyOption_G1UsePrevMarking: return "PTAMS"; 3084 case VerifyOption_G1UseNextMarking: return "NTAMS"; 3085 case VerifyOption_G1UseMarkWord: return "NONE"; 3086 default: ShouldNotReachHere(); 3087 } 3088 return NULL; // keep some compilers happy 3089 } 3090 3091 class VerifyRootsClosure: public OopClosure { 3092 private: 3093 G1CollectedHeap* _g1h; 3094 VerifyOption _vo; 3095 bool _failures; 3096 public: 3097 // _vo == UsePrevMarking -> use "prev" marking information, 3098 // _vo == UseNextMarking -> use "next" marking information, 3099 // _vo == UseMarkWord -> use mark word from object header. 3100 VerifyRootsClosure(VerifyOption vo) : 3101 _g1h(G1CollectedHeap::heap()), 3102 _vo(vo), 3103 _failures(false) { } 3104 3105 bool failures() { return _failures; } 3106 3107 template <class T> void do_oop_nv(T* p) { 3108 T heap_oop = oopDesc::load_heap_oop(p); 3109 if (!oopDesc::is_null(heap_oop)) { 3110 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 3111 if (_g1h->is_obj_dead_cond(obj, _vo)) { 3112 gclog_or_tty->print_cr("Root location "PTR_FORMAT" " 3113 "points to dead obj "PTR_FORMAT, p, (void*) obj); 3114 if (_vo == VerifyOption_G1UseMarkWord) { 3115 gclog_or_tty->print_cr(" Mark word: "PTR_FORMAT, (void*)(obj->mark())); 3116 } 3117 obj->print_on(gclog_or_tty); 3118 _failures = true; 3119 } 3120 } 3121 } 3122 3123 void do_oop(oop* p) { do_oop_nv(p); } 3124 void do_oop(narrowOop* p) { do_oop_nv(p); } 3125 }; 3126 3127 class G1VerifyCodeRootOopClosure: public OopClosure { 3128 G1CollectedHeap* _g1h; 3129 OopClosure* _root_cl; 3130 nmethod* _nm; 3131 VerifyOption _vo; 3132 bool _failures; 3133 3134 template <class T> void do_oop_work(T* p) { 3135 // First verify that this root is live 3136 _root_cl->do_oop(p); 3137 3138 if (!G1VerifyHeapRegionCodeRoots) { 3139 // We're not verifying the code roots attached to heap region. 3140 return; 3141 } 3142 3143 // Don't check the code roots during marking verification in a full GC 3144 if (_vo == VerifyOption_G1UseMarkWord) { 3145 return; 3146 } 3147 3148 // Now verify that the current nmethod (which contains p) is 3149 // in the code root list of the heap region containing the 3150 // object referenced by p. 3151 3152 T heap_oop = oopDesc::load_heap_oop(p); 3153 if (!oopDesc::is_null(heap_oop)) { 3154 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 3155 3156 // Now fetch the region containing the object 3157 HeapRegion* hr = _g1h->heap_region_containing(obj); 3158 HeapRegionRemSet* hrrs = hr->rem_set(); 3159 // Verify that the strong code root list for this region 3160 // contains the nmethod 3161 if (!hrrs->strong_code_roots_list_contains(_nm)) { 3162 gclog_or_tty->print_cr("Code root location "PTR_FORMAT" " 3163 "from nmethod "PTR_FORMAT" not in strong " 3164 "code roots for region ["PTR_FORMAT","PTR_FORMAT")", 3165 p, _nm, hr->bottom(), hr->end()); 3166 _failures = true; 3167 } 3168 } 3169 } 3170 3171 public: 3172 G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo): 3173 _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {} 3174 3175 void do_oop(oop* p) { do_oop_work(p); } 3176 void do_oop(narrowOop* p) { do_oop_work(p); } 3177 3178 void set_nmethod(nmethod* nm) { _nm = nm; } 3179 bool failures() { return _failures; } 3180 }; 3181 3182 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure { 3183 G1VerifyCodeRootOopClosure* _oop_cl; 3184 3185 public: 3186 G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl): 3187 _oop_cl(oop_cl) {} 3188 3189 void do_code_blob(CodeBlob* cb) { 3190 nmethod* nm = cb->as_nmethod_or_null(); 3191 if (nm != NULL) { 3192 _oop_cl->set_nmethod(nm); 3193 nm->oops_do(_oop_cl); 3194 } 3195 } 3196 }; 3197 3198 class YoungRefCounterClosure : public OopClosure { 3199 G1CollectedHeap* _g1h; 3200 int _count; 3201 public: 3202 YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {} 3203 void do_oop(oop* p) { if (_g1h->is_in_young(*p)) { _count++; } } 3204 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 3205 3206 int count() { return _count; } 3207 void reset_count() { _count = 0; }; 3208 }; 3209 3210 class VerifyKlassClosure: public KlassClosure { 3211 YoungRefCounterClosure _young_ref_counter_closure; 3212 OopClosure *_oop_closure; 3213 public: 3214 VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {} 3215 void do_klass(Klass* k) { 3216 k->oops_do(_oop_closure); 3217 3218 _young_ref_counter_closure.reset_count(); 3219 k->oops_do(&_young_ref_counter_closure); 3220 if (_young_ref_counter_closure.count() > 0) { 3221 guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k)); 3222 } 3223 } 3224 }; 3225 3226 class VerifyLivenessOopClosure: public OopClosure { 3227 G1CollectedHeap* _g1h; 3228 VerifyOption _vo; 3229 public: 3230 VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo): 3231 _g1h(g1h), _vo(vo) 3232 { } 3233 void do_oop(narrowOop *p) { do_oop_work(p); } 3234 void do_oop( oop *p) { do_oop_work(p); } 3235 3236 template <class T> void do_oop_work(T *p) { 3237 oop obj = oopDesc::load_decode_heap_oop(p); 3238 guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo), 3239 "Dead object referenced by a not dead object"); 3240 } 3241 }; 3242 3243 class VerifyObjsInRegionClosure: public ObjectClosure { 3244 private: 3245 G1CollectedHeap* _g1h; 3246 size_t _live_bytes; 3247 HeapRegion *_hr; 3248 VerifyOption _vo; 3249 public: 3250 // _vo == UsePrevMarking -> use "prev" marking information, 3251 // _vo == UseNextMarking -> use "next" marking information, 3252 // _vo == UseMarkWord -> use mark word from object header. 3253 VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo) 3254 : _live_bytes(0), _hr(hr), _vo(vo) { 3255 _g1h = G1CollectedHeap::heap(); 3256 } 3257 void do_object(oop o) { 3258 VerifyLivenessOopClosure isLive(_g1h, _vo); 3259 assert(o != NULL, "Huh?"); 3260 if (!_g1h->is_obj_dead_cond(o, _vo)) { 3261 // If the object is alive according to the mark word, 3262 // then verify that the marking information agrees. 3263 // Note we can't verify the contra-positive of the 3264 // above: if the object is dead (according to the mark 3265 // word), it may not be marked, or may have been marked 3266 // but has since became dead, or may have been allocated 3267 // since the last marking. 3268 if (_vo == VerifyOption_G1UseMarkWord) { 3269 guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch"); 3270 } 3271 3272 o->oop_iterate_no_header(&isLive); 3273 if (!_hr->obj_allocated_since_prev_marking(o)) { 3274 size_t obj_size = o->size(); // Make sure we don't overflow 3275 _live_bytes += (obj_size * HeapWordSize); 3276 } 3277 } 3278 } 3279 size_t live_bytes() { return _live_bytes; } 3280 }; 3281 3282 class PrintObjsInRegionClosure : public ObjectClosure { 3283 HeapRegion *_hr; 3284 G1CollectedHeap *_g1; 3285 public: 3286 PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) { 3287 _g1 = G1CollectedHeap::heap(); 3288 }; 3289 3290 void do_object(oop o) { 3291 if (o != NULL) { 3292 HeapWord *start = (HeapWord *) o; 3293 size_t word_sz = o->size(); 3294 gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT 3295 " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n", 3296 (void*) o, word_sz, 3297 _g1->isMarkedPrev(o), 3298 _g1->isMarkedNext(o), 3299 _hr->obj_allocated_since_prev_marking(o)); 3300 HeapWord *end = start + word_sz; 3301 HeapWord *cur; 3302 int *val; 3303 for (cur = start; cur < end; cur++) { 3304 val = (int *) cur; 3305 gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val); 3306 } 3307 } 3308 } 3309 }; 3310 3311 class VerifyRegionClosure: public HeapRegionClosure { 3312 private: 3313 bool _par; 3314 VerifyOption _vo; 3315 bool _failures; 3316 public: 3317 // _vo == UsePrevMarking -> use "prev" marking information, 3318 // _vo == UseNextMarking -> use "next" marking information, 3319 // _vo == UseMarkWord -> use mark word from object header. 3320 VerifyRegionClosure(bool par, VerifyOption vo) 3321 : _par(par), 3322 _vo(vo), 3323 _failures(false) {} 3324 3325 bool failures() { 3326 return _failures; 3327 } 3328 3329 bool doHeapRegion(HeapRegion* r) { 3330 if (!r->continuesHumongous()) { 3331 bool failures = false; 3332 r->verify(_vo, &failures); 3333 if (failures) { 3334 _failures = true; 3335 } else { 3336 VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo); 3337 r->object_iterate(¬_dead_yet_cl); 3338 if (_vo != VerifyOption_G1UseNextMarking) { 3339 if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) { 3340 gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] " 3341 "max_live_bytes "SIZE_FORMAT" " 3342 "< calculated "SIZE_FORMAT, 3343 r->bottom(), r->end(), 3344 r->max_live_bytes(), 3345 not_dead_yet_cl.live_bytes()); 3346 _failures = true; 3347 } 3348 } else { 3349 // When vo == UseNextMarking we cannot currently do a sanity 3350 // check on the live bytes as the calculation has not been 3351 // finalized yet. 3352 } 3353 } 3354 } 3355 return false; // stop the region iteration if we hit a failure 3356 } 3357 }; 3358 3359 // This is the task used for parallel verification of the heap regions 3360 3361 class G1ParVerifyTask: public AbstractGangTask { 3362 private: 3363 G1CollectedHeap* _g1h; 3364 VerifyOption _vo; 3365 bool _failures; 3366 3367 public: 3368 // _vo == UsePrevMarking -> use "prev" marking information, 3369 // _vo == UseNextMarking -> use "next" marking information, 3370 // _vo == UseMarkWord -> use mark word from object header. 3371 G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) : 3372 AbstractGangTask("Parallel verify task"), 3373 _g1h(g1h), 3374 _vo(vo), 3375 _failures(false) { } 3376 3377 bool failures() { 3378 return _failures; 3379 } 3380 3381 void work(uint worker_id) { 3382 HandleMark hm; 3383 VerifyRegionClosure blk(true, _vo); 3384 _g1h->heap_region_par_iterate_chunked(&blk, worker_id, 3385 _g1h->workers()->active_workers(), 3386 HeapRegion::ParVerifyClaimValue); 3387 if (blk.failures()) { 3388 _failures = true; 3389 } 3390 } 3391 }; 3392 3393 void G1CollectedHeap::verify(bool silent, VerifyOption vo) { 3394 if (SafepointSynchronize::is_at_safepoint()) { 3395 assert(Thread::current()->is_VM_thread(), 3396 "Expected to be executed serially by the VM thread at this point"); 3397 3398 if (!silent) { gclog_or_tty->print("Roots "); } 3399 VerifyRootsClosure rootsCl(vo); 3400 VerifyKlassClosure klassCl(this, &rootsCl); 3401 3402 // We apply the relevant closures to all the oops in the 3403 // system dictionary, class loader data graph and the string table. 3404 // Don't verify the code cache here, since it's verified below. 3405 const int so = SO_AllClasses | SO_Strings; 3406 3407 // Need cleared claim bits for the strong roots processing 3408 ClassLoaderDataGraph::clear_claimed_marks(); 3409 3410 process_strong_roots(true, // activate StrongRootsScope 3411 ScanningOption(so), // roots scanning options 3412 &rootsCl, 3413 &klassCl 3414 ); 3415 3416 // Verify the nmethods in the code cache. 3417 G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo); 3418 G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl); 3419 CodeCache::blobs_do(&blobsCl); 3420 3421 bool failures = rootsCl.failures() || codeRootsCl.failures(); 3422 3423 if (vo != VerifyOption_G1UseMarkWord) { 3424 // If we're verifying during a full GC then the region sets 3425 // will have been torn down at the start of the GC. Therefore 3426 // verifying the region sets will fail. So we only verify 3427 // the region sets when not in a full GC. 3428 if (!silent) { gclog_or_tty->print("HeapRegionSets "); } 3429 verify_region_sets(); 3430 } 3431 3432 if (!silent) { gclog_or_tty->print("HeapRegions "); } 3433 if (GCParallelVerificationEnabled && ParallelGCThreads > 1) { 3434 assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue), 3435 "sanity check"); 3436 3437 G1ParVerifyTask task(this, vo); 3438 assert(UseDynamicNumberOfGCThreads || 3439 workers()->active_workers() == workers()->total_workers(), 3440 "If not dynamic should be using all the workers"); 3441 int n_workers = workers()->active_workers(); 3442 set_par_threads(n_workers); 3443 workers()->run_task(&task); 3444 set_par_threads(0); 3445 if (task.failures()) { 3446 failures = true; 3447 } 3448 3449 // Checks that the expected amount of parallel work was done. 3450 // The implication is that n_workers is > 0. 3451 assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue), 3452 "sanity check"); 3453 3454 reset_heap_region_claim_values(); 3455 3456 assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue), 3457 "sanity check"); 3458 } else { 3459 VerifyRegionClosure blk(false, vo); 3460 heap_region_iterate(&blk); 3461 if (blk.failures()) { 3462 failures = true; 3463 } 3464 } 3465 if (!silent) gclog_or_tty->print("RemSet "); 3466 rem_set()->verify(); 3467 3468 if (G1StringDedup::is_enabled()) { 3469 if (!silent) gclog_or_tty->print("StrDedup "); 3470 G1StringDedup::verify(); 3471 } 3472 3473 if (failures) { 3474 gclog_or_tty->print_cr("Heap:"); 3475 // It helps to have the per-region information in the output to 3476 // help us track down what went wrong. This is why we call 3477 // print_extended_on() instead of print_on(). 3478 print_extended_on(gclog_or_tty); 3479 gclog_or_tty->cr(); 3480 #ifndef PRODUCT 3481 if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) { 3482 concurrent_mark()->print_reachable("at-verification-failure", 3483 vo, false /* all */); 3484 } 3485 #endif 3486 gclog_or_tty->flush(); 3487 } 3488 guarantee(!failures, "there should not have been any failures"); 3489 } else { 3490 if (!silent) { 3491 gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet"); 3492 if (G1StringDedup::is_enabled()) { 3493 gclog_or_tty->print(", StrDedup"); 3494 } 3495 gclog_or_tty->print(") "); 3496 } 3497 } 3498 } 3499 3500 void G1CollectedHeap::verify(bool silent) { 3501 verify(silent, VerifyOption_G1UsePrevMarking); 3502 } 3503 3504 double G1CollectedHeap::verify(bool guard, const char* msg) { 3505 double verify_time_ms = 0.0; 3506 3507 if (guard && total_collections() >= VerifyGCStartAt) { 3508 double verify_start = os::elapsedTime(); 3509 HandleMark hm; // Discard invalid handles created during verification 3510 prepare_for_verify(); 3511 Universe::verify(VerifyOption_G1UsePrevMarking, msg); 3512 verify_time_ms = (os::elapsedTime() - verify_start) * 1000; 3513 } 3514 3515 return verify_time_ms; 3516 } 3517 3518 void G1CollectedHeap::verify_before_gc() { 3519 double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:"); 3520 g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms); 3521 } 3522 3523 void G1CollectedHeap::verify_after_gc() { 3524 double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:"); 3525 g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms); 3526 } 3527 3528 class PrintRegionClosure: public HeapRegionClosure { 3529 outputStream* _st; 3530 public: 3531 PrintRegionClosure(outputStream* st) : _st(st) {} 3532 bool doHeapRegion(HeapRegion* r) { 3533 r->print_on(_st); 3534 return false; 3535 } 3536 }; 3537 3538 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 3539 const HeapRegion* hr, 3540 const VerifyOption vo) const { 3541 switch (vo) { 3542 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr); 3543 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr); 3544 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked(); 3545 default: ShouldNotReachHere(); 3546 } 3547 return false; // keep some compilers happy 3548 } 3549 3550 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 3551 const VerifyOption vo) const { 3552 switch (vo) { 3553 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj); 3554 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj); 3555 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked(); 3556 default: ShouldNotReachHere(); 3557 } 3558 return false; // keep some compilers happy 3559 } 3560 3561 void G1CollectedHeap::print_on(outputStream* st) const { 3562 st->print(" %-20s", "garbage-first heap"); 3563 st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", 3564 capacity()/K, used_unlocked()/K); 3565 st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")", 3566 _g1_storage.low_boundary(), 3567 _g1_storage.high(), 3568 _g1_storage.high_boundary()); 3569 st->cr(); 3570 st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K); 3571 uint young_regions = _young_list->length(); 3572 st->print("%u young (" SIZE_FORMAT "K), ", young_regions, 3573 (size_t) young_regions * HeapRegion::GrainBytes / K); 3574 uint survivor_regions = g1_policy()->recorded_survivor_regions(); 3575 st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions, 3576 (size_t) survivor_regions * HeapRegion::GrainBytes / K); 3577 st->cr(); 3578 MetaspaceAux::print_on(st); 3579 } 3580 3581 void G1CollectedHeap::print_extended_on(outputStream* st) const { 3582 print_on(st); 3583 3584 // Print the per-region information. 3585 st->cr(); 3586 st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), " 3587 "HS=humongous(starts), HC=humongous(continues), " 3588 "CS=collection set, F=free, TS=gc time stamp, " 3589 "PTAMS=previous top-at-mark-start, " 3590 "NTAMS=next top-at-mark-start)"); 3591 PrintRegionClosure blk(st); 3592 heap_region_iterate(&blk); 3593 } 3594 3595 void G1CollectedHeap::print_on_error(outputStream* st) const { 3596 this->CollectedHeap::print_on_error(st); 3597 3598 if (_cm != NULL) { 3599 st->cr(); 3600 _cm->print_on_error(st); 3601 } 3602 } 3603 3604 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const { 3605 if (G1CollectedHeap::use_parallel_gc_threads()) { 3606 workers()->print_worker_threads_on(st); 3607 } 3608 _cmThread->print_on(st); 3609 st->cr(); 3610 _cm->print_worker_threads_on(st); 3611 _cg1r->print_worker_threads_on(st); 3612 if (G1StringDedup::is_enabled()) { 3613 G1StringDedup::print_worker_threads_on(st); 3614 } 3615 } 3616 3617 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { 3618 if (G1CollectedHeap::use_parallel_gc_threads()) { 3619 workers()->threads_do(tc); 3620 } 3621 tc->do_thread(_cmThread); 3622 _cg1r->threads_do(tc); 3623 if (G1StringDedup::is_enabled()) { 3624 G1StringDedup::threads_do(tc); 3625 } 3626 } 3627 3628 void G1CollectedHeap::print_tracing_info() const { 3629 // We'll overload this to mean "trace GC pause statistics." 3630 if (TraceGen0Time || TraceGen1Time) { 3631 // The "G1CollectorPolicy" is keeping track of these stats, so delegate 3632 // to that. 3633 g1_policy()->print_tracing_info(); 3634 } 3635 if (G1SummarizeRSetStats) { 3636 g1_rem_set()->print_summary_info(); 3637 } 3638 if (G1SummarizeConcMark) { 3639 concurrent_mark()->print_summary_info(); 3640 } 3641 g1_policy()->print_yg_surv_rate_info(); 3642 SpecializationStats::print(); 3643 } 3644 3645 #ifndef PRODUCT 3646 // Helpful for debugging RSet issues. 3647 3648 class PrintRSetsClosure : public HeapRegionClosure { 3649 private: 3650 const char* _msg; 3651 size_t _occupied_sum; 3652 3653 public: 3654 bool doHeapRegion(HeapRegion* r) { 3655 HeapRegionRemSet* hrrs = r->rem_set(); 3656 size_t occupied = hrrs->occupied(); 3657 _occupied_sum += occupied; 3658 3659 gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT, 3660 HR_FORMAT_PARAMS(r)); 3661 if (occupied == 0) { 3662 gclog_or_tty->print_cr(" RSet is empty"); 3663 } else { 3664 hrrs->print(); 3665 } 3666 gclog_or_tty->print_cr("----------"); 3667 return false; 3668 } 3669 3670 PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) { 3671 gclog_or_tty->cr(); 3672 gclog_or_tty->print_cr("========================================"); 3673 gclog_or_tty->print_cr("%s", msg); 3674 gclog_or_tty->cr(); 3675 } 3676 3677 ~PrintRSetsClosure() { 3678 gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum); 3679 gclog_or_tty->print_cr("========================================"); 3680 gclog_or_tty->cr(); 3681 } 3682 }; 3683 3684 void G1CollectedHeap::print_cset_rsets() { 3685 PrintRSetsClosure cl("Printing CSet RSets"); 3686 collection_set_iterate(&cl); 3687 } 3688 3689 void G1CollectedHeap::print_all_rsets() { 3690 PrintRSetsClosure cl("Printing All RSets");; 3691 heap_region_iterate(&cl); 3692 } 3693 #endif // PRODUCT 3694 3695 G1CollectedHeap* G1CollectedHeap::heap() { 3696 assert(_sh->kind() == CollectedHeap::G1CollectedHeap, 3697 "not a garbage-first heap"); 3698 return _g1h; 3699 } 3700 3701 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) { 3702 // always_do_update_barrier = false; 3703 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); 3704 // Fill TLAB's and such 3705 accumulate_statistics_all_tlabs(); 3706 ensure_parsability(true); 3707 3708 if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) && 3709 (total_collections() % G1SummarizeRSetStatsPeriod == 0)) { 3710 g1_rem_set()->print_periodic_summary_info("Before GC RS summary"); 3711 } 3712 } 3713 3714 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) { 3715 3716 if (G1SummarizeRSetStats && 3717 (G1SummarizeRSetStatsPeriod > 0) && 3718 // we are at the end of the GC. Total collections has already been increased. 3719 ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) { 3720 g1_rem_set()->print_periodic_summary_info("After GC RS summary"); 3721 } 3722 3723 // FIXME: what is this about? 3724 // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled" 3725 // is set. 3726 COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(), 3727 "derived pointer present")); 3728 // always_do_update_barrier = true; 3729 3730 resize_all_tlabs(); 3731 3732 // We have just completed a GC. Update the soft reference 3733 // policy with the new heap occupancy 3734 Universe::update_heap_info_at_gc(); 3735 } 3736 3737 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size, 3738 unsigned int gc_count_before, 3739 bool* succeeded, 3740 GCCause::Cause gc_cause) { 3741 assert_heap_not_locked_and_not_at_safepoint(); 3742 g1_policy()->record_stop_world_start(); 3743 VM_G1IncCollectionPause op(gc_count_before, 3744 word_size, 3745 false, /* should_initiate_conc_mark */ 3746 g1_policy()->max_pause_time_ms(), 3747 gc_cause); 3748 VMThread::execute(&op); 3749 3750 HeapWord* result = op.result(); 3751 bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded(); 3752 assert(result == NULL || ret_succeeded, 3753 "the result should be NULL if the VM did not succeed"); 3754 *succeeded = ret_succeeded; 3755 3756 assert_heap_not_locked(); 3757 return result; 3758 } 3759 3760 void 3761 G1CollectedHeap::doConcurrentMark() { 3762 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 3763 if (!_cmThread->in_progress()) { 3764 _cmThread->set_started(); 3765 CGC_lock->notify(); 3766 } 3767 } 3768 3769 size_t G1CollectedHeap::pending_card_num() { 3770 size_t extra_cards = 0; 3771 JavaThread *curr = Threads::first(); 3772 while (curr != NULL) { 3773 DirtyCardQueue& dcq = curr->dirty_card_queue(); 3774 extra_cards += dcq.size(); 3775 curr = curr->next(); 3776 } 3777 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 3778 size_t buffer_size = dcqs.buffer_size(); 3779 size_t buffer_num = dcqs.completed_buffers_num(); 3780 3781 // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes 3782 // in bytes - not the number of 'entries'. We need to convert 3783 // into a number of cards. 3784 return (buffer_size * buffer_num + extra_cards) / oopSize; 3785 } 3786 3787 size_t G1CollectedHeap::cards_scanned() { 3788 return g1_rem_set()->cardsScanned(); 3789 } 3790 3791 void 3792 G1CollectedHeap::setup_surviving_young_words() { 3793 assert(_surviving_young_words == NULL, "pre-condition"); 3794 uint array_length = g1_policy()->young_cset_region_length(); 3795 _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC); 3796 if (_surviving_young_words == NULL) { 3797 vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR, 3798 "Not enough space for young surv words summary."); 3799 } 3800 memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t)); 3801 #ifdef ASSERT 3802 for (uint i = 0; i < array_length; ++i) { 3803 assert( _surviving_young_words[i] == 0, "memset above" ); 3804 } 3805 #endif // !ASSERT 3806 } 3807 3808 void 3809 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) { 3810 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 3811 uint array_length = g1_policy()->young_cset_region_length(); 3812 for (uint i = 0; i < array_length; ++i) { 3813 _surviving_young_words[i] += surv_young_words[i]; 3814 } 3815 } 3816 3817 void 3818 G1CollectedHeap::cleanup_surviving_young_words() { 3819 guarantee( _surviving_young_words != NULL, "pre-condition" ); 3820 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC); 3821 _surviving_young_words = NULL; 3822 } 3823 3824 #ifdef ASSERT 3825 class VerifyCSetClosure: public HeapRegionClosure { 3826 public: 3827 bool doHeapRegion(HeapRegion* hr) { 3828 // Here we check that the CSet region's RSet is ready for parallel 3829 // iteration. The fields that we'll verify are only manipulated 3830 // when the region is part of a CSet and is collected. Afterwards, 3831 // we reset these fields when we clear the region's RSet (when the 3832 // region is freed) so they are ready when the region is 3833 // re-allocated. The only exception to this is if there's an 3834 // evacuation failure and instead of freeing the region we leave 3835 // it in the heap. In that case, we reset these fields during 3836 // evacuation failure handling. 3837 guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification"); 3838 3839 // Here's a good place to add any other checks we'd like to 3840 // perform on CSet regions. 3841 return false; 3842 } 3843 }; 3844 #endif // ASSERT 3845 3846 #if TASKQUEUE_STATS 3847 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) { 3848 st->print_raw_cr("GC Task Stats"); 3849 st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr(); 3850 st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr(); 3851 } 3852 3853 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const { 3854 print_taskqueue_stats_hdr(st); 3855 3856 TaskQueueStats totals; 3857 const int n = workers() != NULL ? workers()->total_workers() : 1; 3858 for (int i = 0; i < n; ++i) { 3859 st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr(); 3860 totals += task_queue(i)->stats; 3861 } 3862 st->print_raw("tot "); totals.print(st); st->cr(); 3863 3864 DEBUG_ONLY(totals.verify()); 3865 } 3866 3867 void G1CollectedHeap::reset_taskqueue_stats() { 3868 const int n = workers() != NULL ? workers()->total_workers() : 1; 3869 for (int i = 0; i < n; ++i) { 3870 task_queue(i)->stats.reset(); 3871 } 3872 } 3873 #endif // TASKQUEUE_STATS 3874 3875 void G1CollectedHeap::log_gc_header() { 3876 if (!G1Log::fine()) { 3877 return; 3878 } 3879 3880 gclog_or_tty->date_stamp(PrintGCDateStamps); 3881 gclog_or_tty->stamp(PrintGCTimeStamps); 3882 3883 GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause()) 3884 .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)") 3885 .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : ""); 3886 3887 gclog_or_tty->print("[%s", (const char*)gc_cause_str); 3888 } 3889 3890 void G1CollectedHeap::log_gc_footer(double pause_time_sec) { 3891 if (!G1Log::fine()) { 3892 return; 3893 } 3894 3895 if (G1Log::finer()) { 3896 if (evacuation_failed()) { 3897 gclog_or_tty->print(" (to-space exhausted)"); 3898 } 3899 gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec); 3900 g1_policy()->phase_times()->note_gc_end(); 3901 g1_policy()->phase_times()->print(pause_time_sec); 3902 g1_policy()->print_detailed_heap_transition(); 3903 } else { 3904 if (evacuation_failed()) { 3905 gclog_or_tty->print("--"); 3906 } 3907 g1_policy()->print_heap_transition(); 3908 gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec); 3909 } 3910 gclog_or_tty->flush(); 3911 } 3912 3913 bool 3914 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) { 3915 assert_at_safepoint(true /* should_be_vm_thread */); 3916 guarantee(!is_gc_active(), "collection is not reentrant"); 3917 3918 if (GC_locker::check_active_before_gc()) { 3919 return false; 3920 } 3921 3922 _gc_timer_stw->register_gc_start(); 3923 3924 _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start()); 3925 3926 SvcGCMarker sgcm(SvcGCMarker::MINOR); 3927 ResourceMark rm; 3928 3929 print_heap_before_gc(); 3930 trace_heap_before_gc(_gc_tracer_stw); 3931 3932 verify_region_sets_optional(); 3933 verify_dirty_young_regions(); 3934 3935 // This call will decide whether this pause is an initial-mark 3936 // pause. If it is, during_initial_mark_pause() will return true 3937 // for the duration of this pause. 3938 g1_policy()->decide_on_conc_mark_initiation(); 3939 3940 // We do not allow initial-mark to be piggy-backed on a mixed GC. 3941 assert(!g1_policy()->during_initial_mark_pause() || 3942 g1_policy()->gcs_are_young(), "sanity"); 3943 3944 // We also do not allow mixed GCs during marking. 3945 assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity"); 3946 3947 // Record whether this pause is an initial mark. When the current 3948 // thread has completed its logging output and it's safe to signal 3949 // the CM thread, the flag's value in the policy has been reset. 3950 bool should_start_conc_mark = g1_policy()->during_initial_mark_pause(); 3951 3952 // Inner scope for scope based logging, timers, and stats collection 3953 { 3954 EvacuationInfo evacuation_info; 3955 3956 if (g1_policy()->during_initial_mark_pause()) { 3957 // We are about to start a marking cycle, so we increment the 3958 // full collection counter. 3959 increment_old_marking_cycles_started(); 3960 register_concurrent_cycle_start(_gc_timer_stw->gc_start()); 3961 } 3962 3963 _gc_tracer_stw->report_yc_type(yc_type()); 3964 3965 TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty); 3966 3967 int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ? 3968 workers()->active_workers() : 1); 3969 double pause_start_sec = os::elapsedTime(); 3970 g1_policy()->phase_times()->note_gc_start(active_workers); 3971 log_gc_header(); 3972 3973 TraceCollectorStats tcs(g1mm()->incremental_collection_counters()); 3974 TraceMemoryManagerStats tms(false /* fullGC */, gc_cause()); 3975 3976 // If the secondary_free_list is not empty, append it to the 3977 // free_list. No need to wait for the cleanup operation to finish; 3978 // the region allocation code will check the secondary_free_list 3979 // and wait if necessary. If the G1StressConcRegionFreeing flag is 3980 // set, skip this step so that the region allocation code has to 3981 // get entries from the secondary_free_list. 3982 if (!G1StressConcRegionFreeing) { 3983 append_secondary_free_list_if_not_empty_with_lock(); 3984 } 3985 3986 assert(check_young_list_well_formed(), "young list should be well formed"); 3987 assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue), 3988 "sanity check"); 3989 3990 // Don't dynamically change the number of GC threads this early. A value of 3991 // 0 is used to indicate serial work. When parallel work is done, 3992 // it will be set. 3993 3994 { // Call to jvmpi::post_class_unload_events must occur outside of active GC 3995 IsGCActiveMark x; 3996 3997 gc_prologue(false); 3998 increment_total_collections(false /* full gc */); 3999 increment_gc_time_stamp(); 4000 4001 verify_before_gc(); 4002 check_bitmaps("GC Start"); 4003 4004 COMPILER2_PRESENT(DerivedPointerTable::clear()); 4005 4006 // Please see comment in g1CollectedHeap.hpp and 4007 // G1CollectedHeap::ref_processing_init() to see how 4008 // reference processing currently works in G1. 4009 4010 // Enable discovery in the STW reference processor 4011 ref_processor_stw()->enable_discovery(true /*verify_disabled*/, 4012 true /*verify_no_refs*/); 4013 4014 { 4015 // We want to temporarily turn off discovery by the 4016 // CM ref processor, if necessary, and turn it back on 4017 // on again later if we do. Using a scoped 4018 // NoRefDiscovery object will do this. 4019 NoRefDiscovery no_cm_discovery(ref_processor_cm()); 4020 4021 // Forget the current alloc region (we might even choose it to be part 4022 // of the collection set!). 4023 release_mutator_alloc_region(); 4024 4025 // We should call this after we retire the mutator alloc 4026 // region(s) so that all the ALLOC / RETIRE events are generated 4027 // before the start GC event. 4028 _hr_printer.start_gc(false /* full */, (size_t) total_collections()); 4029 4030 // This timing is only used by the ergonomics to handle our pause target. 4031 // It is unclear why this should not include the full pause. We will 4032 // investigate this in CR 7178365. 4033 // 4034 // Preserving the old comment here if that helps the investigation: 4035 // 4036 // The elapsed time induced by the start time below deliberately elides 4037 // the possible verification above. 4038 double sample_start_time_sec = os::elapsedTime(); 4039 4040 #if YOUNG_LIST_VERBOSE 4041 gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:"); 4042 _young_list->print(); 4043 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 4044 #endif // YOUNG_LIST_VERBOSE 4045 4046 g1_policy()->record_collection_pause_start(sample_start_time_sec); 4047 4048 double scan_wait_start = os::elapsedTime(); 4049 // We have to wait until the CM threads finish scanning the 4050 // root regions as it's the only way to ensure that all the 4051 // objects on them have been correctly scanned before we start 4052 // moving them during the GC. 4053 bool waited = _cm->root_regions()->wait_until_scan_finished(); 4054 double wait_time_ms = 0.0; 4055 if (waited) { 4056 double scan_wait_end = os::elapsedTime(); 4057 wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0; 4058 } 4059 g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms); 4060 4061 #if YOUNG_LIST_VERBOSE 4062 gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:"); 4063 _young_list->print(); 4064 #endif // YOUNG_LIST_VERBOSE 4065 4066 if (g1_policy()->during_initial_mark_pause()) { 4067 concurrent_mark()->checkpointRootsInitialPre(); 4068 } 4069 4070 #if YOUNG_LIST_VERBOSE 4071 gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:"); 4072 _young_list->print(); 4073 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 4074 #endif // YOUNG_LIST_VERBOSE 4075 4076 g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info); 4077 4078 _cm->note_start_of_gc(); 4079 // We should not verify the per-thread SATB buffers given that 4080 // we have not filtered them yet (we'll do so during the 4081 // GC). We also call this after finalize_cset() to 4082 // ensure that the CSet has been finalized. 4083 _cm->verify_no_cset_oops(true /* verify_stacks */, 4084 true /* verify_enqueued_buffers */, 4085 false /* verify_thread_buffers */, 4086 true /* verify_fingers */); 4087 4088 if (_hr_printer.is_active()) { 4089 HeapRegion* hr = g1_policy()->collection_set(); 4090 while (hr != NULL) { 4091 G1HRPrinter::RegionType type; 4092 if (!hr->is_young()) { 4093 type = G1HRPrinter::Old; 4094 } else if (hr->is_survivor()) { 4095 type = G1HRPrinter::Survivor; 4096 } else { 4097 type = G1HRPrinter::Eden; 4098 } 4099 _hr_printer.cset(hr); 4100 hr = hr->next_in_collection_set(); 4101 } 4102 } 4103 4104 #ifdef ASSERT 4105 VerifyCSetClosure cl; 4106 collection_set_iterate(&cl); 4107 #endif // ASSERT 4108 4109 setup_surviving_young_words(); 4110 4111 // Initialize the GC alloc regions. 4112 init_gc_alloc_regions(evacuation_info); 4113 4114 // Actually do the work... 4115 evacuate_collection_set(evacuation_info); 4116 4117 // We do this to mainly verify the per-thread SATB buffers 4118 // (which have been filtered by now) since we didn't verify 4119 // them earlier. No point in re-checking the stacks / enqueued 4120 // buffers given that the CSet has not changed since last time 4121 // we checked. 4122 _cm->verify_no_cset_oops(false /* verify_stacks */, 4123 false /* verify_enqueued_buffers */, 4124 true /* verify_thread_buffers */, 4125 true /* verify_fingers */); 4126 4127 free_collection_set(g1_policy()->collection_set(), evacuation_info); 4128 g1_policy()->clear_collection_set(); 4129 4130 cleanup_surviving_young_words(); 4131 4132 // Start a new incremental collection set for the next pause. 4133 g1_policy()->start_incremental_cset_building(); 4134 4135 clear_cset_fast_test(); 4136 4137 _young_list->reset_sampled_info(); 4138 4139 // Don't check the whole heap at this point as the 4140 // GC alloc regions from this pause have been tagged 4141 // as survivors and moved on to the survivor list. 4142 // Survivor regions will fail the !is_young() check. 4143 assert(check_young_list_empty(false /* check_heap */), 4144 "young list should be empty"); 4145 4146 #if YOUNG_LIST_VERBOSE 4147 gclog_or_tty->print_cr("Before recording survivors.\nYoung List:"); 4148 _young_list->print(); 4149 #endif // YOUNG_LIST_VERBOSE 4150 4151 g1_policy()->record_survivor_regions(_young_list->survivor_length(), 4152 _young_list->first_survivor_region(), 4153 _young_list->last_survivor_region()); 4154 4155 _young_list->reset_auxilary_lists(); 4156 4157 if (evacuation_failed()) { 4158 _summary_bytes_used = recalculate_used(); 4159 uint n_queues = MAX2((int)ParallelGCThreads, 1); 4160 for (uint i = 0; i < n_queues; i++) { 4161 if (_evacuation_failed_info_array[i].has_failed()) { 4162 _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]); 4163 } 4164 } 4165 } else { 4166 // The "used" of the the collection set have already been subtracted 4167 // when they were freed. Add in the bytes evacuated. 4168 _summary_bytes_used += g1_policy()->bytes_copied_during_gc(); 4169 } 4170 4171 if (g1_policy()->during_initial_mark_pause()) { 4172 // We have to do this before we notify the CM threads that 4173 // they can start working to make sure that all the 4174 // appropriate initialization is done on the CM object. 4175 concurrent_mark()->checkpointRootsInitialPost(); 4176 set_marking_started(); 4177 // Note that we don't actually trigger the CM thread at 4178 // this point. We do that later when we're sure that 4179 // the current thread has completed its logging output. 4180 } 4181 4182 allocate_dummy_regions(); 4183 4184 #if YOUNG_LIST_VERBOSE 4185 gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:"); 4186 _young_list->print(); 4187 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 4188 #endif // YOUNG_LIST_VERBOSE 4189 4190 init_mutator_alloc_region(); 4191 4192 { 4193 size_t expand_bytes = g1_policy()->expansion_amount(); 4194 if (expand_bytes > 0) { 4195 size_t bytes_before = capacity(); 4196 // No need for an ergo verbose message here, 4197 // expansion_amount() does this when it returns a value > 0. 4198 if (!expand(expand_bytes)) { 4199 // We failed to expand the heap so let's verify that 4200 // committed/uncommitted amount match the backing store 4201 assert(capacity() == _g1_storage.committed_size(), "committed size mismatch"); 4202 assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch"); 4203 } 4204 } 4205 } 4206 4207 // We redo the verification but now wrt to the new CSet which 4208 // has just got initialized after the previous CSet was freed. 4209 _cm->verify_no_cset_oops(true /* verify_stacks */, 4210 true /* verify_enqueued_buffers */, 4211 true /* verify_thread_buffers */, 4212 true /* verify_fingers */); 4213 _cm->note_end_of_gc(); 4214 4215 // This timing is only used by the ergonomics to handle our pause target. 4216 // It is unclear why this should not include the full pause. We will 4217 // investigate this in CR 7178365. 4218 double sample_end_time_sec = os::elapsedTime(); 4219 double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS; 4220 g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info); 4221 4222 MemoryService::track_memory_usage(); 4223 4224 // In prepare_for_verify() below we'll need to scan the deferred 4225 // update buffers to bring the RSets up-to-date if 4226 // G1HRRSFlushLogBuffersOnVerify has been set. While scanning 4227 // the update buffers we'll probably need to scan cards on the 4228 // regions we just allocated to (i.e., the GC alloc 4229 // regions). However, during the last GC we called 4230 // set_saved_mark() on all the GC alloc regions, so card 4231 // scanning might skip the [saved_mark_word()...top()] area of 4232 // those regions (i.e., the area we allocated objects into 4233 // during the last GC). But it shouldn't. Given that 4234 // saved_mark_word() is conditional on whether the GC time stamp 4235 // on the region is current or not, by incrementing the GC time 4236 // stamp here we invalidate all the GC time stamps on all the 4237 // regions and saved_mark_word() will simply return top() for 4238 // all the regions. This is a nicer way of ensuring this rather 4239 // than iterating over the regions and fixing them. In fact, the 4240 // GC time stamp increment here also ensures that 4241 // saved_mark_word() will return top() between pauses, i.e., 4242 // during concurrent refinement. So we don't need the 4243 // is_gc_active() check to decided which top to use when 4244 // scanning cards (see CR 7039627). 4245 increment_gc_time_stamp(); 4246 4247 verify_after_gc(); 4248 check_bitmaps("GC End"); 4249 4250 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 4251 ref_processor_stw()->verify_no_references_recorded(); 4252 4253 // CM reference discovery will be re-enabled if necessary. 4254 } 4255 4256 // We should do this after we potentially expand the heap so 4257 // that all the COMMIT events are generated before the end GC 4258 // event, and after we retire the GC alloc regions so that all 4259 // RETIRE events are generated before the end GC event. 4260 _hr_printer.end_gc(false /* full */, (size_t) total_collections()); 4261 4262 if (mark_in_progress()) { 4263 concurrent_mark()->update_g1_committed(); 4264 } 4265 4266 #ifdef TRACESPINNING 4267 ParallelTaskTerminator::print_termination_counts(); 4268 #endif 4269 4270 gc_epilogue(false); 4271 } 4272 4273 // Print the remainder of the GC log output. 4274 log_gc_footer(os::elapsedTime() - pause_start_sec); 4275 4276 // It is not yet to safe to tell the concurrent mark to 4277 // start as we have some optional output below. We don't want the 4278 // output from the concurrent mark thread interfering with this 4279 // logging output either. 4280 4281 _hrs.verify_optional(); 4282 verify_region_sets_optional(); 4283 4284 TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats()); 4285 TASKQUEUE_STATS_ONLY(reset_taskqueue_stats()); 4286 4287 print_heap_after_gc(); 4288 trace_heap_after_gc(_gc_tracer_stw); 4289 4290 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 4291 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 4292 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 4293 // before any GC notifications are raised. 4294 g1mm()->update_sizes(); 4295 4296 _gc_tracer_stw->report_evacuation_info(&evacuation_info); 4297 _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold()); 4298 _gc_timer_stw->register_gc_end(); 4299 _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions()); 4300 } 4301 // It should now be safe to tell the concurrent mark thread to start 4302 // without its logging output interfering with the logging output 4303 // that came from the pause. 4304 4305 if (should_start_conc_mark) { 4306 // CAUTION: after the doConcurrentMark() call below, 4307 // the concurrent marking thread(s) could be running 4308 // concurrently with us. Make sure that anything after 4309 // this point does not assume that we are the only GC thread 4310 // running. Note: of course, the actual marking work will 4311 // not start until the safepoint itself is released in 4312 // SuspendibleThreadSet::desynchronize(). 4313 doConcurrentMark(); 4314 } 4315 4316 return true; 4317 } 4318 4319 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose) 4320 { 4321 size_t gclab_word_size; 4322 switch (purpose) { 4323 case GCAllocForSurvived: 4324 gclab_word_size = _survivor_plab_stats.desired_plab_sz(); 4325 break; 4326 case GCAllocForTenured: 4327 gclab_word_size = _old_plab_stats.desired_plab_sz(); 4328 break; 4329 default: 4330 assert(false, "unknown GCAllocPurpose"); 4331 gclab_word_size = _old_plab_stats.desired_plab_sz(); 4332 break; 4333 } 4334 4335 // Prevent humongous PLAB sizes for two reasons: 4336 // * PLABs are allocated using a similar paths as oops, but should 4337 // never be in a humongous region 4338 // * Allowing humongous PLABs needlessly churns the region free lists 4339 return MIN2(_humongous_object_threshold_in_words, gclab_word_size); 4340 } 4341 4342 void G1CollectedHeap::init_mutator_alloc_region() { 4343 assert(_mutator_alloc_region.get() == NULL, "pre-condition"); 4344 _mutator_alloc_region.init(); 4345 } 4346 4347 void G1CollectedHeap::release_mutator_alloc_region() { 4348 _mutator_alloc_region.release(); 4349 assert(_mutator_alloc_region.get() == NULL, "post-condition"); 4350 } 4351 4352 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) { 4353 assert_at_safepoint(true /* should_be_vm_thread */); 4354 4355 _survivor_gc_alloc_region.init(); 4356 _old_gc_alloc_region.init(); 4357 HeapRegion* retained_region = _retained_old_gc_alloc_region; 4358 _retained_old_gc_alloc_region = NULL; 4359 4360 // We will discard the current GC alloc region if: 4361 // a) it's in the collection set (it can happen!), 4362 // b) it's already full (no point in using it), 4363 // c) it's empty (this means that it was emptied during 4364 // a cleanup and it should be on the free list now), or 4365 // d) it's humongous (this means that it was emptied 4366 // during a cleanup and was added to the free list, but 4367 // has been subsequently used to allocate a humongous 4368 // object that may be less than the region size). 4369 if (retained_region != NULL && 4370 !retained_region->in_collection_set() && 4371 !(retained_region->top() == retained_region->end()) && 4372 !retained_region->is_empty() && 4373 !retained_region->isHumongous()) { 4374 retained_region->set_saved_mark(); 4375 // The retained region was added to the old region set when it was 4376 // retired. We have to remove it now, since we don't allow regions 4377 // we allocate to in the region sets. We'll re-add it later, when 4378 // it's retired again. 4379 _old_set.remove(retained_region); 4380 bool during_im = g1_policy()->during_initial_mark_pause(); 4381 retained_region->note_start_of_copying(during_im); 4382 _old_gc_alloc_region.set(retained_region); 4383 _hr_printer.reuse(retained_region); 4384 evacuation_info.set_alloc_regions_used_before(retained_region->used()); 4385 } 4386 } 4387 4388 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) { 4389 evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() + 4390 _old_gc_alloc_region.count()); 4391 _survivor_gc_alloc_region.release(); 4392 // If we have an old GC alloc region to release, we'll save it in 4393 // _retained_old_gc_alloc_region. If we don't 4394 // _retained_old_gc_alloc_region will become NULL. This is what we 4395 // want either way so no reason to check explicitly for either 4396 // condition. 4397 _retained_old_gc_alloc_region = _old_gc_alloc_region.release(); 4398 4399 if (ResizePLAB) { 4400 _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers); 4401 _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers); 4402 } 4403 } 4404 4405 void G1CollectedHeap::abandon_gc_alloc_regions() { 4406 assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition"); 4407 assert(_old_gc_alloc_region.get() == NULL, "pre-condition"); 4408 _retained_old_gc_alloc_region = NULL; 4409 } 4410 4411 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) { 4412 _drain_in_progress = false; 4413 set_evac_failure_closure(cl); 4414 _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true); 4415 } 4416 4417 void G1CollectedHeap::finalize_for_evac_failure() { 4418 assert(_evac_failure_scan_stack != NULL && 4419 _evac_failure_scan_stack->length() == 0, 4420 "Postcondition"); 4421 assert(!_drain_in_progress, "Postcondition"); 4422 delete _evac_failure_scan_stack; 4423 _evac_failure_scan_stack = NULL; 4424 } 4425 4426 void G1CollectedHeap::remove_self_forwarding_pointers() { 4427 assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity"); 4428 4429 double remove_self_forwards_start = os::elapsedTime(); 4430 4431 G1ParRemoveSelfForwardPtrsTask rsfp_task(this); 4432 4433 if (G1CollectedHeap::use_parallel_gc_threads()) { 4434 set_par_threads(); 4435 workers()->run_task(&rsfp_task); 4436 set_par_threads(0); 4437 } else { 4438 rsfp_task.work(0); 4439 } 4440 4441 assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity"); 4442 4443 // Reset the claim values in the regions in the collection set. 4444 reset_cset_heap_region_claim_values(); 4445 4446 assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity"); 4447 4448 // Now restore saved marks, if any. 4449 assert(_objs_with_preserved_marks.size() == 4450 _preserved_marks_of_objs.size(), "Both or none."); 4451 while (!_objs_with_preserved_marks.is_empty()) { 4452 oop obj = _objs_with_preserved_marks.pop(); 4453 markOop m = _preserved_marks_of_objs.pop(); 4454 obj->set_mark(m); 4455 } 4456 _objs_with_preserved_marks.clear(true); 4457 _preserved_marks_of_objs.clear(true); 4458 4459 g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0); 4460 } 4461 4462 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) { 4463 _evac_failure_scan_stack->push(obj); 4464 } 4465 4466 void G1CollectedHeap::drain_evac_failure_scan_stack() { 4467 assert(_evac_failure_scan_stack != NULL, "precondition"); 4468 4469 while (_evac_failure_scan_stack->length() > 0) { 4470 oop obj = _evac_failure_scan_stack->pop(); 4471 _evac_failure_closure->set_region(heap_region_containing(obj)); 4472 obj->oop_iterate_backwards(_evac_failure_closure); 4473 } 4474 } 4475 4476 oop 4477 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, 4478 oop old) { 4479 assert(obj_in_cs(old), 4480 err_msg("obj: "PTR_FORMAT" should still be in the CSet", 4481 (HeapWord*) old)); 4482 markOop m = old->mark(); 4483 oop forward_ptr = old->forward_to_atomic(old); 4484 if (forward_ptr == NULL) { 4485 // Forward-to-self succeeded. 4486 assert(_par_scan_state != NULL, "par scan state"); 4487 OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure(); 4488 uint queue_num = _par_scan_state->queue_num(); 4489 4490 _evacuation_failed = true; 4491 _evacuation_failed_info_array[queue_num].register_copy_failure(old->size()); 4492 if (_evac_failure_closure != cl) { 4493 MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag); 4494 assert(!_drain_in_progress, 4495 "Should only be true while someone holds the lock."); 4496 // Set the global evac-failure closure to the current thread's. 4497 assert(_evac_failure_closure == NULL, "Or locking has failed."); 4498 set_evac_failure_closure(cl); 4499 // Now do the common part. 4500 handle_evacuation_failure_common(old, m); 4501 // Reset to NULL. 4502 set_evac_failure_closure(NULL); 4503 } else { 4504 // The lock is already held, and this is recursive. 4505 assert(_drain_in_progress, "This should only be the recursive case."); 4506 handle_evacuation_failure_common(old, m); 4507 } 4508 return old; 4509 } else { 4510 // Forward-to-self failed. Either someone else managed to allocate 4511 // space for this object (old != forward_ptr) or they beat us in 4512 // self-forwarding it (old == forward_ptr). 4513 assert(old == forward_ptr || !obj_in_cs(forward_ptr), 4514 err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" " 4515 "should not be in the CSet", 4516 (HeapWord*) old, (HeapWord*) forward_ptr)); 4517 return forward_ptr; 4518 } 4519 } 4520 4521 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) { 4522 preserve_mark_if_necessary(old, m); 4523 4524 HeapRegion* r = heap_region_containing(old); 4525 if (!r->evacuation_failed()) { 4526 r->set_evacuation_failed(true); 4527 _hr_printer.evac_failure(r); 4528 } 4529 4530 push_on_evac_failure_scan_stack(old); 4531 4532 if (!_drain_in_progress) { 4533 // prevent recursion in copy_to_survivor_space() 4534 _drain_in_progress = true; 4535 drain_evac_failure_scan_stack(); 4536 _drain_in_progress = false; 4537 } 4538 } 4539 4540 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) { 4541 assert(evacuation_failed(), "Oversaving!"); 4542 // We want to call the "for_promotion_failure" version only in the 4543 // case of a promotion failure. 4544 if (m->must_be_preserved_for_promotion_failure(obj)) { 4545 _objs_with_preserved_marks.push(obj); 4546 _preserved_marks_of_objs.push(m); 4547 } 4548 } 4549 4550 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose, 4551 size_t word_size) { 4552 if (purpose == GCAllocForSurvived) { 4553 HeapWord* result = survivor_attempt_allocation(word_size); 4554 if (result != NULL) { 4555 return result; 4556 } else { 4557 // Let's try to allocate in the old gen in case we can fit the 4558 // object there. 4559 return old_attempt_allocation(word_size); 4560 } 4561 } else { 4562 assert(purpose == GCAllocForTenured, "sanity"); 4563 HeapWord* result = old_attempt_allocation(word_size); 4564 if (result != NULL) { 4565 return result; 4566 } else { 4567 // Let's try to allocate in the survivors in case we can fit the 4568 // object there. 4569 return survivor_attempt_allocation(word_size); 4570 } 4571 } 4572 4573 ShouldNotReachHere(); 4574 // Trying to keep some compilers happy. 4575 return NULL; 4576 } 4577 4578 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) : 4579 ParGCAllocBuffer(gclab_word_size), _retired(true) { } 4580 4581 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp) 4582 : _g1h(g1h), 4583 _refs(g1h->task_queue(queue_num)), 4584 _dcq(&g1h->dirty_card_queue_set()), 4585 _ct_bs(g1h->g1_barrier_set()), 4586 _g1_rem(g1h->g1_rem_set()), 4587 _hash_seed(17), _queue_num(queue_num), 4588 _term_attempts(0), 4589 _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)), 4590 _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)), 4591 _age_table(false), _scanner(g1h, this, rp), 4592 _strong_roots_time(0), _term_time(0), 4593 _alloc_buffer_waste(0), _undo_waste(0) { 4594 // we allocate G1YoungSurvRateNumRegions plus one entries, since 4595 // we "sacrifice" entry 0 to keep track of surviving bytes for 4596 // non-young regions (where the age is -1) 4597 // We also add a few elements at the beginning and at the end in 4598 // an attempt to eliminate cache contention 4599 uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length(); 4600 uint array_length = PADDING_ELEM_NUM + 4601 real_length + 4602 PADDING_ELEM_NUM; 4603 _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC); 4604 if (_surviving_young_words_base == NULL) 4605 vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR, 4606 "Not enough space for young surv histo."); 4607 _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM; 4608 memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t)); 4609 4610 _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer; 4611 _alloc_buffers[GCAllocForTenured] = &_tenured_alloc_buffer; 4612 4613 _start = os::elapsedTime(); 4614 } 4615 4616 void 4617 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st) 4618 { 4619 st->print_raw_cr("GC Termination Stats"); 4620 st->print_raw_cr(" elapsed --strong roots-- -------termination-------" 4621 " ------waste (KiB)------"); 4622 st->print_raw_cr("thr ms ms % ms % attempts" 4623 " total alloc undo"); 4624 st->print_raw_cr("--- --------- --------- ------ --------- ------ --------" 4625 " ------- ------- -------"); 4626 } 4627 4628 void 4629 G1ParScanThreadState::print_termination_stats(int i, 4630 outputStream* const st) const 4631 { 4632 const double elapsed_ms = elapsed_time() * 1000.0; 4633 const double s_roots_ms = strong_roots_time() * 1000.0; 4634 const double term_ms = term_time() * 1000.0; 4635 st->print_cr("%3d %9.2f %9.2f %6.2f " 4636 "%9.2f %6.2f " SIZE_FORMAT_W(8) " " 4637 SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7), 4638 i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms, 4639 term_ms, term_ms * 100 / elapsed_ms, term_attempts(), 4640 (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K, 4641 alloc_buffer_waste() * HeapWordSize / K, 4642 undo_waste() * HeapWordSize / K); 4643 } 4644 4645 #ifdef ASSERT 4646 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const { 4647 assert(ref != NULL, "invariant"); 4648 assert(UseCompressedOops, "sanity"); 4649 assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref)); 4650 oop p = oopDesc::load_decode_heap_oop(ref); 4651 assert(_g1h->is_in_g1_reserved(p), 4652 err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p)); 4653 return true; 4654 } 4655 4656 bool G1ParScanThreadState::verify_ref(oop* ref) const { 4657 assert(ref != NULL, "invariant"); 4658 if (has_partial_array_mask(ref)) { 4659 // Must be in the collection set--it's already been copied. 4660 oop p = clear_partial_array_mask(ref); 4661 assert(_g1h->obj_in_cs(p), 4662 err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p)); 4663 } else { 4664 oop p = oopDesc::load_decode_heap_oop(ref); 4665 assert(_g1h->is_in_g1_reserved(p), 4666 err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p)); 4667 } 4668 return true; 4669 } 4670 4671 bool G1ParScanThreadState::verify_task(StarTask ref) const { 4672 if (ref.is_narrow()) { 4673 return verify_ref((narrowOop*) ref); 4674 } else { 4675 return verify_ref((oop*) ref); 4676 } 4677 } 4678 #endif // ASSERT 4679 4680 void G1ParScanThreadState::trim_queue() { 4681 assert(_evac_failure_cl != NULL, "not set"); 4682 4683 StarTask ref; 4684 do { 4685 // Drain the overflow stack first, so other threads can steal. 4686 while (refs()->pop_overflow(ref)) { 4687 deal_with_reference(ref); 4688 } 4689 4690 while (refs()->pop_local(ref)) { 4691 deal_with_reference(ref); 4692 } 4693 } while (!refs()->is_empty()); 4694 } 4695 4696 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, 4697 G1ParScanThreadState* par_scan_state) : 4698 _g1(g1), _par_scan_state(par_scan_state), 4699 _worker_id(par_scan_state->queue_num()) { } 4700 4701 void G1ParCopyHelper::mark_object(oop obj) { 4702 assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet"); 4703 4704 // We know that the object is not moving so it's safe to read its size. 4705 _cm->grayRoot(obj, (size_t) obj->size(), _worker_id); 4706 } 4707 4708 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) { 4709 assert(from_obj->is_forwarded(), "from obj should be forwarded"); 4710 assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee"); 4711 assert(from_obj != to_obj, "should not be self-forwarded"); 4712 4713 assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet"); 4714 assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet"); 4715 4716 // The object might be in the process of being copied by another 4717 // worker so we cannot trust that its to-space image is 4718 // well-formed. So we have to read its size from its from-space 4719 // image which we know should not be changing. 4720 _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id); 4721 } 4722 4723 oop G1ParScanThreadState::copy_to_survivor_space(oop const old) { 4724 size_t word_sz = old->size(); 4725 HeapRegion* from_region = _g1h->heap_region_containing_raw(old); 4726 // +1 to make the -1 indexes valid... 4727 int young_index = from_region->young_index_in_cset()+1; 4728 assert( (from_region->is_young() && young_index > 0) || 4729 (!from_region->is_young() && young_index == 0), "invariant" ); 4730 G1CollectorPolicy* g1p = _g1h->g1_policy(); 4731 markOop m = old->mark(); 4732 int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age() 4733 : m->age(); 4734 GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age, 4735 word_sz); 4736 HeapWord* obj_ptr = allocate(alloc_purpose, word_sz); 4737 #ifndef PRODUCT 4738 // Should this evacuation fail? 4739 if (_g1h->evacuation_should_fail()) { 4740 if (obj_ptr != NULL) { 4741 undo_allocation(alloc_purpose, obj_ptr, word_sz); 4742 obj_ptr = NULL; 4743 } 4744 } 4745 #endif // !PRODUCT 4746 4747 if (obj_ptr == NULL) { 4748 // This will either forward-to-self, or detect that someone else has 4749 // installed a forwarding pointer. 4750 return _g1h->handle_evacuation_failure_par(this, old); 4751 } 4752 4753 oop obj = oop(obj_ptr); 4754 4755 // We're going to allocate linearly, so might as well prefetch ahead. 4756 Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes); 4757 4758 oop forward_ptr = old->forward_to_atomic(obj); 4759 if (forward_ptr == NULL) { 4760 Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz); 4761 4762 // alloc_purpose is just a hint to allocate() above, recheck the type of region 4763 // we actually allocated from and update alloc_purpose accordingly 4764 HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr); 4765 alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured; 4766 4767 if (g1p->track_object_age(alloc_purpose)) { 4768 // We could simply do obj->incr_age(). However, this causes a 4769 // performance issue. obj->incr_age() will first check whether 4770 // the object has a displaced mark by checking its mark word; 4771 // getting the mark word from the new location of the object 4772 // stalls. So, given that we already have the mark word and we 4773 // are about to install it anyway, it's better to increase the 4774 // age on the mark word, when the object does not have a 4775 // displaced mark word. We're not expecting many objects to have 4776 // a displaced marked word, so that case is not optimized 4777 // further (it could be...) and we simply call obj->incr_age(). 4778 4779 if (m->has_displaced_mark_helper()) { 4780 // in this case, we have to install the mark word first, 4781 // otherwise obj looks to be forwarded (the old mark word, 4782 // which contains the forward pointer, was copied) 4783 obj->set_mark(m); 4784 obj->incr_age(); 4785 } else { 4786 m = m->incr_age(); 4787 obj->set_mark(m); 4788 } 4789 age_table()->add(obj, word_sz); 4790 } else { 4791 obj->set_mark(m); 4792 } 4793 4794 if (G1StringDedup::is_enabled()) { 4795 G1StringDedup::enqueue_from_evacuation(from_region->is_young(), 4796 to_region->is_young(), 4797 queue_num(), 4798 obj); 4799 } 4800 4801 size_t* surv_young_words = surviving_young_words(); 4802 surv_young_words[young_index] += word_sz; 4803 4804 if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) { 4805 // We keep track of the next start index in the length field of 4806 // the to-space object. The actual length can be found in the 4807 // length field of the from-space object. 4808 arrayOop(obj)->set_length(0); 4809 oop* old_p = set_partial_array_mask(old); 4810 push_on_queue(old_p); 4811 } else { 4812 // No point in using the slower heap_region_containing() method, 4813 // given that we know obj is in the heap. 4814 _scanner.set_region(_g1h->heap_region_containing_raw(obj)); 4815 obj->oop_iterate_backwards(&_scanner); 4816 } 4817 } else { 4818 undo_allocation(alloc_purpose, obj_ptr, word_sz); 4819 obj = forward_ptr; 4820 } 4821 return obj; 4822 } 4823 4824 template <class T> 4825 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) { 4826 if (_g1->heap_region_containing_raw(new_obj)->is_young()) { 4827 _scanned_klass->record_modified_oops(); 4828 } 4829 } 4830 4831 template <G1Barrier barrier, bool do_mark_object> 4832 template <class T> 4833 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) { 4834 T heap_oop = oopDesc::load_heap_oop(p); 4835 4836 if (oopDesc::is_null(heap_oop)) { 4837 return; 4838 } 4839 4840 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 4841 4842 assert(_worker_id == _par_scan_state->queue_num(), "sanity"); 4843 4844 if (_g1->in_cset_fast_test(obj)) { 4845 oop forwardee; 4846 if (obj->is_forwarded()) { 4847 forwardee = obj->forwardee(); 4848 } else { 4849 forwardee = _par_scan_state->copy_to_survivor_space(obj); 4850 } 4851 assert(forwardee != NULL, "forwardee should not be NULL"); 4852 oopDesc::encode_store_heap_oop(p, forwardee); 4853 if (do_mark_object && forwardee != obj) { 4854 // If the object is self-forwarded we don't need to explicitly 4855 // mark it, the evacuation failure protocol will do so. 4856 mark_forwarded_object(obj, forwardee); 4857 } 4858 4859 if (barrier == G1BarrierKlass) { 4860 do_klass_barrier(p, forwardee); 4861 } 4862 } else { 4863 // The object is not in collection set. If we're a root scanning 4864 // closure during an initial mark pause (i.e. do_mark_object will 4865 // be true) then attempt to mark the object. 4866 if (do_mark_object) { 4867 mark_object(obj); 4868 } 4869 } 4870 4871 if (barrier == G1BarrierEvac) { 4872 _par_scan_state->update_rs(_from, p, _worker_id); 4873 } 4874 } 4875 4876 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p); 4877 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p); 4878 4879 class G1ParEvacuateFollowersClosure : public VoidClosure { 4880 protected: 4881 G1CollectedHeap* _g1h; 4882 G1ParScanThreadState* _par_scan_state; 4883 RefToScanQueueSet* _queues; 4884 ParallelTaskTerminator* _terminator; 4885 4886 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 4887 RefToScanQueueSet* queues() { return _queues; } 4888 ParallelTaskTerminator* terminator() { return _terminator; } 4889 4890 public: 4891 G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h, 4892 G1ParScanThreadState* par_scan_state, 4893 RefToScanQueueSet* queues, 4894 ParallelTaskTerminator* terminator) 4895 : _g1h(g1h), _par_scan_state(par_scan_state), 4896 _queues(queues), _terminator(terminator) {} 4897 4898 void do_void(); 4899 4900 private: 4901 inline bool offer_termination(); 4902 }; 4903 4904 bool G1ParEvacuateFollowersClosure::offer_termination() { 4905 G1ParScanThreadState* const pss = par_scan_state(); 4906 pss->start_term_time(); 4907 const bool res = terminator()->offer_termination(); 4908 pss->end_term_time(); 4909 return res; 4910 } 4911 4912 void G1ParEvacuateFollowersClosure::do_void() { 4913 StarTask stolen_task; 4914 G1ParScanThreadState* const pss = par_scan_state(); 4915 pss->trim_queue(); 4916 4917 do { 4918 while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) { 4919 assert(pss->verify_task(stolen_task), "sanity"); 4920 if (stolen_task.is_narrow()) { 4921 pss->deal_with_reference((narrowOop*) stolen_task); 4922 } else { 4923 pss->deal_with_reference((oop*) stolen_task); 4924 } 4925 4926 // We've just processed a reference and we might have made 4927 // available new entries on the queues. So we have to make sure 4928 // we drain the queues as necessary. 4929 pss->trim_queue(); 4930 } 4931 } while (!offer_termination()); 4932 } 4933 4934 class G1KlassScanClosure : public KlassClosure { 4935 G1ParCopyHelper* _closure; 4936 bool _process_only_dirty; 4937 int _count; 4938 public: 4939 G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty) 4940 : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {} 4941 void do_klass(Klass* klass) { 4942 // If the klass has not been dirtied we know that there's 4943 // no references into the young gen and we can skip it. 4944 if (!_process_only_dirty || klass->has_modified_oops()) { 4945 // Clean the klass since we're going to scavenge all the metadata. 4946 klass->clear_modified_oops(); 4947 4948 // Tell the closure that this klass is the Klass to scavenge 4949 // and is the one to dirty if oops are left pointing into the young gen. 4950 _closure->set_scanned_klass(klass); 4951 4952 klass->oops_do(_closure); 4953 4954 _closure->set_scanned_klass(NULL); 4955 } 4956 _count++; 4957 } 4958 }; 4959 4960 class G1ParTask : public AbstractGangTask { 4961 protected: 4962 G1CollectedHeap* _g1h; 4963 RefToScanQueueSet *_queues; 4964 ParallelTaskTerminator _terminator; 4965 uint _n_workers; 4966 4967 Mutex _stats_lock; 4968 Mutex* stats_lock() { return &_stats_lock; } 4969 4970 size_t getNCards() { 4971 return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1) 4972 / G1BlockOffsetSharedArray::N_bytes; 4973 } 4974 4975 public: 4976 G1ParTask(G1CollectedHeap* g1h, 4977 RefToScanQueueSet *task_queues) 4978 : AbstractGangTask("G1 collection"), 4979 _g1h(g1h), 4980 _queues(task_queues), 4981 _terminator(0, _queues), 4982 _stats_lock(Mutex::leaf, "parallel G1 stats lock", true) 4983 {} 4984 4985 RefToScanQueueSet* queues() { return _queues; } 4986 4987 RefToScanQueue *work_queue(int i) { 4988 return queues()->queue(i); 4989 } 4990 4991 ParallelTaskTerminator* terminator() { return &_terminator; } 4992 4993 virtual void set_for_termination(int active_workers) { 4994 // This task calls set_n_termination() in par_non_clean_card_iterate_work() 4995 // in the young space (_par_seq_tasks) in the G1 heap 4996 // for SequentialSubTasksDone. 4997 // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap 4998 // both of which need setting by set_n_termination(). 4999 _g1h->SharedHeap::set_n_termination(active_workers); 5000 _g1h->set_n_termination(active_workers); 5001 terminator()->reset_for_reuse(active_workers); 5002 _n_workers = active_workers; 5003 } 5004 5005 void work(uint worker_id) { 5006 if (worker_id >= _n_workers) return; // no work needed this round 5007 5008 double start_time_ms = os::elapsedTime() * 1000.0; 5009 _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms); 5010 5011 { 5012 ResourceMark rm; 5013 HandleMark hm; 5014 5015 ReferenceProcessor* rp = _g1h->ref_processor_stw(); 5016 5017 G1ParScanThreadState pss(_g1h, worker_id, rp); 5018 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp); 5019 5020 pss.set_evac_failure_closure(&evac_failure_cl); 5021 5022 G1ParScanExtRootClosure only_scan_root_cl(_g1h, &pss, rp); 5023 G1ParScanMetadataClosure only_scan_metadata_cl(_g1h, &pss, rp); 5024 5025 G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp); 5026 G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp); 5027 5028 bool only_young = _g1h->g1_policy()->gcs_are_young(); 5029 G1KlassScanClosure scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false); 5030 G1KlassScanClosure only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young); 5031 5032 OopClosure* scan_root_cl = &only_scan_root_cl; 5033 G1KlassScanClosure* scan_klasses_cl = &only_scan_klasses_cl_s; 5034 5035 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5036 // We also need to mark copied objects. 5037 scan_root_cl = &scan_mark_root_cl; 5038 scan_klasses_cl = &scan_mark_klasses_cl_s; 5039 } 5040 5041 G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss); 5042 5043 // Don't scan the scavengable methods in the code cache as part 5044 // of strong root scanning. The code roots that point into a 5045 // region in the collection set are scanned when we scan the 5046 // region's RSet. 5047 int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings; 5048 5049 pss.start_strong_roots(); 5050 _g1h->g1_process_strong_roots(/* is scavenging */ true, 5051 SharedHeap::ScanningOption(so), 5052 scan_root_cl, 5053 &push_heap_rs_cl, 5054 scan_klasses_cl, 5055 worker_id); 5056 pss.end_strong_roots(); 5057 5058 { 5059 double start = os::elapsedTime(); 5060 G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator); 5061 evac.do_void(); 5062 double elapsed_ms = (os::elapsedTime()-start)*1000.0; 5063 double term_ms = pss.term_time()*1000.0; 5064 _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms); 5065 _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts()); 5066 } 5067 _g1h->g1_policy()->record_thread_age_table(pss.age_table()); 5068 _g1h->update_surviving_young_words(pss.surviving_young_words()+1); 5069 5070 if (ParallelGCVerbose) { 5071 MutexLocker x(stats_lock()); 5072 pss.print_termination_stats(worker_id); 5073 } 5074 5075 assert(pss.refs()->is_empty(), "should be empty"); 5076 5077 // Close the inner scope so that the ResourceMark and HandleMark 5078 // destructors are executed here and are included as part of the 5079 // "GC Worker Time". 5080 } 5081 5082 double end_time_ms = os::elapsedTime() * 1000.0; 5083 _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms); 5084 } 5085 }; 5086 5087 // *** Common G1 Evacuation Stuff 5088 5089 // This method is run in a GC worker. 5090 5091 void 5092 G1CollectedHeap:: 5093 g1_process_strong_roots(bool is_scavenging, 5094 ScanningOption so, 5095 OopClosure* scan_non_heap_roots, 5096 OopsInHeapRegionClosure* scan_rs, 5097 G1KlassScanClosure* scan_klasses, 5098 uint worker_i) { 5099 5100 // First scan the strong roots 5101 double ext_roots_start = os::elapsedTime(); 5102 double closure_app_time_sec = 0.0; 5103 5104 BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots); 5105 5106 process_strong_roots(false, // no scoping; this is parallel code 5107 so, 5108 &buf_scan_non_heap_roots, 5109 scan_klasses 5110 ); 5111 5112 // Now the CM ref_processor roots. 5113 if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) { 5114 // We need to treat the discovered reference lists of the 5115 // concurrent mark ref processor as roots and keep entries 5116 // (which are added by the marking threads) on them live 5117 // until they can be processed at the end of marking. 5118 ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots); 5119 } 5120 5121 // Finish up any enqueued closure apps (attributed as object copy time). 5122 buf_scan_non_heap_roots.done(); 5123 5124 double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds(); 5125 5126 g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0); 5127 5128 double ext_root_time_ms = 5129 ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0; 5130 5131 g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms); 5132 5133 // During conc marking we have to filter the per-thread SATB buffers 5134 // to make sure we remove any oops into the CSet (which will show up 5135 // as implicitly live). 5136 double satb_filtering_ms = 0.0; 5137 if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) { 5138 if (mark_in_progress()) { 5139 double satb_filter_start = os::elapsedTime(); 5140 5141 JavaThread::satb_mark_queue_set().filter_thread_buffers(); 5142 5143 satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0; 5144 } 5145 } 5146 g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms); 5147 5148 // If this is an initial mark pause, and we're not scanning 5149 // the entire code cache, we need to mark the oops in the 5150 // strong code root lists for the regions that are not in 5151 // the collection set. 5152 // Note all threads participate in this set of root tasks. 5153 double mark_strong_code_roots_ms = 0.0; 5154 if (g1_policy()->during_initial_mark_pause() && !(so & SO_AllCodeCache)) { 5155 double mark_strong_roots_start = os::elapsedTime(); 5156 mark_strong_code_roots(worker_i); 5157 mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0; 5158 } 5159 g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms); 5160 5161 // Now scan the complement of the collection set. 5162 CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */); 5163 g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i); 5164 5165 _process_strong_tasks->all_tasks_completed(); 5166 } 5167 5168 class G1StringSymbolTableUnlinkTask : public AbstractGangTask { 5169 private: 5170 BoolObjectClosure* _is_alive; 5171 int _initial_string_table_size; 5172 int _initial_symbol_table_size; 5173 5174 bool _process_strings; 5175 int _strings_processed; 5176 int _strings_removed; 5177 5178 bool _process_symbols; 5179 int _symbols_processed; 5180 int _symbols_removed; 5181 5182 bool _do_in_parallel; 5183 public: 5184 G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) : 5185 AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive), 5186 _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()), 5187 _process_strings(process_strings), _strings_processed(0), _strings_removed(0), 5188 _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) { 5189 5190 _initial_string_table_size = StringTable::the_table()->table_size(); 5191 _initial_symbol_table_size = SymbolTable::the_table()->table_size(); 5192 if (process_strings) { 5193 StringTable::clear_parallel_claimed_index(); 5194 } 5195 if (process_symbols) { 5196 SymbolTable::clear_parallel_claimed_index(); 5197 } 5198 } 5199 5200 ~G1StringSymbolTableUnlinkTask() { 5201 guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size, 5202 err_msg("claim value %d after unlink less than initial string table size %d", 5203 StringTable::parallel_claimed_index(), _initial_string_table_size)); 5204 guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size, 5205 err_msg("claim value %d after unlink less than initial symbol table size %d", 5206 SymbolTable::parallel_claimed_index(), _initial_symbol_table_size)); 5207 } 5208 5209 void work(uint worker_id) { 5210 if (_do_in_parallel) { 5211 int strings_processed = 0; 5212 int strings_removed = 0; 5213 int symbols_processed = 0; 5214 int symbols_removed = 0; 5215 if (_process_strings) { 5216 StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed); 5217 Atomic::add(strings_processed, &_strings_processed); 5218 Atomic::add(strings_removed, &_strings_removed); 5219 } 5220 if (_process_symbols) { 5221 SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed); 5222 Atomic::add(symbols_processed, &_symbols_processed); 5223 Atomic::add(symbols_removed, &_symbols_removed); 5224 } 5225 } else { 5226 if (_process_strings) { 5227 StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed); 5228 } 5229 if (_process_symbols) { 5230 SymbolTable::unlink(&_symbols_processed, &_symbols_removed); 5231 } 5232 } 5233 } 5234 5235 size_t strings_processed() const { return (size_t)_strings_processed; } 5236 size_t strings_removed() const { return (size_t)_strings_removed; } 5237 5238 size_t symbols_processed() const { return (size_t)_symbols_processed; } 5239 size_t symbols_removed() const { return (size_t)_symbols_removed; } 5240 }; 5241 5242 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive, 5243 bool process_strings, bool process_symbols) { 5244 uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ? 5245 _g1h->workers()->active_workers() : 1); 5246 5247 G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols); 5248 if (G1CollectedHeap::use_parallel_gc_threads()) { 5249 set_par_threads(n_workers); 5250 workers()->run_task(&g1_unlink_task); 5251 set_par_threads(0); 5252 } else { 5253 g1_unlink_task.work(0); 5254 } 5255 if (G1TraceStringSymbolTableScrubbing) { 5256 gclog_or_tty->print_cr("Cleaned string and symbol table, " 5257 "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, " 5258 "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed", 5259 g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(), 5260 g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed()); 5261 } 5262 5263 if (G1StringDedup::is_enabled()) { 5264 G1StringDedup::unlink(is_alive); 5265 } 5266 } 5267 5268 class G1RedirtyLoggedCardsTask : public AbstractGangTask { 5269 private: 5270 DirtyCardQueueSet* _queue; 5271 public: 5272 G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { } 5273 5274 virtual void work(uint worker_id) { 5275 double start_time = os::elapsedTime(); 5276 5277 RedirtyLoggedCardTableEntryClosure cl; 5278 if (G1CollectedHeap::heap()->use_parallel_gc_threads()) { 5279 _queue->par_apply_closure_to_all_completed_buffers(&cl); 5280 } else { 5281 _queue->apply_closure_to_all_completed_buffers(&cl); 5282 } 5283 5284 G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times(); 5285 timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0); 5286 timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed()); 5287 } 5288 }; 5289 5290 void G1CollectedHeap::redirty_logged_cards() { 5291 guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates."); 5292 double redirty_logged_cards_start = os::elapsedTime(); 5293 5294 uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ? 5295 _g1h->workers()->active_workers() : 1); 5296 5297 G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set()); 5298 dirty_card_queue_set().reset_for_par_iteration(); 5299 if (use_parallel_gc_threads()) { 5300 set_par_threads(n_workers); 5301 workers()->run_task(&redirty_task); 5302 set_par_threads(0); 5303 } else { 5304 redirty_task.work(0); 5305 } 5306 5307 DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set(); 5308 dcq.merge_bufferlists(&dirty_card_queue_set()); 5309 assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed"); 5310 5311 g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0); 5312 } 5313 5314 // Weak Reference Processing support 5315 5316 // An always "is_alive" closure that is used to preserve referents. 5317 // If the object is non-null then it's alive. Used in the preservation 5318 // of referent objects that are pointed to by reference objects 5319 // discovered by the CM ref processor. 5320 class G1AlwaysAliveClosure: public BoolObjectClosure { 5321 G1CollectedHeap* _g1; 5322 public: 5323 G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 5324 bool do_object_b(oop p) { 5325 if (p != NULL) { 5326 return true; 5327 } 5328 return false; 5329 } 5330 }; 5331 5332 bool G1STWIsAliveClosure::do_object_b(oop p) { 5333 // An object is reachable if it is outside the collection set, 5334 // or is inside and copied. 5335 return !_g1->obj_in_cs(p) || p->is_forwarded(); 5336 } 5337 5338 // Non Copying Keep Alive closure 5339 class G1KeepAliveClosure: public OopClosure { 5340 G1CollectedHeap* _g1; 5341 public: 5342 G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 5343 void do_oop(narrowOop* p) { guarantee(false, "Not needed"); } 5344 void do_oop( oop* p) { 5345 oop obj = *p; 5346 5347 if (_g1->obj_in_cs(obj)) { 5348 assert( obj->is_forwarded(), "invariant" ); 5349 *p = obj->forwardee(); 5350 } 5351 } 5352 }; 5353 5354 // Copying Keep Alive closure - can be called from both 5355 // serial and parallel code as long as different worker 5356 // threads utilize different G1ParScanThreadState instances 5357 // and different queues. 5358 5359 class G1CopyingKeepAliveClosure: public OopClosure { 5360 G1CollectedHeap* _g1h; 5361 OopClosure* _copy_non_heap_obj_cl; 5362 OopsInHeapRegionClosure* _copy_metadata_obj_cl; 5363 G1ParScanThreadState* _par_scan_state; 5364 5365 public: 5366 G1CopyingKeepAliveClosure(G1CollectedHeap* g1h, 5367 OopClosure* non_heap_obj_cl, 5368 OopsInHeapRegionClosure* metadata_obj_cl, 5369 G1ParScanThreadState* pss): 5370 _g1h(g1h), 5371 _copy_non_heap_obj_cl(non_heap_obj_cl), 5372 _copy_metadata_obj_cl(metadata_obj_cl), 5373 _par_scan_state(pss) 5374 {} 5375 5376 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 5377 virtual void do_oop( oop* p) { do_oop_work(p); } 5378 5379 template <class T> void do_oop_work(T* p) { 5380 oop obj = oopDesc::load_decode_heap_oop(p); 5381 5382 if (_g1h->obj_in_cs(obj)) { 5383 // If the referent object has been forwarded (either copied 5384 // to a new location or to itself in the event of an 5385 // evacuation failure) then we need to update the reference 5386 // field and, if both reference and referent are in the G1 5387 // heap, update the RSet for the referent. 5388 // 5389 // If the referent has not been forwarded then we have to keep 5390 // it alive by policy. Therefore we have copy the referent. 5391 // 5392 // If the reference field is in the G1 heap then we can push 5393 // on the PSS queue. When the queue is drained (after each 5394 // phase of reference processing) the object and it's followers 5395 // will be copied, the reference field set to point to the 5396 // new location, and the RSet updated. Otherwise we need to 5397 // use the the non-heap or metadata closures directly to copy 5398 // the referent object and update the pointer, while avoiding 5399 // updating the RSet. 5400 5401 if (_g1h->is_in_g1_reserved(p)) { 5402 _par_scan_state->push_on_queue(p); 5403 } else { 5404 assert(!ClassLoaderDataGraph::contains((address)p), 5405 err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) " 5406 PTR_FORMAT, p)); 5407 _copy_non_heap_obj_cl->do_oop(p); 5408 } 5409 } 5410 } 5411 }; 5412 5413 // Serial drain queue closure. Called as the 'complete_gc' 5414 // closure for each discovered list in some of the 5415 // reference processing phases. 5416 5417 class G1STWDrainQueueClosure: public VoidClosure { 5418 protected: 5419 G1CollectedHeap* _g1h; 5420 G1ParScanThreadState* _par_scan_state; 5421 5422 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 5423 5424 public: 5425 G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) : 5426 _g1h(g1h), 5427 _par_scan_state(pss) 5428 { } 5429 5430 void do_void() { 5431 G1ParScanThreadState* const pss = par_scan_state(); 5432 pss->trim_queue(); 5433 } 5434 }; 5435 5436 // Parallel Reference Processing closures 5437 5438 // Implementation of AbstractRefProcTaskExecutor for parallel reference 5439 // processing during G1 evacuation pauses. 5440 5441 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor { 5442 private: 5443 G1CollectedHeap* _g1h; 5444 RefToScanQueueSet* _queues; 5445 FlexibleWorkGang* _workers; 5446 int _active_workers; 5447 5448 public: 5449 G1STWRefProcTaskExecutor(G1CollectedHeap* g1h, 5450 FlexibleWorkGang* workers, 5451 RefToScanQueueSet *task_queues, 5452 int n_workers) : 5453 _g1h(g1h), 5454 _queues(task_queues), 5455 _workers(workers), 5456 _active_workers(n_workers) 5457 { 5458 assert(n_workers > 0, "shouldn't call this otherwise"); 5459 } 5460 5461 // Executes the given task using concurrent marking worker threads. 5462 virtual void execute(ProcessTask& task); 5463 virtual void execute(EnqueueTask& task); 5464 }; 5465 5466 // Gang task for possibly parallel reference processing 5467 5468 class G1STWRefProcTaskProxy: public AbstractGangTask { 5469 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 5470 ProcessTask& _proc_task; 5471 G1CollectedHeap* _g1h; 5472 RefToScanQueueSet *_task_queues; 5473 ParallelTaskTerminator* _terminator; 5474 5475 public: 5476 G1STWRefProcTaskProxy(ProcessTask& proc_task, 5477 G1CollectedHeap* g1h, 5478 RefToScanQueueSet *task_queues, 5479 ParallelTaskTerminator* terminator) : 5480 AbstractGangTask("Process reference objects in parallel"), 5481 _proc_task(proc_task), 5482 _g1h(g1h), 5483 _task_queues(task_queues), 5484 _terminator(terminator) 5485 {} 5486 5487 virtual void work(uint worker_id) { 5488 // The reference processing task executed by a single worker. 5489 ResourceMark rm; 5490 HandleMark hm; 5491 5492 G1STWIsAliveClosure is_alive(_g1h); 5493 5494 G1ParScanThreadState pss(_g1h, worker_id, NULL); 5495 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL); 5496 5497 pss.set_evac_failure_closure(&evac_failure_cl); 5498 5499 G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL); 5500 G1ParScanMetadataClosure only_copy_metadata_cl(_g1h, &pss, NULL); 5501 5502 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL); 5503 G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL); 5504 5505 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5506 OopsInHeapRegionClosure* copy_metadata_cl = &only_copy_metadata_cl; 5507 5508 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5509 // We also need to mark copied objects. 5510 copy_non_heap_cl = ©_mark_non_heap_cl; 5511 copy_metadata_cl = ©_mark_metadata_cl; 5512 } 5513 5514 // Keep alive closure. 5515 G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss); 5516 5517 // Complete GC closure 5518 G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator); 5519 5520 // Call the reference processing task's work routine. 5521 _proc_task.work(worker_id, is_alive, keep_alive, drain_queue); 5522 5523 // Note we cannot assert that the refs array is empty here as not all 5524 // of the processing tasks (specifically phase2 - pp2_work) execute 5525 // the complete_gc closure (which ordinarily would drain the queue) so 5526 // the queue may not be empty. 5527 } 5528 }; 5529 5530 // Driver routine for parallel reference processing. 5531 // Creates an instance of the ref processing gang 5532 // task and has the worker threads execute it. 5533 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) { 5534 assert(_workers != NULL, "Need parallel worker threads."); 5535 5536 ParallelTaskTerminator terminator(_active_workers, _queues); 5537 G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator); 5538 5539 _g1h->set_par_threads(_active_workers); 5540 _workers->run_task(&proc_task_proxy); 5541 _g1h->set_par_threads(0); 5542 } 5543 5544 // Gang task for parallel reference enqueueing. 5545 5546 class G1STWRefEnqueueTaskProxy: public AbstractGangTask { 5547 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 5548 EnqueueTask& _enq_task; 5549 5550 public: 5551 G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) : 5552 AbstractGangTask("Enqueue reference objects in parallel"), 5553 _enq_task(enq_task) 5554 { } 5555 5556 virtual void work(uint worker_id) { 5557 _enq_task.work(worker_id); 5558 } 5559 }; 5560 5561 // Driver routine for parallel reference enqueueing. 5562 // Creates an instance of the ref enqueueing gang 5563 // task and has the worker threads execute it. 5564 5565 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) { 5566 assert(_workers != NULL, "Need parallel worker threads."); 5567 5568 G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task); 5569 5570 _g1h->set_par_threads(_active_workers); 5571 _workers->run_task(&enq_task_proxy); 5572 _g1h->set_par_threads(0); 5573 } 5574 5575 // End of weak reference support closures 5576 5577 // Abstract task used to preserve (i.e. copy) any referent objects 5578 // that are in the collection set and are pointed to by reference 5579 // objects discovered by the CM ref processor. 5580 5581 class G1ParPreserveCMReferentsTask: public AbstractGangTask { 5582 protected: 5583 G1CollectedHeap* _g1h; 5584 RefToScanQueueSet *_queues; 5585 ParallelTaskTerminator _terminator; 5586 uint _n_workers; 5587 5588 public: 5589 G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) : 5590 AbstractGangTask("ParPreserveCMReferents"), 5591 _g1h(g1h), 5592 _queues(task_queues), 5593 _terminator(workers, _queues), 5594 _n_workers(workers) 5595 { } 5596 5597 void work(uint worker_id) { 5598 ResourceMark rm; 5599 HandleMark hm; 5600 5601 G1ParScanThreadState pss(_g1h, worker_id, NULL); 5602 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL); 5603 5604 pss.set_evac_failure_closure(&evac_failure_cl); 5605 5606 assert(pss.refs()->is_empty(), "both queue and overflow should be empty"); 5607 5608 5609 G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL); 5610 G1ParScanMetadataClosure only_copy_metadata_cl(_g1h, &pss, NULL); 5611 5612 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL); 5613 G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL); 5614 5615 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5616 OopsInHeapRegionClosure* copy_metadata_cl = &only_copy_metadata_cl; 5617 5618 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5619 // We also need to mark copied objects. 5620 copy_non_heap_cl = ©_mark_non_heap_cl; 5621 copy_metadata_cl = ©_mark_metadata_cl; 5622 } 5623 5624 // Is alive closure 5625 G1AlwaysAliveClosure always_alive(_g1h); 5626 5627 // Copying keep alive closure. Applied to referent objects that need 5628 // to be copied. 5629 G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss); 5630 5631 ReferenceProcessor* rp = _g1h->ref_processor_cm(); 5632 5633 uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q(); 5634 uint stride = MIN2(MAX2(_n_workers, 1U), limit); 5635 5636 // limit is set using max_num_q() - which was set using ParallelGCThreads. 5637 // So this must be true - but assert just in case someone decides to 5638 // change the worker ids. 5639 assert(0 <= worker_id && worker_id < limit, "sanity"); 5640 assert(!rp->discovery_is_atomic(), "check this code"); 5641 5642 // Select discovered lists [i, i+stride, i+2*stride,...,limit) 5643 for (uint idx = worker_id; idx < limit; idx += stride) { 5644 DiscoveredList& ref_list = rp->discovered_refs()[idx]; 5645 5646 DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive); 5647 while (iter.has_next()) { 5648 // Since discovery is not atomic for the CM ref processor, we 5649 // can see some null referent objects. 5650 iter.load_ptrs(DEBUG_ONLY(true)); 5651 oop ref = iter.obj(); 5652 5653 // This will filter nulls. 5654 if (iter.is_referent_alive()) { 5655 iter.make_referent_alive(); 5656 } 5657 iter.move_to_next(); 5658 } 5659 } 5660 5661 // Drain the queue - which may cause stealing 5662 G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator); 5663 drain_queue.do_void(); 5664 // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure 5665 assert(pss.refs()->is_empty(), "should be"); 5666 } 5667 }; 5668 5669 // Weak Reference processing during an evacuation pause (part 1). 5670 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) { 5671 double ref_proc_start = os::elapsedTime(); 5672 5673 ReferenceProcessor* rp = _ref_processor_stw; 5674 assert(rp->discovery_enabled(), "should have been enabled"); 5675 5676 // Any reference objects, in the collection set, that were 'discovered' 5677 // by the CM ref processor should have already been copied (either by 5678 // applying the external root copy closure to the discovered lists, or 5679 // by following an RSet entry). 5680 // 5681 // But some of the referents, that are in the collection set, that these 5682 // reference objects point to may not have been copied: the STW ref 5683 // processor would have seen that the reference object had already 5684 // been 'discovered' and would have skipped discovering the reference, 5685 // but would not have treated the reference object as a regular oop. 5686 // As a result the copy closure would not have been applied to the 5687 // referent object. 5688 // 5689 // We need to explicitly copy these referent objects - the references 5690 // will be processed at the end of remarking. 5691 // 5692 // We also need to do this copying before we process the reference 5693 // objects discovered by the STW ref processor in case one of these 5694 // referents points to another object which is also referenced by an 5695 // object discovered by the STW ref processor. 5696 5697 assert(!G1CollectedHeap::use_parallel_gc_threads() || 5698 no_of_gc_workers == workers()->active_workers(), 5699 "Need to reset active GC workers"); 5700 5701 set_par_threads(no_of_gc_workers); 5702 G1ParPreserveCMReferentsTask keep_cm_referents(this, 5703 no_of_gc_workers, 5704 _task_queues); 5705 5706 if (G1CollectedHeap::use_parallel_gc_threads()) { 5707 workers()->run_task(&keep_cm_referents); 5708 } else { 5709 keep_cm_referents.work(0); 5710 } 5711 5712 set_par_threads(0); 5713 5714 // Closure to test whether a referent is alive. 5715 G1STWIsAliveClosure is_alive(this); 5716 5717 // Even when parallel reference processing is enabled, the processing 5718 // of JNI refs is serial and performed serially by the current thread 5719 // rather than by a worker. The following PSS will be used for processing 5720 // JNI refs. 5721 5722 // Use only a single queue for this PSS. 5723 G1ParScanThreadState pss(this, 0, NULL); 5724 5725 // We do not embed a reference processor in the copying/scanning 5726 // closures while we're actually processing the discovered 5727 // reference objects. 5728 G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL); 5729 5730 pss.set_evac_failure_closure(&evac_failure_cl); 5731 5732 assert(pss.refs()->is_empty(), "pre-condition"); 5733 5734 G1ParScanExtRootClosure only_copy_non_heap_cl(this, &pss, NULL); 5735 G1ParScanMetadataClosure only_copy_metadata_cl(this, &pss, NULL); 5736 5737 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL); 5738 G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL); 5739 5740 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5741 OopsInHeapRegionClosure* copy_metadata_cl = &only_copy_metadata_cl; 5742 5743 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5744 // We also need to mark copied objects. 5745 copy_non_heap_cl = ©_mark_non_heap_cl; 5746 copy_metadata_cl = ©_mark_metadata_cl; 5747 } 5748 5749 // Keep alive closure. 5750 G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss); 5751 5752 // Serial Complete GC closure 5753 G1STWDrainQueueClosure drain_queue(this, &pss); 5754 5755 // Setup the soft refs policy... 5756 rp->setup_policy(false); 5757 5758 ReferenceProcessorStats stats; 5759 if (!rp->processing_is_mt()) { 5760 // Serial reference processing... 5761 stats = rp->process_discovered_references(&is_alive, 5762 &keep_alive, 5763 &drain_queue, 5764 NULL, 5765 _gc_timer_stw); 5766 } else { 5767 // Parallel reference processing 5768 assert(rp->num_q() == no_of_gc_workers, "sanity"); 5769 assert(no_of_gc_workers <= rp->max_num_q(), "sanity"); 5770 5771 G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers); 5772 stats = rp->process_discovered_references(&is_alive, 5773 &keep_alive, 5774 &drain_queue, 5775 &par_task_executor, 5776 _gc_timer_stw); 5777 } 5778 5779 _gc_tracer_stw->report_gc_reference_stats(stats); 5780 5781 // We have completed copying any necessary live referent objects. 5782 assert(pss.refs()->is_empty(), "both queue and overflow should be empty"); 5783 5784 double ref_proc_time = os::elapsedTime() - ref_proc_start; 5785 g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); 5786 } 5787 5788 // Weak Reference processing during an evacuation pause (part 2). 5789 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) { 5790 double ref_enq_start = os::elapsedTime(); 5791 5792 ReferenceProcessor* rp = _ref_processor_stw; 5793 assert(!rp->discovery_enabled(), "should have been disabled as part of processing"); 5794 5795 // Now enqueue any remaining on the discovered lists on to 5796 // the pending list. 5797 if (!rp->processing_is_mt()) { 5798 // Serial reference processing... 5799 rp->enqueue_discovered_references(); 5800 } else { 5801 // Parallel reference enqueueing 5802 5803 assert(no_of_gc_workers == workers()->active_workers(), 5804 "Need to reset active workers"); 5805 assert(rp->num_q() == no_of_gc_workers, "sanity"); 5806 assert(no_of_gc_workers <= rp->max_num_q(), "sanity"); 5807 5808 G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers); 5809 rp->enqueue_discovered_references(&par_task_executor); 5810 } 5811 5812 rp->verify_no_references_recorded(); 5813 assert(!rp->discovery_enabled(), "should have been disabled"); 5814 5815 // FIXME 5816 // CM's reference processing also cleans up the string and symbol tables. 5817 // Should we do that here also? We could, but it is a serial operation 5818 // and could significantly increase the pause time. 5819 5820 double ref_enq_time = os::elapsedTime() - ref_enq_start; 5821 g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0); 5822 } 5823 5824 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) { 5825 _expand_heap_after_alloc_failure = true; 5826 _evacuation_failed = false; 5827 5828 // Should G1EvacuationFailureALot be in effect for this GC? 5829 NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();) 5830 5831 g1_rem_set()->prepare_for_oops_into_collection_set_do(); 5832 5833 // Disable the hot card cache. 5834 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 5835 hot_card_cache->reset_hot_cache_claimed_index(); 5836 hot_card_cache->set_use_cache(false); 5837 5838 uint n_workers; 5839 if (G1CollectedHeap::use_parallel_gc_threads()) { 5840 n_workers = 5841 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 5842 workers()->active_workers(), 5843 Threads::number_of_non_daemon_threads()); 5844 assert(UseDynamicNumberOfGCThreads || 5845 n_workers == workers()->total_workers(), 5846 "If not dynamic should be using all the workers"); 5847 workers()->set_active_workers(n_workers); 5848 set_par_threads(n_workers); 5849 } else { 5850 assert(n_par_threads() == 0, 5851 "Should be the original non-parallel value"); 5852 n_workers = 1; 5853 } 5854 5855 G1ParTask g1_par_task(this, _task_queues); 5856 5857 init_for_evac_failure(NULL); 5858 5859 rem_set()->prepare_for_younger_refs_iterate(true); 5860 5861 assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty"); 5862 double start_par_time_sec = os::elapsedTime(); 5863 double end_par_time_sec; 5864 5865 { 5866 StrongRootsScope srs(this); 5867 5868 if (G1CollectedHeap::use_parallel_gc_threads()) { 5869 // The individual threads will set their evac-failure closures. 5870 if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr(); 5871 // These tasks use ShareHeap::_process_strong_tasks 5872 assert(UseDynamicNumberOfGCThreads || 5873 workers()->active_workers() == workers()->total_workers(), 5874 "If not dynamic should be using all the workers"); 5875 workers()->run_task(&g1_par_task); 5876 } else { 5877 g1_par_task.set_for_termination(n_workers); 5878 g1_par_task.work(0); 5879 } 5880 end_par_time_sec = os::elapsedTime(); 5881 5882 // Closing the inner scope will execute the destructor 5883 // for the StrongRootsScope object. We record the current 5884 // elapsed time before closing the scope so that time 5885 // taken for the SRS destructor is NOT included in the 5886 // reported parallel time. 5887 } 5888 5889 double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0; 5890 g1_policy()->phase_times()->record_par_time(par_time_ms); 5891 5892 double code_root_fixup_time_ms = 5893 (os::elapsedTime() - end_par_time_sec) * 1000.0; 5894 g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms); 5895 5896 set_par_threads(0); 5897 5898 // Process any discovered reference objects - we have 5899 // to do this _before_ we retire the GC alloc regions 5900 // as we may have to copy some 'reachable' referent 5901 // objects (and their reachable sub-graphs) that were 5902 // not copied during the pause. 5903 process_discovered_references(n_workers); 5904 5905 // Weak root processing. 5906 { 5907 G1STWIsAliveClosure is_alive(this); 5908 G1KeepAliveClosure keep_alive(this); 5909 JNIHandles::weak_oops_do(&is_alive, &keep_alive); 5910 if (G1StringDedup::is_enabled()) { 5911 G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive); 5912 } 5913 } 5914 5915 release_gc_alloc_regions(n_workers, evacuation_info); 5916 g1_rem_set()->cleanup_after_oops_into_collection_set_do(); 5917 5918 // Reset and re-enable the hot card cache. 5919 // Note the counts for the cards in the regions in the 5920 // collection set are reset when the collection set is freed. 5921 hot_card_cache->reset_hot_cache(); 5922 hot_card_cache->set_use_cache(true); 5923 5924 // Migrate the strong code roots attached to each region in 5925 // the collection set. Ideally we would like to do this 5926 // after we have finished the scanning/evacuation of the 5927 // strong code roots for a particular heap region. 5928 migrate_strong_code_roots(); 5929 5930 purge_code_root_memory(); 5931 5932 if (g1_policy()->during_initial_mark_pause()) { 5933 // Reset the claim values set during marking the strong code roots 5934 reset_heap_region_claim_values(); 5935 } 5936 5937 finalize_for_evac_failure(); 5938 5939 if (evacuation_failed()) { 5940 remove_self_forwarding_pointers(); 5941 5942 // Reset the G1EvacuationFailureALot counters and flags 5943 // Note: the values are reset only when an actual 5944 // evacuation failure occurs. 5945 NOT_PRODUCT(reset_evacuation_should_fail();) 5946 } 5947 5948 // Enqueue any remaining references remaining on the STW 5949 // reference processor's discovered lists. We need to do 5950 // this after the card table is cleaned (and verified) as 5951 // the act of enqueueing entries on to the pending list 5952 // will log these updates (and dirty their associated 5953 // cards). We need these updates logged to update any 5954 // RSets. 5955 enqueue_discovered_references(n_workers); 5956 5957 if (G1DeferredRSUpdate) { 5958 redirty_logged_cards(); 5959 } 5960 COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); 5961 } 5962 5963 void G1CollectedHeap::free_region(HeapRegion* hr, 5964 FreeRegionList* free_list, 5965 bool par, 5966 bool locked) { 5967 assert(!hr->isHumongous(), "this is only for non-humongous regions"); 5968 assert(!hr->is_empty(), "the region should not be empty"); 5969 assert(free_list != NULL, "pre-condition"); 5970 5971 if (G1VerifyBitmaps) { 5972 MemRegion mr(hr->bottom(), hr->end()); 5973 concurrent_mark()->clearRangePrevBitmap(mr); 5974 } 5975 5976 // Clear the card counts for this region. 5977 // Note: we only need to do this if the region is not young 5978 // (since we don't refine cards in young regions). 5979 if (!hr->is_young()) { 5980 _cg1r->hot_card_cache()->reset_card_counts(hr); 5981 } 5982 hr->hr_clear(par, true /* clear_space */, locked /* locked */); 5983 free_list->add_ordered(hr); 5984 } 5985 5986 void G1CollectedHeap::free_humongous_region(HeapRegion* hr, 5987 FreeRegionList* free_list, 5988 bool par) { 5989 assert(hr->startsHumongous(), "this is only for starts humongous regions"); 5990 assert(free_list != NULL, "pre-condition"); 5991 5992 size_t hr_capacity = hr->capacity(); 5993 // We need to read this before we make the region non-humongous, 5994 // otherwise the information will be gone. 5995 uint last_index = hr->last_hc_index(); 5996 hr->set_notHumongous(); 5997 free_region(hr, free_list, par); 5998 5999 uint i = hr->hrs_index() + 1; 6000 while (i < last_index) { 6001 HeapRegion* curr_hr = region_at(i); 6002 assert(curr_hr->continuesHumongous(), "invariant"); 6003 curr_hr->set_notHumongous(); 6004 free_region(curr_hr, free_list, par); 6005 i += 1; 6006 } 6007 } 6008 6009 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, 6010 const HeapRegionSetCount& humongous_regions_removed) { 6011 if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) { 6012 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag); 6013 _old_set.bulk_remove(old_regions_removed); 6014 _humongous_set.bulk_remove(humongous_regions_removed); 6015 } 6016 6017 } 6018 6019 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) { 6020 assert(list != NULL, "list can't be null"); 6021 if (!list->is_empty()) { 6022 MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); 6023 _free_list.add_ordered(list); 6024 } 6025 } 6026 6027 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) { 6028 assert(_summary_bytes_used >= bytes, 6029 err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT, 6030 _summary_bytes_used, bytes)); 6031 _summary_bytes_used -= bytes; 6032 } 6033 6034 class G1ParCleanupCTTask : public AbstractGangTask { 6035 G1SATBCardTableModRefBS* _ct_bs; 6036 G1CollectedHeap* _g1h; 6037 HeapRegion* volatile _su_head; 6038 public: 6039 G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs, 6040 G1CollectedHeap* g1h) : 6041 AbstractGangTask("G1 Par Cleanup CT Task"), 6042 _ct_bs(ct_bs), _g1h(g1h) { } 6043 6044 void work(uint worker_id) { 6045 HeapRegion* r; 6046 while (r = _g1h->pop_dirty_cards_region()) { 6047 clear_cards(r); 6048 } 6049 } 6050 6051 void clear_cards(HeapRegion* r) { 6052 // Cards of the survivors should have already been dirtied. 6053 if (!r->is_survivor()) { 6054 _ct_bs->clear(MemRegion(r->bottom(), r->end())); 6055 } 6056 } 6057 }; 6058 6059 #ifndef PRODUCT 6060 class G1VerifyCardTableCleanup: public HeapRegionClosure { 6061 G1CollectedHeap* _g1h; 6062 G1SATBCardTableModRefBS* _ct_bs; 6063 public: 6064 G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs) 6065 : _g1h(g1h), _ct_bs(ct_bs) { } 6066 virtual bool doHeapRegion(HeapRegion* r) { 6067 if (r->is_survivor()) { 6068 _g1h->verify_dirty_region(r); 6069 } else { 6070 _g1h->verify_not_dirty_region(r); 6071 } 6072 return false; 6073 } 6074 }; 6075 6076 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) { 6077 // All of the region should be clean. 6078 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 6079 MemRegion mr(hr->bottom(), hr->end()); 6080 ct_bs->verify_not_dirty_region(mr); 6081 } 6082 6083 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) { 6084 // We cannot guarantee that [bottom(),end()] is dirty. Threads 6085 // dirty allocated blocks as they allocate them. The thread that 6086 // retires each region and replaces it with a new one will do a 6087 // maximal allocation to fill in [pre_dummy_top(),end()] but will 6088 // not dirty that area (one less thing to have to do while holding 6089 // a lock). So we can only verify that [bottom(),pre_dummy_top()] 6090 // is dirty. 6091 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 6092 MemRegion mr(hr->bottom(), hr->pre_dummy_top()); 6093 if (hr->is_young()) { 6094 ct_bs->verify_g1_young_region(mr); 6095 } else { 6096 ct_bs->verify_dirty_region(mr); 6097 } 6098 } 6099 6100 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) { 6101 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 6102 for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) { 6103 verify_dirty_region(hr); 6104 } 6105 } 6106 6107 void G1CollectedHeap::verify_dirty_young_regions() { 6108 verify_dirty_young_list(_young_list->first_region()); 6109 } 6110 6111 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap, 6112 HeapWord* tams, HeapWord* end) { 6113 guarantee(tams <= end, 6114 err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end)); 6115 HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end); 6116 if (result < end) { 6117 gclog_or_tty->cr(); 6118 gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT, 6119 bitmap_name, result); 6120 gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT, 6121 bitmap_name, tams, end); 6122 return false; 6123 } 6124 return true; 6125 } 6126 6127 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) { 6128 CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap(); 6129 CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap(); 6130 6131 HeapWord* bottom = hr->bottom(); 6132 HeapWord* ptams = hr->prev_top_at_mark_start(); 6133 HeapWord* ntams = hr->next_top_at_mark_start(); 6134 HeapWord* end = hr->end(); 6135 6136 bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end); 6137 6138 bool res_n = true; 6139 // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window 6140 // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap 6141 // if we happen to be in that state. 6142 if (mark_in_progress() || !_cmThread->in_progress()) { 6143 res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end); 6144 } 6145 if (!res_p || !res_n) { 6146 gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT, 6147 HR_FORMAT_PARAMS(hr)); 6148 gclog_or_tty->print_cr("#### Caller: %s", caller); 6149 return false; 6150 } 6151 return true; 6152 } 6153 6154 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) { 6155 if (!G1VerifyBitmaps) return; 6156 6157 guarantee(verify_bitmaps(caller, hr), "bitmap verification"); 6158 } 6159 6160 class G1VerifyBitmapClosure : public HeapRegionClosure { 6161 private: 6162 const char* _caller; 6163 G1CollectedHeap* _g1h; 6164 bool _failures; 6165 6166 public: 6167 G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) : 6168 _caller(caller), _g1h(g1h), _failures(false) { } 6169 6170 bool failures() { return _failures; } 6171 6172 virtual bool doHeapRegion(HeapRegion* hr) { 6173 if (hr->continuesHumongous()) return false; 6174 6175 bool result = _g1h->verify_bitmaps(_caller, hr); 6176 if (!result) { 6177 _failures = true; 6178 } 6179 return false; 6180 } 6181 }; 6182 6183 void G1CollectedHeap::check_bitmaps(const char* caller) { 6184 if (!G1VerifyBitmaps) return; 6185 6186 G1VerifyBitmapClosure cl(caller, this); 6187 heap_region_iterate(&cl); 6188 guarantee(!cl.failures(), "bitmap verification"); 6189 } 6190 #endif // PRODUCT 6191 6192 void G1CollectedHeap::cleanUpCardTable() { 6193 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 6194 double start = os::elapsedTime(); 6195 6196 { 6197 // Iterate over the dirty cards region list. 6198 G1ParCleanupCTTask cleanup_task(ct_bs, this); 6199 6200 if (G1CollectedHeap::use_parallel_gc_threads()) { 6201 set_par_threads(); 6202 workers()->run_task(&cleanup_task); 6203 set_par_threads(0); 6204 } else { 6205 while (_dirty_cards_region_list) { 6206 HeapRegion* r = _dirty_cards_region_list; 6207 cleanup_task.clear_cards(r); 6208 _dirty_cards_region_list = r->get_next_dirty_cards_region(); 6209 if (_dirty_cards_region_list == r) { 6210 // The last region. 6211 _dirty_cards_region_list = NULL; 6212 } 6213 r->set_next_dirty_cards_region(NULL); 6214 } 6215 } 6216 #ifndef PRODUCT 6217 if (G1VerifyCTCleanup || VerifyAfterGC) { 6218 G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs); 6219 heap_region_iterate(&cleanup_verifier); 6220 } 6221 #endif 6222 } 6223 6224 double elapsed = os::elapsedTime() - start; 6225 g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0); 6226 } 6227 6228 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) { 6229 size_t pre_used = 0; 6230 FreeRegionList local_free_list("Local List for CSet Freeing"); 6231 6232 double young_time_ms = 0.0; 6233 double non_young_time_ms = 0.0; 6234 6235 // Since the collection set is a superset of the the young list, 6236 // all we need to do to clear the young list is clear its 6237 // head and length, and unlink any young regions in the code below 6238 _young_list->clear(); 6239 6240 G1CollectorPolicy* policy = g1_policy(); 6241 6242 double start_sec = os::elapsedTime(); 6243 bool non_young = true; 6244 6245 HeapRegion* cur = cs_head; 6246 int age_bound = -1; 6247 size_t rs_lengths = 0; 6248 6249 while (cur != NULL) { 6250 assert(!is_on_master_free_list(cur), "sanity"); 6251 if (non_young) { 6252 if (cur->is_young()) { 6253 double end_sec = os::elapsedTime(); 6254 double elapsed_ms = (end_sec - start_sec) * 1000.0; 6255 non_young_time_ms += elapsed_ms; 6256 6257 start_sec = os::elapsedTime(); 6258 non_young = false; 6259 } 6260 } else { 6261 if (!cur->is_young()) { 6262 double end_sec = os::elapsedTime(); 6263 double elapsed_ms = (end_sec - start_sec) * 1000.0; 6264 young_time_ms += elapsed_ms; 6265 6266 start_sec = os::elapsedTime(); 6267 non_young = true; 6268 } 6269 } 6270 6271 rs_lengths += cur->rem_set()->occupied_locked(); 6272 6273 HeapRegion* next = cur->next_in_collection_set(); 6274 assert(cur->in_collection_set(), "bad CS"); 6275 cur->set_next_in_collection_set(NULL); 6276 cur->set_in_collection_set(false); 6277 6278 if (cur->is_young()) { 6279 int index = cur->young_index_in_cset(); 6280 assert(index != -1, "invariant"); 6281 assert((uint) index < policy->young_cset_region_length(), "invariant"); 6282 size_t words_survived = _surviving_young_words[index]; 6283 cur->record_surv_words_in_group(words_survived); 6284 6285 // At this point the we have 'popped' cur from the collection set 6286 // (linked via next_in_collection_set()) but it is still in the 6287 // young list (linked via next_young_region()). Clear the 6288 // _next_young_region field. 6289 cur->set_next_young_region(NULL); 6290 } else { 6291 int index = cur->young_index_in_cset(); 6292 assert(index == -1, "invariant"); 6293 } 6294 6295 assert( (cur->is_young() && cur->young_index_in_cset() > -1) || 6296 (!cur->is_young() && cur->young_index_in_cset() == -1), 6297 "invariant" ); 6298 6299 if (!cur->evacuation_failed()) { 6300 MemRegion used_mr = cur->used_region(); 6301 6302 // And the region is empty. 6303 assert(!used_mr.is_empty(), "Should not have empty regions in a CS."); 6304 pre_used += cur->used(); 6305 free_region(cur, &local_free_list, false /* par */, true /* locked */); 6306 } else { 6307 cur->uninstall_surv_rate_group(); 6308 if (cur->is_young()) { 6309 cur->set_young_index_in_cset(-1); 6310 } 6311 cur->set_not_young(); 6312 cur->set_evacuation_failed(false); 6313 // The region is now considered to be old. 6314 _old_set.add(cur); 6315 evacuation_info.increment_collectionset_used_after(cur->used()); 6316 } 6317 cur = next; 6318 } 6319 6320 evacuation_info.set_regions_freed(local_free_list.length()); 6321 policy->record_max_rs_lengths(rs_lengths); 6322 policy->cset_regions_freed(); 6323 6324 double end_sec = os::elapsedTime(); 6325 double elapsed_ms = (end_sec - start_sec) * 1000.0; 6326 6327 if (non_young) { 6328 non_young_time_ms += elapsed_ms; 6329 } else { 6330 young_time_ms += elapsed_ms; 6331 } 6332 6333 prepend_to_freelist(&local_free_list); 6334 decrement_summary_bytes(pre_used); 6335 policy->phase_times()->record_young_free_cset_time_ms(young_time_ms); 6336 policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms); 6337 } 6338 6339 // This routine is similar to the above but does not record 6340 // any policy statistics or update free lists; we are abandoning 6341 // the current incremental collection set in preparation of a 6342 // full collection. After the full GC we will start to build up 6343 // the incremental collection set again. 6344 // This is only called when we're doing a full collection 6345 // and is immediately followed by the tearing down of the young list. 6346 6347 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) { 6348 HeapRegion* cur = cs_head; 6349 6350 while (cur != NULL) { 6351 HeapRegion* next = cur->next_in_collection_set(); 6352 assert(cur->in_collection_set(), "bad CS"); 6353 cur->set_next_in_collection_set(NULL); 6354 cur->set_in_collection_set(false); 6355 cur->set_young_index_in_cset(-1); 6356 cur = next; 6357 } 6358 } 6359 6360 void G1CollectedHeap::set_free_regions_coming() { 6361 if (G1ConcRegionFreeingVerbose) { 6362 gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : " 6363 "setting free regions coming"); 6364 } 6365 6366 assert(!free_regions_coming(), "pre-condition"); 6367 _free_regions_coming = true; 6368 } 6369 6370 void G1CollectedHeap::reset_free_regions_coming() { 6371 assert(free_regions_coming(), "pre-condition"); 6372 6373 { 6374 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6375 _free_regions_coming = false; 6376 SecondaryFreeList_lock->notify_all(); 6377 } 6378 6379 if (G1ConcRegionFreeingVerbose) { 6380 gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : " 6381 "reset free regions coming"); 6382 } 6383 } 6384 6385 void G1CollectedHeap::wait_while_free_regions_coming() { 6386 // Most of the time we won't have to wait, so let's do a quick test 6387 // first before we take the lock. 6388 if (!free_regions_coming()) { 6389 return; 6390 } 6391 6392 if (G1ConcRegionFreeingVerbose) { 6393 gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : " 6394 "waiting for free regions"); 6395 } 6396 6397 { 6398 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6399 while (free_regions_coming()) { 6400 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 6401 } 6402 } 6403 6404 if (G1ConcRegionFreeingVerbose) { 6405 gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : " 6406 "done waiting for free regions"); 6407 } 6408 } 6409 6410 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { 6411 assert(heap_lock_held_for_gc(), 6412 "the heap lock should already be held by or for this thread"); 6413 _young_list->push_region(hr); 6414 } 6415 6416 class NoYoungRegionsClosure: public HeapRegionClosure { 6417 private: 6418 bool _success; 6419 public: 6420 NoYoungRegionsClosure() : _success(true) { } 6421 bool doHeapRegion(HeapRegion* r) { 6422 if (r->is_young()) { 6423 gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young", 6424 r->bottom(), r->end()); 6425 _success = false; 6426 } 6427 return false; 6428 } 6429 bool success() { return _success; } 6430 }; 6431 6432 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) { 6433 bool ret = _young_list->check_list_empty(check_sample); 6434 6435 if (check_heap) { 6436 NoYoungRegionsClosure closure; 6437 heap_region_iterate(&closure); 6438 ret = ret && closure.success(); 6439 } 6440 6441 return ret; 6442 } 6443 6444 class TearDownRegionSetsClosure : public HeapRegionClosure { 6445 private: 6446 HeapRegionSet *_old_set; 6447 6448 public: 6449 TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { } 6450 6451 bool doHeapRegion(HeapRegion* r) { 6452 if (r->is_empty()) { 6453 // We ignore empty regions, we'll empty the free list afterwards 6454 } else if (r->is_young()) { 6455 // We ignore young regions, we'll empty the young list afterwards 6456 } else if (r->isHumongous()) { 6457 // We ignore humongous regions, we're not tearing down the 6458 // humongous region set 6459 } else { 6460 // The rest should be old 6461 _old_set->remove(r); 6462 } 6463 return false; 6464 } 6465 6466 ~TearDownRegionSetsClosure() { 6467 assert(_old_set->is_empty(), "post-condition"); 6468 } 6469 }; 6470 6471 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) { 6472 assert_at_safepoint(true /* should_be_vm_thread */); 6473 6474 if (!free_list_only) { 6475 TearDownRegionSetsClosure cl(&_old_set); 6476 heap_region_iterate(&cl); 6477 6478 // Note that emptying the _young_list is postponed and instead done as 6479 // the first step when rebuilding the regions sets again. The reason for 6480 // this is that during a full GC string deduplication needs to know if 6481 // a collected region was young or old when the full GC was initiated. 6482 } 6483 _free_list.remove_all(); 6484 } 6485 6486 class RebuildRegionSetsClosure : public HeapRegionClosure { 6487 private: 6488 bool _free_list_only; 6489 HeapRegionSet* _old_set; 6490 FreeRegionList* _free_list; 6491 size_t _total_used; 6492 6493 public: 6494 RebuildRegionSetsClosure(bool free_list_only, 6495 HeapRegionSet* old_set, FreeRegionList* free_list) : 6496 _free_list_only(free_list_only), 6497 _old_set(old_set), _free_list(free_list), _total_used(0) { 6498 assert(_free_list->is_empty(), "pre-condition"); 6499 if (!free_list_only) { 6500 assert(_old_set->is_empty(), "pre-condition"); 6501 } 6502 } 6503 6504 bool doHeapRegion(HeapRegion* r) { 6505 if (r->continuesHumongous()) { 6506 return false; 6507 } 6508 6509 if (r->is_empty()) { 6510 // Add free regions to the free list 6511 _free_list->add_as_tail(r); 6512 } else if (!_free_list_only) { 6513 assert(!r->is_young(), "we should not come across young regions"); 6514 6515 if (r->isHumongous()) { 6516 // We ignore humongous regions, we left the humongous set unchanged 6517 } else { 6518 // The rest should be old, add them to the old set 6519 _old_set->add(r); 6520 } 6521 _total_used += r->used(); 6522 } 6523 6524 return false; 6525 } 6526 6527 size_t total_used() { 6528 return _total_used; 6529 } 6530 }; 6531 6532 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) { 6533 assert_at_safepoint(true /* should_be_vm_thread */); 6534 6535 if (!free_list_only) { 6536 _young_list->empty_list(); 6537 } 6538 6539 RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list); 6540 heap_region_iterate(&cl); 6541 6542 if (!free_list_only) { 6543 _summary_bytes_used = cl.total_used(); 6544 } 6545 assert(_summary_bytes_used == recalculate_used(), 6546 err_msg("inconsistent _summary_bytes_used, " 6547 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT, 6548 _summary_bytes_used, recalculate_used())); 6549 } 6550 6551 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) { 6552 _refine_cte_cl->set_concurrent(concurrent); 6553 } 6554 6555 bool G1CollectedHeap::is_in_closed_subset(const void* p) const { 6556 HeapRegion* hr = heap_region_containing(p); 6557 return hr->is_in(p); 6558 } 6559 6560 // Methods for the mutator alloc region 6561 6562 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size, 6563 bool force) { 6564 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6565 assert(!force || g1_policy()->can_expand_young_list(), 6566 "if force is true we should be able to expand the young list"); 6567 bool young_list_full = g1_policy()->is_young_list_full(); 6568 if (force || !young_list_full) { 6569 HeapRegion* new_alloc_region = new_region(word_size, 6570 false /* is_old */, 6571 false /* do_expand */); 6572 if (new_alloc_region != NULL) { 6573 set_region_short_lived_locked(new_alloc_region); 6574 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full); 6575 check_bitmaps("Mutator Region Allocation", new_alloc_region); 6576 return new_alloc_region; 6577 } 6578 } 6579 return NULL; 6580 } 6581 6582 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region, 6583 size_t allocated_bytes) { 6584 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6585 assert(alloc_region->is_young(), "all mutator alloc regions should be young"); 6586 6587 g1_policy()->add_region_to_incremental_cset_lhs(alloc_region); 6588 _summary_bytes_used += allocated_bytes; 6589 _hr_printer.retire(alloc_region); 6590 // We update the eden sizes here, when the region is retired, 6591 // instead of when it's allocated, since this is the point that its 6592 // used space has been recored in _summary_bytes_used. 6593 g1mm()->update_eden_size(); 6594 } 6595 6596 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size, 6597 bool force) { 6598 return _g1h->new_mutator_alloc_region(word_size, force); 6599 } 6600 6601 void G1CollectedHeap::set_par_threads() { 6602 // Don't change the number of workers. Use the value previously set 6603 // in the workgroup. 6604 assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise"); 6605 uint n_workers = workers()->active_workers(); 6606 assert(UseDynamicNumberOfGCThreads || 6607 n_workers == workers()->total_workers(), 6608 "Otherwise should be using the total number of workers"); 6609 if (n_workers == 0) { 6610 assert(false, "Should have been set in prior evacuation pause."); 6611 n_workers = ParallelGCThreads; 6612 workers()->set_active_workers(n_workers); 6613 } 6614 set_par_threads(n_workers); 6615 } 6616 6617 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region, 6618 size_t allocated_bytes) { 6619 _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes); 6620 } 6621 6622 // Methods for the GC alloc regions 6623 6624 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, 6625 uint count, 6626 GCAllocPurpose ap) { 6627 assert(FreeList_lock->owned_by_self(), "pre-condition"); 6628 6629 if (count < g1_policy()->max_regions(ap)) { 6630 bool survivor = (ap == GCAllocForSurvived); 6631 HeapRegion* new_alloc_region = new_region(word_size, 6632 !survivor, 6633 true /* do_expand */); 6634 if (new_alloc_region != NULL) { 6635 // We really only need to do this for old regions given that we 6636 // should never scan survivors. But it doesn't hurt to do it 6637 // for survivors too. 6638 new_alloc_region->set_saved_mark(); 6639 if (survivor) { 6640 new_alloc_region->set_survivor(); 6641 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor); 6642 check_bitmaps("Survivor Region Allocation", new_alloc_region); 6643 } else { 6644 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old); 6645 check_bitmaps("Old Region Allocation", new_alloc_region); 6646 } 6647 bool during_im = g1_policy()->during_initial_mark_pause(); 6648 new_alloc_region->note_start_of_copying(during_im); 6649 return new_alloc_region; 6650 } else { 6651 g1_policy()->note_alloc_region_limit_reached(ap); 6652 } 6653 } 6654 return NULL; 6655 } 6656 6657 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region, 6658 size_t allocated_bytes, 6659 GCAllocPurpose ap) { 6660 bool during_im = g1_policy()->during_initial_mark_pause(); 6661 alloc_region->note_end_of_copying(during_im); 6662 g1_policy()->record_bytes_copied_during_gc(allocated_bytes); 6663 if (ap == GCAllocForSurvived) { 6664 young_list()->add_survivor_region(alloc_region); 6665 } else { 6666 _old_set.add(alloc_region); 6667 } 6668 _hr_printer.retire(alloc_region); 6669 } 6670 6671 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size, 6672 bool force) { 6673 assert(!force, "not supported for GC alloc regions"); 6674 return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived); 6675 } 6676 6677 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region, 6678 size_t allocated_bytes) { 6679 _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, 6680 GCAllocForSurvived); 6681 } 6682 6683 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size, 6684 bool force) { 6685 assert(!force, "not supported for GC alloc regions"); 6686 return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured); 6687 } 6688 6689 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region, 6690 size_t allocated_bytes) { 6691 _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, 6692 GCAllocForTenured); 6693 } 6694 // Heap region set verification 6695 6696 class VerifyRegionListsClosure : public HeapRegionClosure { 6697 private: 6698 HeapRegionSet* _old_set; 6699 HeapRegionSet* _humongous_set; 6700 FreeRegionList* _free_list; 6701 6702 public: 6703 HeapRegionSetCount _old_count; 6704 HeapRegionSetCount _humongous_count; 6705 HeapRegionSetCount _free_count; 6706 6707 VerifyRegionListsClosure(HeapRegionSet* old_set, 6708 HeapRegionSet* humongous_set, 6709 FreeRegionList* free_list) : 6710 _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list), 6711 _old_count(), _humongous_count(), _free_count(){ } 6712 6713 bool doHeapRegion(HeapRegion* hr) { 6714 if (hr->continuesHumongous()) { 6715 return false; 6716 } 6717 6718 if (hr->is_young()) { 6719 // TODO 6720 } else if (hr->startsHumongous()) { 6721 assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrs_index())); 6722 _humongous_count.increment(1u, hr->capacity()); 6723 } else if (hr->is_empty()) { 6724 assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->hrs_index())); 6725 _free_count.increment(1u, hr->capacity()); 6726 } else { 6727 assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrs_index())); 6728 _old_count.increment(1u, hr->capacity()); 6729 } 6730 return false; 6731 } 6732 6733 void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) { 6734 guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length())); 6735 guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT, 6736 old_set->total_capacity_bytes(), _old_count.capacity())); 6737 6738 guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length())); 6739 guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT, 6740 humongous_set->total_capacity_bytes(), _humongous_count.capacity())); 6741 6742 guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length())); 6743 guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT, 6744 free_list->total_capacity_bytes(), _free_count.capacity())); 6745 } 6746 }; 6747 6748 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index, 6749 HeapWord* bottom) { 6750 HeapWord* end = bottom + HeapRegion::GrainWords; 6751 MemRegion mr(bottom, end); 6752 assert(_g1_reserved.contains(mr), "invariant"); 6753 // This might return NULL if the allocation fails 6754 return new HeapRegion(hrs_index, _bot_shared, mr); 6755 } 6756 6757 void G1CollectedHeap::verify_region_sets() { 6758 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6759 6760 // First, check the explicit lists. 6761 _free_list.verify_list(); 6762 { 6763 // Given that a concurrent operation might be adding regions to 6764 // the secondary free list we have to take the lock before 6765 // verifying it. 6766 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6767 _secondary_free_list.verify_list(); 6768 } 6769 6770 // If a concurrent region freeing operation is in progress it will 6771 // be difficult to correctly attributed any free regions we come 6772 // across to the correct free list given that they might belong to 6773 // one of several (free_list, secondary_free_list, any local lists, 6774 // etc.). So, if that's the case we will skip the rest of the 6775 // verification operation. Alternatively, waiting for the concurrent 6776 // operation to complete will have a non-trivial effect on the GC's 6777 // operation (no concurrent operation will last longer than the 6778 // interval between two calls to verification) and it might hide 6779 // any issues that we would like to catch during testing. 6780 if (free_regions_coming()) { 6781 return; 6782 } 6783 6784 // Make sure we append the secondary_free_list on the free_list so 6785 // that all free regions we will come across can be safely 6786 // attributed to the free_list. 6787 append_secondary_free_list_if_not_empty_with_lock(); 6788 6789 // Finally, make sure that the region accounting in the lists is 6790 // consistent with what we see in the heap. 6791 6792 VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list); 6793 heap_region_iterate(&cl); 6794 cl.verify_counts(&_old_set, &_humongous_set, &_free_list); 6795 } 6796 6797 // Optimized nmethod scanning 6798 6799 class RegisterNMethodOopClosure: public OopClosure { 6800 G1CollectedHeap* _g1h; 6801 nmethod* _nm; 6802 6803 template <class T> void do_oop_work(T* p) { 6804 T heap_oop = oopDesc::load_heap_oop(p); 6805 if (!oopDesc::is_null(heap_oop)) { 6806 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 6807 HeapRegion* hr = _g1h->heap_region_containing(obj); 6808 assert(!hr->continuesHumongous(), 6809 err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT 6810 " starting at "HR_FORMAT, 6811 _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()))); 6812 6813 // HeapRegion::add_strong_code_root() avoids adding duplicate 6814 // entries but having duplicates is OK since we "mark" nmethods 6815 // as visited when we scan the strong code root lists during the GC. 6816 hr->add_strong_code_root(_nm); 6817 assert(hr->rem_set()->strong_code_roots_list_contains(_nm), 6818 err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT, 6819 _nm, HR_FORMAT_PARAMS(hr))); 6820 } 6821 } 6822 6823 public: 6824 RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 6825 _g1h(g1h), _nm(nm) {} 6826 6827 void do_oop(oop* p) { do_oop_work(p); } 6828 void do_oop(narrowOop* p) { do_oop_work(p); } 6829 }; 6830 6831 class UnregisterNMethodOopClosure: public OopClosure { 6832 G1CollectedHeap* _g1h; 6833 nmethod* _nm; 6834 6835 template <class T> void do_oop_work(T* p) { 6836 T heap_oop = oopDesc::load_heap_oop(p); 6837 if (!oopDesc::is_null(heap_oop)) { 6838 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 6839 HeapRegion* hr = _g1h->heap_region_containing(obj); 6840 assert(!hr->continuesHumongous(), 6841 err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT 6842 " starting at "HR_FORMAT, 6843 _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()))); 6844 6845 hr->remove_strong_code_root(_nm); 6846 assert(!hr->rem_set()->strong_code_roots_list_contains(_nm), 6847 err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT, 6848 _nm, HR_FORMAT_PARAMS(hr))); 6849 } 6850 } 6851 6852 public: 6853 UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 6854 _g1h(g1h), _nm(nm) {} 6855 6856 void do_oop(oop* p) { do_oop_work(p); } 6857 void do_oop(narrowOop* p) { do_oop_work(p); } 6858 }; 6859 6860 void G1CollectedHeap::register_nmethod(nmethod* nm) { 6861 CollectedHeap::register_nmethod(nm); 6862 6863 guarantee(nm != NULL, "sanity"); 6864 RegisterNMethodOopClosure reg_cl(this, nm); 6865 nm->oops_do(®_cl); 6866 } 6867 6868 void G1CollectedHeap::unregister_nmethod(nmethod* nm) { 6869 CollectedHeap::unregister_nmethod(nm); 6870 6871 guarantee(nm != NULL, "sanity"); 6872 UnregisterNMethodOopClosure reg_cl(this, nm); 6873 nm->oops_do(®_cl, true); 6874 } 6875 6876 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure { 6877 public: 6878 bool doHeapRegion(HeapRegion *hr) { 6879 assert(!hr->isHumongous(), 6880 err_msg("humongous region "HR_FORMAT" should not have been added to collection set", 6881 HR_FORMAT_PARAMS(hr))); 6882 hr->migrate_strong_code_roots(); 6883 return false; 6884 } 6885 }; 6886 6887 void G1CollectedHeap::migrate_strong_code_roots() { 6888 MigrateCodeRootsHeapRegionClosure cl; 6889 double migrate_start = os::elapsedTime(); 6890 collection_set_iterate(&cl); 6891 double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0; 6892 g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms); 6893 } 6894 6895 void G1CollectedHeap::purge_code_root_memory() { 6896 double purge_start = os::elapsedTime(); 6897 G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent); 6898 double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0; 6899 g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms); 6900 } 6901 6902 // Mark all the code roots that point into regions *not* in the 6903 // collection set. 6904 // 6905 // Note we do not want to use a "marking" CodeBlobToOopClosure while 6906 // walking the the code roots lists of regions not in the collection 6907 // set. Suppose we have an nmethod (M) that points to objects in two 6908 // separate regions - one in the collection set (R1) and one not (R2). 6909 // Using a "marking" CodeBlobToOopClosure here would result in "marking" 6910 // nmethod M when walking the code roots for R1. When we come to scan 6911 // the code roots for R2, we would see that M is already marked and it 6912 // would be skipped and the objects in R2 that are referenced from M 6913 // would not be evacuated. 6914 6915 class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure { 6916 6917 class MarkStrongCodeRootOopClosure: public OopClosure { 6918 ConcurrentMark* _cm; 6919 HeapRegion* _hr; 6920 uint _worker_id; 6921 6922 template <class T> void do_oop_work(T* p) { 6923 T heap_oop = oopDesc::load_heap_oop(p); 6924 if (!oopDesc::is_null(heap_oop)) { 6925 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 6926 // Only mark objects in the region (which is assumed 6927 // to be not in the collection set). 6928 if (_hr->is_in(obj)) { 6929 _cm->grayRoot(obj, (size_t) obj->size(), _worker_id); 6930 } 6931 } 6932 } 6933 6934 public: 6935 MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) : 6936 _cm(cm), _hr(hr), _worker_id(worker_id) { 6937 assert(!_hr->in_collection_set(), "sanity"); 6938 } 6939 6940 void do_oop(narrowOop* p) { do_oop_work(p); } 6941 void do_oop(oop* p) { do_oop_work(p); } 6942 }; 6943 6944 MarkStrongCodeRootOopClosure _oop_cl; 6945 6946 public: 6947 MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id): 6948 _oop_cl(cm, hr, worker_id) {} 6949 6950 void do_code_blob(CodeBlob* cb) { 6951 nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null(); 6952 if (nm != NULL) { 6953 nm->oops_do(&_oop_cl); 6954 } 6955 } 6956 }; 6957 6958 class MarkStrongCodeRootsHRClosure: public HeapRegionClosure { 6959 G1CollectedHeap* _g1h; 6960 uint _worker_id; 6961 6962 public: 6963 MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) : 6964 _g1h(g1h), _worker_id(worker_id) {} 6965 6966 bool doHeapRegion(HeapRegion *hr) { 6967 HeapRegionRemSet* hrrs = hr->rem_set(); 6968 if (hr->continuesHumongous()) { 6969 // Code roots should never be attached to a continuation of a humongous region 6970 assert(hrrs->strong_code_roots_list_length() == 0, 6971 err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT 6972 " starting at "HR_FORMAT", but has "SIZE_FORMAT, 6973 HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()), 6974 hrrs->strong_code_roots_list_length())); 6975 return false; 6976 } 6977 6978 if (hr->in_collection_set()) { 6979 // Don't mark code roots into regions in the collection set here. 6980 // They will be marked when we scan them. 6981 return false; 6982 } 6983 6984 MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id); 6985 hr->strong_code_roots_do(&cb_cl); 6986 return false; 6987 } 6988 }; 6989 6990 void G1CollectedHeap::mark_strong_code_roots(uint worker_id) { 6991 MarkStrongCodeRootsHRClosure cl(this, worker_id); 6992 if (G1CollectedHeap::use_parallel_gc_threads()) { 6993 heap_region_par_iterate_chunked(&cl, 6994 worker_id, 6995 workers()->active_workers(), 6996 HeapRegion::ParMarkRootClaimValue); 6997 } else { 6998 heap_region_iterate(&cl); 6999 } 7000 } 7001 7002 class RebuildStrongCodeRootClosure: public CodeBlobClosure { 7003 G1CollectedHeap* _g1h; 7004 7005 public: 7006 RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) : 7007 _g1h(g1h) {} 7008 7009 void do_code_blob(CodeBlob* cb) { 7010 nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL; 7011 if (nm == NULL) { 7012 return; 7013 } 7014 7015 if (ScavengeRootsInCode && nm->detect_scavenge_root_oops()) { 7016 _g1h->register_nmethod(nm); 7017 } 7018 } 7019 }; 7020 7021 void G1CollectedHeap::rebuild_strong_code_roots() { 7022 RebuildStrongCodeRootClosure blob_cl(this); 7023 CodeCache::blobs_do(&blob_cl); 7024 }