1 /* 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "code/nmethod.hpp" 27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp" 28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" 29 #include "gc_implementation/g1/g1OopClosures.inline.hpp" 30 #include "gc_implementation/g1/heapRegion.inline.hpp" 31 #include "gc_implementation/g1/heapRegionRemSet.hpp" 32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp" 33 #include "memory/genOopClosures.inline.hpp" 34 #include "memory/iterator.hpp" 35 #include "oops/oop.inline.hpp" 36 #include "runtime/orderAccess.inline.hpp" 37 38 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC 39 40 int HeapRegion::LogOfHRGrainBytes = 0; 41 int HeapRegion::LogOfHRGrainWords = 0; 42 size_t HeapRegion::GrainBytes = 0; 43 size_t HeapRegion::GrainWords = 0; 44 size_t HeapRegion::CardsPerRegion = 0; 45 46 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1, 47 HeapRegion* hr, ExtendedOopClosure* cl, 48 CardTableModRefBS::PrecisionStyle precision, 49 FilterKind fk) : 50 ContiguousSpaceDCTOC(hr, cl, precision, NULL), 51 _hr(hr), _fk(fk), _g1(g1) { } 52 53 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r, 54 OopClosure* oc) : 55 _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { } 56 57 template<class ClosureType> 58 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h, 59 HeapRegion* hr, 60 HeapWord* cur, HeapWord* top) { 61 oop cur_oop = oop(cur); 62 int oop_size = cur_oop->size(); 63 HeapWord* next_obj = cur + oop_size; 64 while (next_obj < top) { 65 // Keep filtering the remembered set. 66 if (!g1h->is_obj_dead(cur_oop, hr)) { 67 // Bottom lies entirely below top, so we can call the 68 // non-memRegion version of oop_iterate below. 69 cur_oop->oop_iterate(cl); 70 } 71 cur = next_obj; 72 cur_oop = oop(cur); 73 oop_size = cur_oop->size(); 74 next_obj = cur + oop_size; 75 } 76 return cur; 77 } 78 79 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr, 80 HeapWord* bottom, 81 HeapWord* top, 82 ExtendedOopClosure* cl) { 83 G1CollectedHeap* g1h = _g1; 84 int oop_size; 85 ExtendedOopClosure* cl2 = NULL; 86 87 FilterIntoCSClosure intoCSFilt(this, g1h, cl); 88 FilterOutOfRegionClosure outOfRegionFilt(_hr, cl); 89 90 switch (_fk) { 91 case NoFilterKind: cl2 = cl; break; 92 case IntoCSFilterKind: cl2 = &intoCSFilt; break; 93 case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break; 94 default: ShouldNotReachHere(); 95 } 96 97 // Start filtering what we add to the remembered set. If the object is 98 // not considered dead, either because it is marked (in the mark bitmap) 99 // or it was allocated after marking finished, then we add it. Otherwise 100 // we can safely ignore the object. 101 if (!g1h->is_obj_dead(oop(bottom), _hr)) { 102 oop_size = oop(bottom)->oop_iterate(cl2, mr); 103 } else { 104 oop_size = oop(bottom)->size(); 105 } 106 107 bottom += oop_size; 108 109 if (bottom < top) { 110 // We replicate the loop below for several kinds of possible filters. 111 switch (_fk) { 112 case NoFilterKind: 113 bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top); 114 break; 115 116 case IntoCSFilterKind: { 117 FilterIntoCSClosure filt(this, g1h, cl); 118 bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top); 119 break; 120 } 121 122 case OutOfRegionFilterKind: { 123 FilterOutOfRegionClosure filt(_hr, cl); 124 bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top); 125 break; 126 } 127 128 default: 129 ShouldNotReachHere(); 130 } 131 132 // Last object. Need to do dead-obj filtering here too. 133 if (!g1h->is_obj_dead(oop(bottom), _hr)) { 134 oop(bottom)->oop_iterate(cl2, mr); 135 } 136 } 137 } 138 139 // Minimum region size; we won't go lower than that. 140 // We might want to decrease this in the future, to deal with small 141 // heaps a bit more efficiently. 142 #define MIN_REGION_SIZE ( 1024 * 1024 ) 143 144 // Maximum region size; we don't go higher than that. There's a good 145 // reason for having an upper bound. We don't want regions to get too 146 // large, otherwise cleanup's effectiveness would decrease as there 147 // will be fewer opportunities to find totally empty regions after 148 // marking. 149 #define MAX_REGION_SIZE ( 32 * 1024 * 1024 ) 150 151 // The automatic region size calculation will try to have around this 152 // many regions in the heap (based on the min heap size). 153 #define TARGET_REGION_NUMBER 2048 154 155 size_t HeapRegion::max_region_size() { 156 return (size_t)MAX_REGION_SIZE; 157 } 158 159 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) { 160 uintx region_size = G1HeapRegionSize; 161 if (FLAG_IS_DEFAULT(G1HeapRegionSize)) { 162 size_t average_heap_size = (initial_heap_size + max_heap_size) / 2; 163 region_size = MAX2(average_heap_size / TARGET_REGION_NUMBER, 164 (uintx) MIN_REGION_SIZE); 165 } 166 167 int region_size_log = log2_long((jlong) region_size); 168 // Recalculate the region size to make sure it's a power of 169 // 2. This means that region_size is the largest power of 2 that's 170 // <= what we've calculated so far. 171 region_size = ((uintx)1 << region_size_log); 172 173 // Now make sure that we don't go over or under our limits. 174 if (region_size < MIN_REGION_SIZE) { 175 region_size = MIN_REGION_SIZE; 176 } else if (region_size > MAX_REGION_SIZE) { 177 region_size = MAX_REGION_SIZE; 178 } 179 180 // And recalculate the log. 181 region_size_log = log2_long((jlong) region_size); 182 183 // Now, set up the globals. 184 guarantee(LogOfHRGrainBytes == 0, "we should only set it once"); 185 LogOfHRGrainBytes = region_size_log; 186 187 guarantee(LogOfHRGrainWords == 0, "we should only set it once"); 188 LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize; 189 190 guarantee(GrainBytes == 0, "we should only set it once"); 191 // The cast to int is safe, given that we've bounded region_size by 192 // MIN_REGION_SIZE and MAX_REGION_SIZE. 193 GrainBytes = (size_t)region_size; 194 195 guarantee(GrainWords == 0, "we should only set it once"); 196 GrainWords = GrainBytes >> LogHeapWordSize; 197 guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity"); 198 199 guarantee(CardsPerRegion == 0, "we should only set it once"); 200 CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift; 201 } 202 203 void HeapRegion::reset_after_compaction() { 204 G1OffsetTableContigSpace::reset_after_compaction(); 205 // After a compaction the mark bitmap is invalid, so we must 206 // treat all objects as being inside the unmarked area. 207 zero_marked_bytes(); 208 init_top_at_mark_start(); 209 } 210 211 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) { 212 assert(_humongous_type == NotHumongous, 213 "we should have already filtered out humongous regions"); 214 assert(_humongous_start_region == NULL, 215 "we should have already filtered out humongous regions"); 216 assert(_end == _orig_end, 217 "we should have already filtered out humongous regions"); 218 219 _in_collection_set = false; 220 221 set_young_index_in_cset(-1); 222 uninstall_surv_rate_group(); 223 set_young_type(NotYoung); 224 reset_pre_dummy_top(); 225 226 if (!par) { 227 // If this is parallel, this will be done later. 228 HeapRegionRemSet* hrrs = rem_set(); 229 if (locked) { 230 hrrs->clear_locked(); 231 } else { 232 hrrs->clear(); 233 } 234 _claimed = InitialClaimValue; 235 } 236 zero_marked_bytes(); 237 238 _offsets.resize(HeapRegion::GrainWords); 239 init_top_at_mark_start(); 240 if (clear_space) clear(SpaceDecorator::Mangle); 241 } 242 243 void HeapRegion::par_clear() { 244 assert(used() == 0, "the region should have been already cleared"); 245 assert(capacity() == HeapRegion::GrainBytes, "should be back to normal"); 246 HeapRegionRemSet* hrrs = rem_set(); 247 hrrs->clear(); 248 CardTableModRefBS* ct_bs = 249 (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set(); 250 ct_bs->clear(MemRegion(bottom(), end())); 251 } 252 253 void HeapRegion::calc_gc_efficiency() { 254 // GC efficiency is the ratio of how much space would be 255 // reclaimed over how long we predict it would take to reclaim it. 256 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 257 G1CollectorPolicy* g1p = g1h->g1_policy(); 258 259 // Retrieve a prediction of the elapsed time for this region for 260 // a mixed gc because the region will only be evacuated during a 261 // mixed gc. 262 double region_elapsed_time_ms = 263 g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */); 264 _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms; 265 } 266 267 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) { 268 assert(!isHumongous(), "sanity / pre-condition"); 269 assert(end() == _orig_end, 270 "Should be normal before the humongous object allocation"); 271 assert(top() == bottom(), "should be empty"); 272 assert(bottom() <= new_top && new_top <= new_end, "pre-condition"); 273 274 _humongous_type = StartsHumongous; 275 _humongous_start_region = this; 276 277 set_end(new_end); 278 _offsets.set_for_starts_humongous(new_top); 279 } 280 281 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) { 282 assert(!isHumongous(), "sanity / pre-condition"); 283 assert(end() == _orig_end, 284 "Should be normal before the humongous object allocation"); 285 assert(top() == bottom(), "should be empty"); 286 assert(first_hr->startsHumongous(), "pre-condition"); 287 288 _humongous_type = ContinuesHumongous; 289 _humongous_start_region = first_hr; 290 } 291 292 void HeapRegion::set_notHumongous() { 293 assert(isHumongous(), "pre-condition"); 294 295 if (startsHumongous()) { 296 assert(top() <= end(), "pre-condition"); 297 set_end(_orig_end); 298 if (top() > end()) { 299 // at least one "continues humongous" region after it 300 set_top(end()); 301 } 302 } else { 303 // continues humongous 304 assert(end() == _orig_end, "sanity"); 305 } 306 307 assert(capacity() == HeapRegion::GrainBytes, "pre-condition"); 308 _humongous_type = NotHumongous; 309 _humongous_start_region = NULL; 310 } 311 312 bool HeapRegion::claimHeapRegion(jint claimValue) { 313 jint current = _claimed; 314 if (current != claimValue) { 315 jint res = Atomic::cmpxchg(claimValue, &_claimed, current); 316 if (res == current) { 317 return true; 318 } 319 } 320 return false; 321 } 322 323 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) { 324 HeapWord* low = addr; 325 HeapWord* high = end(); 326 while (low < high) { 327 size_t diff = pointer_delta(high, low); 328 // Must add one below to bias toward the high amount. Otherwise, if 329 // "high" were at the desired value, and "low" were one less, we 330 // would not converge on "high". This is not symmetric, because 331 // we set "high" to a block start, which might be the right one, 332 // which we don't do for "low". 333 HeapWord* middle = low + (diff+1)/2; 334 if (middle == high) return high; 335 HeapWord* mid_bs = block_start_careful(middle); 336 if (mid_bs < addr) { 337 low = middle; 338 } else { 339 high = mid_bs; 340 } 341 } 342 assert(low == high && low >= addr, "Didn't work."); 343 return low; 344 } 345 346 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away 347 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 348 #endif // _MSC_VER 349 350 351 HeapRegion::HeapRegion(uint hrs_index, 352 G1BlockOffsetSharedArray* sharedOffsetArray, 353 MemRegion mr) : 354 G1OffsetTableContigSpace(sharedOffsetArray, mr), 355 _hrs_index(hrs_index), 356 _humongous_type(NotHumongous), _humongous_start_region(NULL), 357 _in_collection_set(false), 358 _next_in_special_set(NULL), _orig_end(NULL), 359 _claimed(InitialClaimValue), _evacuation_failed(false), 360 _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0), 361 _young_type(NotYoung), _next_young_region(NULL), 362 _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL), _pending_removal(false), 363 #ifdef ASSERT 364 _containing_set(NULL), 365 #endif // ASSERT 366 _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1), 367 _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0), 368 _predicted_bytes_to_copy(0) 369 { 370 _rem_set = new HeapRegionRemSet(sharedOffsetArray, this); 371 _orig_end = mr.end(); 372 // Note that initialize() will set the start of the unmarked area of the 373 // region. 374 hr_clear(false /*par*/, false /*clear_space*/); 375 set_top(bottom()); 376 set_saved_mark(); 377 378 assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant."); 379 } 380 381 CompactibleSpace* HeapRegion::next_compaction_space() const { 382 // We're not using an iterator given that it will wrap around when 383 // it reaches the last region and this is not what we want here. 384 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 385 uint index = hrs_index() + 1; 386 while (index < g1h->n_regions()) { 387 HeapRegion* hr = g1h->region_at(index); 388 if (!hr->isHumongous()) { 389 return hr; 390 } 391 index += 1; 392 } 393 return NULL; 394 } 395 396 void HeapRegion::save_marks() { 397 set_saved_mark(); 398 } 399 400 void HeapRegion::oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl) { 401 HeapWord* p = mr.start(); 402 HeapWord* e = mr.end(); 403 oop obj; 404 while (p < e) { 405 obj = oop(p); 406 p += obj->oop_iterate(cl); 407 } 408 assert(p == e, "bad memregion: doesn't end on obj boundary"); 409 } 410 411 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \ 412 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \ 413 ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl); \ 414 } 415 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN) 416 417 418 void HeapRegion::oop_before_save_marks_iterate(ExtendedOopClosure* cl) { 419 oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl); 420 } 421 422 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark, 423 bool during_conc_mark) { 424 // We always recreate the prev marking info and we'll explicitly 425 // mark all objects we find to be self-forwarded on the prev 426 // bitmap. So all objects need to be below PTAMS. 427 _prev_top_at_mark_start = top(); 428 _prev_marked_bytes = 0; 429 430 if (during_initial_mark) { 431 // During initial-mark, we'll also explicitly mark all objects 432 // we find to be self-forwarded on the next bitmap. So all 433 // objects need to be below NTAMS. 434 _next_top_at_mark_start = top(); 435 _next_marked_bytes = 0; 436 } else if (during_conc_mark) { 437 // During concurrent mark, all objects in the CSet (including 438 // the ones we find to be self-forwarded) are implicitly live. 439 // So all objects need to be above NTAMS. 440 _next_top_at_mark_start = bottom(); 441 _next_marked_bytes = 0; 442 } 443 } 444 445 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark, 446 bool during_conc_mark, 447 size_t marked_bytes) { 448 assert(0 <= marked_bytes && marked_bytes <= used(), 449 err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT, 450 marked_bytes, used())); 451 _prev_marked_bytes = marked_bytes; 452 } 453 454 HeapWord* 455 HeapRegion::object_iterate_mem_careful(MemRegion mr, 456 ObjectClosure* cl) { 457 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 458 // We used to use "block_start_careful" here. But we're actually happy 459 // to update the BOT while we do this... 460 HeapWord* cur = block_start(mr.start()); 461 mr = mr.intersection(used_region()); 462 if (mr.is_empty()) return NULL; 463 // Otherwise, find the obj that extends onto mr.start(). 464 465 assert(cur <= mr.start() 466 && (oop(cur)->klass_or_null() == NULL || 467 cur + oop(cur)->size() > mr.start()), 468 "postcondition of block_start"); 469 oop obj; 470 while (cur < mr.end()) { 471 obj = oop(cur); 472 if (obj->klass_or_null() == NULL) { 473 // Ran into an unparseable point. 474 return cur; 475 } else if (!g1h->is_obj_dead(obj)) { 476 cl->do_object(obj); 477 } 478 cur += obj->size(); 479 } 480 return NULL; 481 } 482 483 HeapWord* 484 HeapRegion:: 485 oops_on_card_seq_iterate_careful(MemRegion mr, 486 FilterOutOfRegionClosure* cl, 487 bool filter_young, 488 jbyte* card_ptr) { 489 // Currently, we should only have to clean the card if filter_young 490 // is true and vice versa. 491 if (filter_young) { 492 assert(card_ptr != NULL, "pre-condition"); 493 } else { 494 assert(card_ptr == NULL, "pre-condition"); 495 } 496 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 497 498 // If we're within a stop-world GC, then we might look at a card in a 499 // GC alloc region that extends onto a GC LAB, which may not be 500 // parseable. Stop such at the "saved_mark" of the region. 501 if (g1h->is_gc_active()) { 502 mr = mr.intersection(used_region_at_save_marks()); 503 } else { 504 mr = mr.intersection(used_region()); 505 } 506 if (mr.is_empty()) return NULL; 507 // Otherwise, find the obj that extends onto mr.start(). 508 509 // The intersection of the incoming mr (for the card) and the 510 // allocated part of the region is non-empty. This implies that 511 // we have actually allocated into this region. The code in 512 // G1CollectedHeap.cpp that allocates a new region sets the 513 // is_young tag on the region before allocating. Thus we 514 // safely know if this region is young. 515 if (is_young() && filter_young) { 516 return NULL; 517 } 518 519 assert(!is_young(), "check value of filter_young"); 520 521 // We can only clean the card here, after we make the decision that 522 // the card is not young. And we only clean the card if we have been 523 // asked to (i.e., card_ptr != NULL). 524 if (card_ptr != NULL) { 525 *card_ptr = CardTableModRefBS::clean_card_val(); 526 // We must complete this write before we do any of the reads below. 527 OrderAccess::storeload(); 528 } 529 530 // Cache the boundaries of the memory region in some const locals 531 HeapWord* const start = mr.start(); 532 HeapWord* const end = mr.end(); 533 534 // We used to use "block_start_careful" here. But we're actually happy 535 // to update the BOT while we do this... 536 HeapWord* cur = block_start(start); 537 assert(cur <= start, "Postcondition"); 538 539 oop obj; 540 541 HeapWord* next = cur; 542 while (next <= start) { 543 cur = next; 544 obj = oop(cur); 545 if (obj->klass_or_null() == NULL) { 546 // Ran into an unparseable point. 547 return cur; 548 } 549 // Otherwise... 550 next = (cur + obj->size()); 551 } 552 553 // If we finish the above loop...We have a parseable object that 554 // begins on or before the start of the memory region, and ends 555 // inside or spans the entire region. 556 557 assert(obj == oop(cur), "sanity"); 558 assert(cur <= start && 559 obj->klass_or_null() != NULL && 560 (cur + obj->size()) > start, 561 "Loop postcondition"); 562 563 if (!g1h->is_obj_dead(obj)) { 564 obj->oop_iterate(cl, mr); 565 } 566 567 while (cur < end) { 568 obj = oop(cur); 569 if (obj->klass_or_null() == NULL) { 570 // Ran into an unparseable point. 571 return cur; 572 }; 573 574 // Otherwise: 575 next = (cur + obj->size()); 576 577 if (!g1h->is_obj_dead(obj)) { 578 if (next < end || !obj->is_objArray()) { 579 // This object either does not span the MemRegion 580 // boundary, or if it does it's not an array. 581 // Apply closure to whole object. 582 obj->oop_iterate(cl); 583 } else { 584 // This obj is an array that spans the boundary. 585 // Stop at the boundary. 586 obj->oop_iterate(cl, mr); 587 } 588 } 589 cur = next; 590 } 591 return NULL; 592 } 593 594 // Code roots support 595 596 void HeapRegion::add_strong_code_root(nmethod* nm) { 597 HeapRegionRemSet* hrrs = rem_set(); 598 hrrs->add_strong_code_root(nm); 599 } 600 601 void HeapRegion::remove_strong_code_root(nmethod* nm) { 602 HeapRegionRemSet* hrrs = rem_set(); 603 hrrs->remove_strong_code_root(nm); 604 } 605 606 void HeapRegion::migrate_strong_code_roots() { 607 assert(in_collection_set(), "only collection set regions"); 608 assert(!isHumongous(), 609 err_msg("humongous region "HR_FORMAT" should not have been added to collection set", 610 HR_FORMAT_PARAMS(this))); 611 612 HeapRegionRemSet* hrrs = rem_set(); 613 hrrs->migrate_strong_code_roots(); 614 } 615 616 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const { 617 HeapRegionRemSet* hrrs = rem_set(); 618 hrrs->strong_code_roots_do(blk); 619 } 620 621 class VerifyStrongCodeRootOopClosure: public OopClosure { 622 const HeapRegion* _hr; 623 nmethod* _nm; 624 bool _failures; 625 bool _has_oops_in_region; 626 627 template <class T> void do_oop_work(T* p) { 628 T heap_oop = oopDesc::load_heap_oop(p); 629 if (!oopDesc::is_null(heap_oop)) { 630 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 631 632 // Note: not all the oops embedded in the nmethod are in the 633 // current region. We only look at those which are. 634 if (_hr->is_in(obj)) { 635 // Object is in the region. Check that its less than top 636 if (_hr->top() <= (HeapWord*)obj) { 637 // Object is above top 638 gclog_or_tty->print_cr("Object "PTR_FORMAT" in region " 639 "["PTR_FORMAT", "PTR_FORMAT") is above " 640 "top "PTR_FORMAT, 641 (void *)obj, _hr->bottom(), _hr->end(), _hr->top()); 642 _failures = true; 643 return; 644 } 645 // Nmethod has at least one oop in the current region 646 _has_oops_in_region = true; 647 } 648 } 649 } 650 651 public: 652 VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm): 653 _hr(hr), _failures(false), _has_oops_in_region(false) {} 654 655 void do_oop(narrowOop* p) { do_oop_work(p); } 656 void do_oop(oop* p) { do_oop_work(p); } 657 658 bool failures() { return _failures; } 659 bool has_oops_in_region() { return _has_oops_in_region; } 660 }; 661 662 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure { 663 const HeapRegion* _hr; 664 bool _failures; 665 public: 666 VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) : 667 _hr(hr), _failures(false) {} 668 669 void do_code_blob(CodeBlob* cb) { 670 nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null(); 671 if (nm != NULL) { 672 // Verify that the nemthod is live 673 if (!nm->is_alive()) { 674 gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod " 675 PTR_FORMAT" in its strong code roots", 676 _hr->bottom(), _hr->end(), nm); 677 _failures = true; 678 } else { 679 VerifyStrongCodeRootOopClosure oop_cl(_hr, nm); 680 nm->oops_do(&oop_cl); 681 if (!oop_cl.has_oops_in_region()) { 682 gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod " 683 PTR_FORMAT" in its strong code roots " 684 "with no pointers into region", 685 _hr->bottom(), _hr->end(), nm); 686 _failures = true; 687 } else if (oop_cl.failures()) { 688 gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other " 689 "failures for nmethod "PTR_FORMAT, 690 _hr->bottom(), _hr->end(), nm); 691 _failures = true; 692 } 693 } 694 } 695 } 696 697 bool failures() { return _failures; } 698 }; 699 700 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const { 701 if (!G1VerifyHeapRegionCodeRoots) { 702 // We're not verifying code roots. 703 return; 704 } 705 if (vo == VerifyOption_G1UseMarkWord) { 706 // Marking verification during a full GC is performed after class 707 // unloading, code cache unloading, etc so the strong code roots 708 // attached to each heap region are in an inconsistent state. They won't 709 // be consistent until the strong code roots are rebuilt after the 710 // actual GC. Skip verifying the strong code roots in this particular 711 // time. 712 assert(VerifyDuringGC, "only way to get here"); 713 return; 714 } 715 716 HeapRegionRemSet* hrrs = rem_set(); 717 size_t strong_code_roots_length = hrrs->strong_code_roots_list_length(); 718 719 // if this region is empty then there should be no entries 720 // on its strong code root list 721 if (is_empty()) { 722 if (strong_code_roots_length > 0) { 723 gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty " 724 "but has "SIZE_FORMAT" code root entries", 725 bottom(), end(), strong_code_roots_length); 726 *failures = true; 727 } 728 return; 729 } 730 731 if (continuesHumongous()) { 732 if (strong_code_roots_length > 0) { 733 gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous " 734 "region but has "SIZE_FORMAT" code root entries", 735 HR_FORMAT_PARAMS(this), strong_code_roots_length); 736 *failures = true; 737 } 738 return; 739 } 740 741 VerifyStrongCodeRootCodeBlobClosure cb_cl(this); 742 strong_code_roots_do(&cb_cl); 743 744 if (cb_cl.failures()) { 745 *failures = true; 746 } 747 } 748 749 void HeapRegion::print() const { print_on(gclog_or_tty); } 750 void HeapRegion::print_on(outputStream* st) const { 751 if (isHumongous()) { 752 if (startsHumongous()) 753 st->print(" HS"); 754 else 755 st->print(" HC"); 756 } else { 757 st->print(" "); 758 } 759 if (in_collection_set()) 760 st->print(" CS"); 761 else 762 st->print(" "); 763 if (is_young()) 764 st->print(is_survivor() ? " SU" : " Y "); 765 else 766 st->print(" "); 767 if (is_empty()) 768 st->print(" F"); 769 else 770 st->print(" "); 771 st->print(" TS %5d", _gc_time_stamp); 772 st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT, 773 prev_top_at_mark_start(), next_top_at_mark_start()); 774 G1OffsetTableContigSpace::print_on(st); 775 } 776 777 class VerifyLiveClosure: public OopClosure { 778 private: 779 G1CollectedHeap* _g1h; 780 CardTableModRefBS* _bs; 781 oop _containing_obj; 782 bool _failures; 783 int _n_failures; 784 VerifyOption _vo; 785 public: 786 // _vo == UsePrevMarking -> use "prev" marking information, 787 // _vo == UseNextMarking -> use "next" marking information, 788 // _vo == UseMarkWord -> use mark word from object header. 789 VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : 790 _g1h(g1h), _bs(NULL), _containing_obj(NULL), 791 _failures(false), _n_failures(0), _vo(vo) 792 { 793 BarrierSet* bs = _g1h->barrier_set(); 794 if (bs->is_a(BarrierSet::CardTableModRef)) 795 _bs = (CardTableModRefBS*)bs; 796 } 797 798 void set_containing_obj(oop obj) { 799 _containing_obj = obj; 800 } 801 802 bool failures() { return _failures; } 803 int n_failures() { return _n_failures; } 804 805 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 806 virtual void do_oop( oop* p) { do_oop_work(p); } 807 808 void print_object(outputStream* out, oop obj) { 809 #ifdef PRODUCT 810 Klass* k = obj->klass(); 811 const char* class_name = InstanceKlass::cast(k)->external_name(); 812 out->print_cr("class name %s", class_name); 813 #else // PRODUCT 814 obj->print_on(out); 815 #endif // PRODUCT 816 } 817 818 template <class T> 819 void do_oop_work(T* p) { 820 assert(_containing_obj != NULL, "Precondition"); 821 assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo), 822 "Precondition"); 823 T heap_oop = oopDesc::load_heap_oop(p); 824 if (!oopDesc::is_null(heap_oop)) { 825 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 826 bool failed = false; 827 if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) { 828 MutexLockerEx x(ParGCRareEvent_lock, 829 Mutex::_no_safepoint_check_flag); 830 831 if (!_failures) { 832 gclog_or_tty->cr(); 833 gclog_or_tty->print_cr("----------"); 834 } 835 if (!_g1h->is_in_closed_subset(obj)) { 836 HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p); 837 gclog_or_tty->print_cr("Field "PTR_FORMAT 838 " of live obj "PTR_FORMAT" in region " 839 "["PTR_FORMAT", "PTR_FORMAT")", 840 p, (void*) _containing_obj, 841 from->bottom(), from->end()); 842 print_object(gclog_or_tty, _containing_obj); 843 gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap", 844 (void*) obj); 845 } else { 846 HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p); 847 HeapRegion* to = _g1h->heap_region_containing((HeapWord*)obj); 848 gclog_or_tty->print_cr("Field "PTR_FORMAT 849 " of live obj "PTR_FORMAT" in region " 850 "["PTR_FORMAT", "PTR_FORMAT")", 851 p, (void*) _containing_obj, 852 from->bottom(), from->end()); 853 print_object(gclog_or_tty, _containing_obj); 854 gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region " 855 "["PTR_FORMAT", "PTR_FORMAT")", 856 (void*) obj, to->bottom(), to->end()); 857 print_object(gclog_or_tty, obj); 858 } 859 gclog_or_tty->print_cr("----------"); 860 gclog_or_tty->flush(); 861 _failures = true; 862 failed = true; 863 _n_failures++; 864 } 865 866 if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) { 867 HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p); 868 HeapRegion* to = _g1h->heap_region_containing(obj); 869 if (from != NULL && to != NULL && 870 from != to && 871 !to->isHumongous()) { 872 jbyte cv_obj = *_bs->byte_for_const(_containing_obj); 873 jbyte cv_field = *_bs->byte_for_const(p); 874 const jbyte dirty = CardTableModRefBS::dirty_card_val(); 875 876 bool is_bad = !(from->is_young() 877 || to->rem_set()->contains_reference(p) 878 || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed 879 (_containing_obj->is_objArray() ? 880 cv_field == dirty 881 : cv_obj == dirty || cv_field == dirty)); 882 if (is_bad) { 883 MutexLockerEx x(ParGCRareEvent_lock, 884 Mutex::_no_safepoint_check_flag); 885 886 if (!_failures) { 887 gclog_or_tty->cr(); 888 gclog_or_tty->print_cr("----------"); 889 } 890 gclog_or_tty->print_cr("Missing rem set entry:"); 891 gclog_or_tty->print_cr("Field "PTR_FORMAT" " 892 "of obj "PTR_FORMAT", " 893 "in region "HR_FORMAT, 894 p, (void*) _containing_obj, 895 HR_FORMAT_PARAMS(from)); 896 _containing_obj->print_on(gclog_or_tty); 897 gclog_or_tty->print_cr("points to obj "PTR_FORMAT" " 898 "in region "HR_FORMAT, 899 (void*) obj, 900 HR_FORMAT_PARAMS(to)); 901 obj->print_on(gclog_or_tty); 902 gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.", 903 cv_obj, cv_field); 904 gclog_or_tty->print_cr("----------"); 905 gclog_or_tty->flush(); 906 _failures = true; 907 if (!failed) _n_failures++; 908 } 909 } 910 } 911 } 912 } 913 }; 914 915 // This really ought to be commoned up into OffsetTableContigSpace somehow. 916 // We would need a mechanism to make that code skip dead objects. 917 918 void HeapRegion::verify(VerifyOption vo, 919 bool* failures) const { 920 G1CollectedHeap* g1 = G1CollectedHeap::heap(); 921 *failures = false; 922 HeapWord* p = bottom(); 923 HeapWord* prev_p = NULL; 924 VerifyLiveClosure vl_cl(g1, vo); 925 bool is_humongous = isHumongous(); 926 bool do_bot_verify = !is_young(); 927 size_t object_num = 0; 928 while (p < top()) { 929 oop obj = oop(p); 930 size_t obj_size = obj->size(); 931 object_num += 1; 932 933 if (is_humongous != g1->isHumongous(obj_size)) { 934 gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size (" 935 SIZE_FORMAT" words) in a %shumongous region", 936 p, g1->isHumongous(obj_size) ? "" : "non-", 937 obj_size, is_humongous ? "" : "non-"); 938 *failures = true; 939 return; 940 } 941 942 // If it returns false, verify_for_object() will output the 943 // appropriate messasge. 944 if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) { 945 *failures = true; 946 return; 947 } 948 949 if (!g1->is_obj_dead_cond(obj, this, vo)) { 950 if (obj->is_oop()) { 951 Klass* klass = obj->klass(); 952 if (!klass->is_metaspace_object()) { 953 gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" " 954 "not metadata", klass, (void *)obj); 955 *failures = true; 956 return; 957 } else if (!klass->is_klass()) { 958 gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" " 959 "not a klass", klass, (void *)obj); 960 *failures = true; 961 return; 962 } else { 963 vl_cl.set_containing_obj(obj); 964 obj->oop_iterate_no_header(&vl_cl); 965 if (vl_cl.failures()) { 966 *failures = true; 967 } 968 if (G1MaxVerifyFailures >= 0 && 969 vl_cl.n_failures() >= G1MaxVerifyFailures) { 970 return; 971 } 972 } 973 } else { 974 gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj); 975 *failures = true; 976 return; 977 } 978 } 979 prev_p = p; 980 p += obj_size; 981 } 982 983 if (p != top()) { 984 gclog_or_tty->print_cr("end of last object "PTR_FORMAT" " 985 "does not match top "PTR_FORMAT, p, top()); 986 *failures = true; 987 return; 988 } 989 990 HeapWord* the_end = end(); 991 assert(p == top(), "it should still hold"); 992 // Do some extra BOT consistency checking for addresses in the 993 // range [top, end). BOT look-ups in this range should yield 994 // top. No point in doing that if top == end (there's nothing there). 995 if (p < the_end) { 996 // Look up top 997 HeapWord* addr_1 = p; 998 HeapWord* b_start_1 = _offsets.block_start_const(addr_1); 999 if (b_start_1 != p) { 1000 gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" " 1001 " yielded "PTR_FORMAT", expecting "PTR_FORMAT, 1002 addr_1, b_start_1, p); 1003 *failures = true; 1004 return; 1005 } 1006 1007 // Look up top + 1 1008 HeapWord* addr_2 = p + 1; 1009 if (addr_2 < the_end) { 1010 HeapWord* b_start_2 = _offsets.block_start_const(addr_2); 1011 if (b_start_2 != p) { 1012 gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" " 1013 " yielded "PTR_FORMAT", expecting "PTR_FORMAT, 1014 addr_2, b_start_2, p); 1015 *failures = true; 1016 return; 1017 } 1018 } 1019 1020 // Look up an address between top and end 1021 size_t diff = pointer_delta(the_end, p) / 2; 1022 HeapWord* addr_3 = p + diff; 1023 if (addr_3 < the_end) { 1024 HeapWord* b_start_3 = _offsets.block_start_const(addr_3); 1025 if (b_start_3 != p) { 1026 gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" " 1027 " yielded "PTR_FORMAT", expecting "PTR_FORMAT, 1028 addr_3, b_start_3, p); 1029 *failures = true; 1030 return; 1031 } 1032 } 1033 1034 // Look up end - 1 1035 HeapWord* addr_4 = the_end - 1; 1036 HeapWord* b_start_4 = _offsets.block_start_const(addr_4); 1037 if (b_start_4 != p) { 1038 gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" " 1039 " yielded "PTR_FORMAT", expecting "PTR_FORMAT, 1040 addr_4, b_start_4, p); 1041 *failures = true; 1042 return; 1043 } 1044 } 1045 1046 if (is_humongous && object_num > 1) { 1047 gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous " 1048 "but has "SIZE_FORMAT", objects", 1049 bottom(), end(), object_num); 1050 *failures = true; 1051 return; 1052 } 1053 1054 verify_strong_code_roots(vo, failures); 1055 } 1056 1057 void HeapRegion::verify() const { 1058 bool dummy = false; 1059 verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy); 1060 } 1061 1062 // G1OffsetTableContigSpace code; copied from space.cpp. Hope this can go 1063 // away eventually. 1064 1065 void G1OffsetTableContigSpace::clear(bool mangle_space) { 1066 ContiguousSpace::clear(mangle_space); 1067 _offsets.zero_bottom_entry(); 1068 _offsets.initialize_threshold(); 1069 } 1070 1071 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) { 1072 Space::set_bottom(new_bottom); 1073 _offsets.set_bottom(new_bottom); 1074 } 1075 1076 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) { 1077 Space::set_end(new_end); 1078 _offsets.resize(new_end - bottom()); 1079 } 1080 1081 void G1OffsetTableContigSpace::print() const { 1082 print_short(); 1083 gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " 1084 INTPTR_FORMAT ", " INTPTR_FORMAT ")", 1085 bottom(), top(), _offsets.threshold(), end()); 1086 } 1087 1088 HeapWord* G1OffsetTableContigSpace::initialize_threshold() { 1089 return _offsets.initialize_threshold(); 1090 } 1091 1092 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start, 1093 HeapWord* end) { 1094 _offsets.alloc_block(start, end); 1095 return _offsets.threshold(); 1096 } 1097 1098 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const { 1099 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 1100 assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" ); 1101 if (_gc_time_stamp < g1h->get_gc_time_stamp()) 1102 return top(); 1103 else 1104 return ContiguousSpace::saved_mark_word(); 1105 } 1106 1107 void G1OffsetTableContigSpace::set_saved_mark() { 1108 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 1109 unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp(); 1110 1111 if (_gc_time_stamp < curr_gc_time_stamp) { 1112 // The order of these is important, as another thread might be 1113 // about to start scanning this region. If it does so after 1114 // set_saved_mark and before _gc_time_stamp = ..., then the latter 1115 // will be false, and it will pick up top() as the high water mark 1116 // of region. If it does so after _gc_time_stamp = ..., then it 1117 // will pick up the right saved_mark_word() as the high water mark 1118 // of the region. Either way, the behavior will be correct. 1119 ContiguousSpace::set_saved_mark(); 1120 OrderAccess::storestore(); 1121 _gc_time_stamp = curr_gc_time_stamp; 1122 // No need to do another barrier to flush the writes above. If 1123 // this is called in parallel with other threads trying to 1124 // allocate into the region, the caller should call this while 1125 // holding a lock and when the lock is released the writes will be 1126 // flushed. 1127 } 1128 } 1129 1130 G1OffsetTableContigSpace:: 1131 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray, 1132 MemRegion mr) : 1133 _offsets(sharedOffsetArray, mr), 1134 _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true), 1135 _gc_time_stamp(0) 1136 { 1137 _offsets.set_space(this); 1138 // false ==> we'll do the clearing if there's clearing to be done. 1139 ContiguousSpace::initialize(mr, false, SpaceDecorator::Mangle); 1140 _offsets.zero_bottom_entry(); 1141 _offsets.initialize_threshold(); 1142 }