1 /* 2 * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/stringTable.hpp" 27 #include "classfile/systemDictionary.hpp" 28 #include "code/codeCache.hpp" 29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp" 30 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp" 31 #include "gc_implementation/parallelScavenge/pcTasks.hpp" 32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp" 33 #include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp" 34 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp" 35 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp" 36 #include "gc_implementation/parallelScavenge/psOldGen.hpp" 37 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp" 38 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp" 39 #include "gc_implementation/parallelScavenge/psScavenge.hpp" 40 #include "gc_implementation/parallelScavenge/psYoungGen.hpp" 41 #include "gc_implementation/shared/gcHeapSummary.hpp" 42 #include "gc_implementation/shared/gcTimer.hpp" 43 #include "gc_implementation/shared/gcTrace.hpp" 44 #include "gc_implementation/shared/gcTraceTime.hpp" 45 #include "gc_implementation/shared/isGCActiveMark.hpp" 46 #include "gc_implementation/shared/spaceDecorator.hpp" 47 #include "gc_interface/gcCause.hpp" 48 #include "memory/gcLocker.inline.hpp" 49 #include "memory/referencePolicy.hpp" 50 #include "memory/referenceProcessor.hpp" 51 #include "oops/methodData.hpp" 52 #include "oops/oop.inline.hpp" 53 #include "oops/oop.pcgc.inline.hpp" 54 #include "runtime/fprofiler.hpp" 55 #include "runtime/safepoint.hpp" 56 #include "runtime/vmThread.hpp" 57 #include "services/management.hpp" 58 #include "services/memoryService.hpp" 59 #include "services/memTracker.hpp" 60 #include "utilities/events.hpp" 61 #include "utilities/stack.inline.hpp" 62 63 #include <math.h> 64 65 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC 66 67 // All sizes are in HeapWords. 68 const size_t ParallelCompactData::Log2RegionSize = 16; // 64K words 69 const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize; 70 const size_t ParallelCompactData::RegionSizeBytes = 71 RegionSize << LogHeapWordSize; 72 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1; 73 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1; 74 const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask; 75 76 const size_t ParallelCompactData::Log2BlockSize = 7; // 128 words 77 const size_t ParallelCompactData::BlockSize = (size_t)1 << Log2BlockSize; 78 const size_t ParallelCompactData::BlockSizeBytes = 79 BlockSize << LogHeapWordSize; 80 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1; 81 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1; 82 const size_t ParallelCompactData::BlockAddrMask = ~BlockAddrOffsetMask; 83 84 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize; 85 const size_t ParallelCompactData::Log2BlocksPerRegion = 86 Log2RegionSize - Log2BlockSize; 87 88 const ParallelCompactData::RegionData::region_sz_t 89 ParallelCompactData::RegionData::dc_shift = 27; 90 91 const ParallelCompactData::RegionData::region_sz_t 92 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift; 93 94 const ParallelCompactData::RegionData::region_sz_t 95 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift; 96 97 const ParallelCompactData::RegionData::region_sz_t 98 ParallelCompactData::RegionData::los_mask = ~dc_mask; 99 100 const ParallelCompactData::RegionData::region_sz_t 101 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift; 102 103 const ParallelCompactData::RegionData::region_sz_t 104 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift; 105 106 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id]; 107 bool PSParallelCompact::_print_phases = false; 108 109 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL; 110 Klass* PSParallelCompact::_updated_int_array_klass_obj = NULL; 111 112 double PSParallelCompact::_dwl_mean; 113 double PSParallelCompact::_dwl_std_dev; 114 double PSParallelCompact::_dwl_first_term; 115 double PSParallelCompact::_dwl_adjustment; 116 #ifdef ASSERT 117 bool PSParallelCompact::_dwl_initialized = false; 118 #endif // #ifdef ASSERT 119 120 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size, 121 HeapWord* destination) 122 { 123 assert(src_region_idx != 0, "invalid src_region_idx"); 124 assert(partial_obj_size != 0, "invalid partial_obj_size argument"); 125 assert(destination != NULL, "invalid destination argument"); 126 127 _src_region_idx = src_region_idx; 128 _partial_obj_size = partial_obj_size; 129 _destination = destination; 130 131 // These fields may not be updated below, so make sure they're clear. 132 assert(_dest_region_addr == NULL, "should have been cleared"); 133 assert(_first_src_addr == NULL, "should have been cleared"); 134 135 // Determine the number of destination regions for the partial object. 136 HeapWord* const last_word = destination + partial_obj_size - 1; 137 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 138 HeapWord* const beg_region_addr = sd.region_align_down(destination); 139 HeapWord* const end_region_addr = sd.region_align_down(last_word); 140 141 if (beg_region_addr == end_region_addr) { 142 // One destination region. 143 _destination_count = 1; 144 if (end_region_addr == destination) { 145 // The destination falls on a region boundary, thus the first word of the 146 // partial object will be the first word copied to the destination region. 147 _dest_region_addr = end_region_addr; 148 _first_src_addr = sd.region_to_addr(src_region_idx); 149 } 150 } else { 151 // Two destination regions. When copied, the partial object will cross a 152 // destination region boundary, so a word somewhere within the partial 153 // object will be the first word copied to the second destination region. 154 _destination_count = 2; 155 _dest_region_addr = end_region_addr; 156 const size_t ofs = pointer_delta(end_region_addr, destination); 157 assert(ofs < _partial_obj_size, "sanity"); 158 _first_src_addr = sd.region_to_addr(src_region_idx) + ofs; 159 } 160 } 161 162 void SplitInfo::clear() 163 { 164 _src_region_idx = 0; 165 _partial_obj_size = 0; 166 _destination = NULL; 167 _destination_count = 0; 168 _dest_region_addr = NULL; 169 _first_src_addr = NULL; 170 assert(!is_valid(), "sanity"); 171 } 172 173 #ifdef ASSERT 174 void SplitInfo::verify_clear() 175 { 176 assert(_src_region_idx == 0, "not clear"); 177 assert(_partial_obj_size == 0, "not clear"); 178 assert(_destination == NULL, "not clear"); 179 assert(_destination_count == 0, "not clear"); 180 assert(_dest_region_addr == NULL, "not clear"); 181 assert(_first_src_addr == NULL, "not clear"); 182 } 183 #endif // #ifdef ASSERT 184 185 186 void PSParallelCompact::print_on_error(outputStream* st) { 187 _mark_bitmap.print_on_error(st); 188 } 189 190 #ifndef PRODUCT 191 const char* PSParallelCompact::space_names[] = { 192 "old ", "eden", "from", "to " 193 }; 194 195 void PSParallelCompact::print_region_ranges() 196 { 197 tty->print_cr("space bottom top end new_top"); 198 tty->print_cr("------ ---------- ---------- ---------- ----------"); 199 200 for (unsigned int id = 0; id < last_space_id; ++id) { 201 const MutableSpace* space = _space_info[id].space(); 202 tty->print_cr("%u %s " 203 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " " 204 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ", 205 id, space_names[id], 206 summary_data().addr_to_region_idx(space->bottom()), 207 summary_data().addr_to_region_idx(space->top()), 208 summary_data().addr_to_region_idx(space->end()), 209 summary_data().addr_to_region_idx(_space_info[id].new_top())); 210 } 211 } 212 213 void 214 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c) 215 { 216 #define REGION_IDX_FORMAT SIZE_FORMAT_W(7) 217 #define REGION_DATA_FORMAT SIZE_FORMAT_W(5) 218 219 ParallelCompactData& sd = PSParallelCompact::summary_data(); 220 size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0; 221 tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " " 222 REGION_IDX_FORMAT " " PTR_FORMAT " " 223 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " " 224 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d", 225 i, c->data_location(), dci, c->destination(), 226 c->partial_obj_size(), c->live_obj_size(), 227 c->data_size(), c->source_region(), c->destination_count()); 228 229 #undef REGION_IDX_FORMAT 230 #undef REGION_DATA_FORMAT 231 } 232 233 void 234 print_generic_summary_data(ParallelCompactData& summary_data, 235 HeapWord* const beg_addr, 236 HeapWord* const end_addr) 237 { 238 size_t total_words = 0; 239 size_t i = summary_data.addr_to_region_idx(beg_addr); 240 const size_t last = summary_data.addr_to_region_idx(end_addr); 241 HeapWord* pdest = 0; 242 243 while (i <= last) { 244 ParallelCompactData::RegionData* c = summary_data.region(i); 245 if (c->data_size() != 0 || c->destination() != pdest) { 246 print_generic_summary_region(i, c); 247 total_words += c->data_size(); 248 pdest = c->destination(); 249 } 250 ++i; 251 } 252 253 tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize); 254 } 255 256 void 257 print_generic_summary_data(ParallelCompactData& summary_data, 258 SpaceInfo* space_info) 259 { 260 for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) { 261 const MutableSpace* space = space_info[id].space(); 262 print_generic_summary_data(summary_data, space->bottom(), 263 MAX2(space->top(), space_info[id].new_top())); 264 } 265 } 266 267 void 268 print_initial_summary_region(size_t i, 269 const ParallelCompactData::RegionData* c, 270 bool newline = true) 271 { 272 tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " " 273 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " 274 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d", 275 i, c->destination(), 276 c->partial_obj_size(), c->live_obj_size(), 277 c->data_size(), c->source_region(), c->destination_count()); 278 if (newline) tty->cr(); 279 } 280 281 void 282 print_initial_summary_data(ParallelCompactData& summary_data, 283 const MutableSpace* space) { 284 if (space->top() == space->bottom()) { 285 return; 286 } 287 288 const size_t region_size = ParallelCompactData::RegionSize; 289 typedef ParallelCompactData::RegionData RegionData; 290 HeapWord* const top_aligned_up = summary_data.region_align_up(space->top()); 291 const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up); 292 const RegionData* c = summary_data.region(end_region - 1); 293 HeapWord* end_addr = c->destination() + c->data_size(); 294 const size_t live_in_space = pointer_delta(end_addr, space->bottom()); 295 296 // Print (and count) the full regions at the beginning of the space. 297 size_t full_region_count = 0; 298 size_t i = summary_data.addr_to_region_idx(space->bottom()); 299 while (i < end_region && summary_data.region(i)->data_size() == region_size) { 300 print_initial_summary_region(i, summary_data.region(i)); 301 ++full_region_count; 302 ++i; 303 } 304 305 size_t live_to_right = live_in_space - full_region_count * region_size; 306 307 double max_reclaimed_ratio = 0.0; 308 size_t max_reclaimed_ratio_region = 0; 309 size_t max_dead_to_right = 0; 310 size_t max_live_to_right = 0; 311 312 // Print the 'reclaimed ratio' for regions while there is something live in 313 // the region or to the right of it. The remaining regions are empty (and 314 // uninteresting), and computing the ratio will result in division by 0. 315 while (i < end_region && live_to_right > 0) { 316 c = summary_data.region(i); 317 HeapWord* const region_addr = summary_data.region_to_addr(i); 318 const size_t used_to_right = pointer_delta(space->top(), region_addr); 319 const size_t dead_to_right = used_to_right - live_to_right; 320 const double reclaimed_ratio = double(dead_to_right) / live_to_right; 321 322 if (reclaimed_ratio > max_reclaimed_ratio) { 323 max_reclaimed_ratio = reclaimed_ratio; 324 max_reclaimed_ratio_region = i; 325 max_dead_to_right = dead_to_right; 326 max_live_to_right = live_to_right; 327 } 328 329 print_initial_summary_region(i, c, false); 330 tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10), 331 reclaimed_ratio, dead_to_right, live_to_right); 332 333 live_to_right -= c->data_size(); 334 ++i; 335 } 336 337 // Any remaining regions are empty. Print one more if there is one. 338 if (i < end_region) { 339 print_initial_summary_region(i, summary_data.region(i)); 340 } 341 342 tty->print_cr("max: " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " " 343 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f", 344 max_reclaimed_ratio_region, max_dead_to_right, 345 max_live_to_right, max_reclaimed_ratio); 346 } 347 348 void 349 print_initial_summary_data(ParallelCompactData& summary_data, 350 SpaceInfo* space_info) { 351 unsigned int id = PSParallelCompact::old_space_id; 352 const MutableSpace* space; 353 do { 354 space = space_info[id].space(); 355 print_initial_summary_data(summary_data, space); 356 } while (++id < PSParallelCompact::eden_space_id); 357 358 do { 359 space = space_info[id].space(); 360 print_generic_summary_data(summary_data, space->bottom(), space->top()); 361 } while (++id < PSParallelCompact::last_space_id); 362 } 363 #endif // #ifndef PRODUCT 364 365 #ifdef ASSERT 366 size_t add_obj_count; 367 size_t add_obj_size; 368 size_t mark_bitmap_count; 369 size_t mark_bitmap_size; 370 #endif // #ifdef ASSERT 371 372 ParallelCompactData::ParallelCompactData() 373 { 374 _region_start = 0; 375 376 _region_vspace = 0; 377 _reserved_byte_size = 0; 378 _region_data = 0; 379 _region_count = 0; 380 381 _block_vspace = 0; 382 _block_data = 0; 383 _block_count = 0; 384 } 385 386 bool ParallelCompactData::initialize(MemRegion covered_region) 387 { 388 _region_start = covered_region.start(); 389 const size_t region_size = covered_region.word_size(); 390 DEBUG_ONLY(_region_end = _region_start + region_size;) 391 392 assert(region_align_down(_region_start) == _region_start, 393 "region start not aligned"); 394 assert((region_size & RegionSizeOffsetMask) == 0, 395 "region size not a multiple of RegionSize"); 396 397 bool result = initialize_region_data(region_size) && initialize_block_data(); 398 return result; 399 } 400 401 PSVirtualSpace* 402 ParallelCompactData::create_vspace(size_t count, size_t element_size) 403 { 404 const size_t raw_bytes = count * element_size; 405 const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10); 406 const size_t granularity = os::vm_allocation_granularity(); 407 _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity)); 408 409 const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 : 410 MAX2(page_sz, granularity); 411 ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0); 412 os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(), 413 rs.size()); 414 415 MemTracker::record_virtual_memory_type((address)rs.base(), mtGC); 416 417 PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz); 418 if (vspace != 0) { 419 if (vspace->expand_by(_reserved_byte_size)) { 420 return vspace; 421 } 422 delete vspace; 423 // Release memory reserved in the space. 424 rs.release(); 425 } 426 427 return 0; 428 } 429 430 bool ParallelCompactData::initialize_region_data(size_t region_size) 431 { 432 const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize; 433 _region_vspace = create_vspace(count, sizeof(RegionData)); 434 if (_region_vspace != 0) { 435 _region_data = (RegionData*)_region_vspace->reserved_low_addr(); 436 _region_count = count; 437 return true; 438 } 439 return false; 440 } 441 442 bool ParallelCompactData::initialize_block_data() 443 { 444 assert(_region_count != 0, "region data must be initialized first"); 445 const size_t count = _region_count << Log2BlocksPerRegion; 446 _block_vspace = create_vspace(count, sizeof(BlockData)); 447 if (_block_vspace != 0) { 448 _block_data = (BlockData*)_block_vspace->reserved_low_addr(); 449 _block_count = count; 450 return true; 451 } 452 return false; 453 } 454 455 void ParallelCompactData::clear() 456 { 457 memset(_region_data, 0, _region_vspace->committed_size()); 458 memset(_block_data, 0, _block_vspace->committed_size()); 459 } 460 461 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) { 462 assert(beg_region <= _region_count, "beg_region out of range"); 463 assert(end_region <= _region_count, "end_region out of range"); 464 assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize"); 465 466 const size_t region_cnt = end_region - beg_region; 467 memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData)); 468 469 const size_t beg_block = beg_region * BlocksPerRegion; 470 const size_t block_cnt = region_cnt * BlocksPerRegion; 471 memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData)); 472 } 473 474 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const 475 { 476 const RegionData* cur_cp = region(region_idx); 477 const RegionData* const end_cp = region(region_count() - 1); 478 479 HeapWord* result = region_to_addr(region_idx); 480 if (cur_cp < end_cp) { 481 do { 482 result += cur_cp->partial_obj_size(); 483 } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp); 484 } 485 return result; 486 } 487 488 void ParallelCompactData::add_obj(HeapWord* addr, size_t len) 489 { 490 const size_t obj_ofs = pointer_delta(addr, _region_start); 491 const size_t beg_region = obj_ofs >> Log2RegionSize; 492 const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize; 493 494 DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);) 495 DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);) 496 497 if (beg_region == end_region) { 498 // All in one region. 499 _region_data[beg_region].add_live_obj(len); 500 return; 501 } 502 503 // First region. 504 const size_t beg_ofs = region_offset(addr); 505 _region_data[beg_region].add_live_obj(RegionSize - beg_ofs); 506 507 Klass* klass = ((oop)addr)->klass(); 508 // Middle regions--completely spanned by this object. 509 for (size_t region = beg_region + 1; region < end_region; ++region) { 510 _region_data[region].set_partial_obj_size(RegionSize); 511 _region_data[region].set_partial_obj_addr(addr); 512 } 513 514 // Last region. 515 const size_t end_ofs = region_offset(addr + len - 1); 516 _region_data[end_region].set_partial_obj_size(end_ofs + 1); 517 _region_data[end_region].set_partial_obj_addr(addr); 518 } 519 520 void 521 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end) 522 { 523 assert(region_offset(beg) == 0, "not RegionSize aligned"); 524 assert(region_offset(end) == 0, "not RegionSize aligned"); 525 526 size_t cur_region = addr_to_region_idx(beg); 527 const size_t end_region = addr_to_region_idx(end); 528 HeapWord* addr = beg; 529 while (cur_region < end_region) { 530 _region_data[cur_region].set_destination(addr); 531 _region_data[cur_region].set_destination_count(0); 532 _region_data[cur_region].set_source_region(cur_region); 533 _region_data[cur_region].set_data_location(addr); 534 535 // Update live_obj_size so the region appears completely full. 536 size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size(); 537 _region_data[cur_region].set_live_obj_size(live_size); 538 539 ++cur_region; 540 addr += RegionSize; 541 } 542 } 543 544 // Find the point at which a space can be split and, if necessary, record the 545 // split point. 546 // 547 // If the current src region (which overflowed the destination space) doesn't 548 // have a partial object, the split point is at the beginning of the current src 549 // region (an "easy" split, no extra bookkeeping required). 550 // 551 // If the current src region has a partial object, the split point is in the 552 // region where that partial object starts (call it the split_region). If 553 // split_region has a partial object, then the split point is just after that 554 // partial object (a "hard" split where we have to record the split data and 555 // zero the partial_obj_size field). With a "hard" split, we know that the 556 // partial_obj ends within split_region because the partial object that caused 557 // the overflow starts in split_region. If split_region doesn't have a partial 558 // obj, then the split is at the beginning of split_region (another "easy" 559 // split). 560 HeapWord* 561 ParallelCompactData::summarize_split_space(size_t src_region, 562 SplitInfo& split_info, 563 HeapWord* destination, 564 HeapWord* target_end, 565 HeapWord** target_next) 566 { 567 assert(destination <= target_end, "sanity"); 568 assert(destination + _region_data[src_region].data_size() > target_end, 569 "region should not fit into target space"); 570 assert(is_region_aligned(target_end), "sanity"); 571 572 size_t split_region = src_region; 573 HeapWord* split_destination = destination; 574 size_t partial_obj_size = _region_data[src_region].partial_obj_size(); 575 576 if (destination + partial_obj_size > target_end) { 577 // The split point is just after the partial object (if any) in the 578 // src_region that contains the start of the object that overflowed the 579 // destination space. 580 // 581 // Find the start of the "overflow" object and set split_region to the 582 // region containing it. 583 HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr(); 584 split_region = addr_to_region_idx(overflow_obj); 585 586 // Clear the source_region field of all destination regions whose first word 587 // came from data after the split point (a non-null source_region field 588 // implies a region must be filled). 589 // 590 // An alternative to the simple loop below: clear during post_compact(), 591 // which uses memcpy instead of individual stores, and is easy to 592 // parallelize. (The downside is that it clears the entire RegionData 593 // object as opposed to just one field.) 594 // 595 // post_compact() would have to clear the summary data up to the highest 596 // address that was written during the summary phase, which would be 597 // 598 // max(top, max(new_top, clear_top)) 599 // 600 // where clear_top is a new field in SpaceInfo. Would have to set clear_top 601 // to target_end. 602 const RegionData* const sr = region(split_region); 603 const size_t beg_idx = 604 addr_to_region_idx(region_align_up(sr->destination() + 605 sr->partial_obj_size())); 606 const size_t end_idx = addr_to_region_idx(target_end); 607 608 if (TraceParallelOldGCSummaryPhase) { 609 gclog_or_tty->print_cr("split: clearing source_region field in [" 610 SIZE_FORMAT ", " SIZE_FORMAT ")", 611 beg_idx, end_idx); 612 } 613 for (size_t idx = beg_idx; idx < end_idx; ++idx) { 614 _region_data[idx].set_source_region(0); 615 } 616 617 // Set split_destination and partial_obj_size to reflect the split region. 618 split_destination = sr->destination(); 619 partial_obj_size = sr->partial_obj_size(); 620 } 621 622 // The split is recorded only if a partial object extends onto the region. 623 if (partial_obj_size != 0) { 624 _region_data[split_region].set_partial_obj_size(0); 625 split_info.record(split_region, partial_obj_size, split_destination); 626 } 627 628 // Setup the continuation addresses. 629 *target_next = split_destination + partial_obj_size; 630 HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size; 631 632 if (TraceParallelOldGCSummaryPhase) { 633 const char * split_type = partial_obj_size == 0 ? "easy" : "hard"; 634 gclog_or_tty->print_cr("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT 635 " pos=" SIZE_FORMAT, 636 split_type, source_next, split_region, 637 partial_obj_size); 638 gclog_or_tty->print_cr("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT 639 " tn=" PTR_FORMAT, 640 split_type, split_destination, 641 addr_to_region_idx(split_destination), 642 *target_next); 643 644 if (partial_obj_size != 0) { 645 HeapWord* const po_beg = split_info.destination(); 646 HeapWord* const po_end = po_beg + split_info.partial_obj_size(); 647 gclog_or_tty->print_cr("%s split: " 648 "po_beg=" PTR_FORMAT " " SIZE_FORMAT " " 649 "po_end=" PTR_FORMAT " " SIZE_FORMAT, 650 split_type, 651 po_beg, addr_to_region_idx(po_beg), 652 po_end, addr_to_region_idx(po_end)); 653 } 654 } 655 656 return source_next; 657 } 658 659 bool ParallelCompactData::summarize(SplitInfo& split_info, 660 HeapWord* source_beg, HeapWord* source_end, 661 HeapWord** source_next, 662 HeapWord* target_beg, HeapWord* target_end, 663 HeapWord** target_next) 664 { 665 if (TraceParallelOldGCSummaryPhase) { 666 HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next; 667 tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT 668 "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT, 669 source_beg, source_end, source_next_val, 670 target_beg, target_end, *target_next); 671 } 672 673 size_t cur_region = addr_to_region_idx(source_beg); 674 const size_t end_region = addr_to_region_idx(region_align_up(source_end)); 675 676 HeapWord *dest_addr = target_beg; 677 while (cur_region < end_region) { 678 // The destination must be set even if the region has no data. 679 _region_data[cur_region].set_destination(dest_addr); 680 681 size_t words = _region_data[cur_region].data_size(); 682 if (words > 0) { 683 // If cur_region does not fit entirely into the target space, find a point 684 // at which the source space can be 'split' so that part is copied to the 685 // target space and the rest is copied elsewhere. 686 if (dest_addr + words > target_end) { 687 assert(source_next != NULL, "source_next is NULL when splitting"); 688 *source_next = summarize_split_space(cur_region, split_info, dest_addr, 689 target_end, target_next); 690 return false; 691 } 692 693 // Compute the destination_count for cur_region, and if necessary, update 694 // source_region for a destination region. The source_region field is 695 // updated if cur_region is the first (left-most) region to be copied to a 696 // destination region. 697 // 698 // The destination_count calculation is a bit subtle. A region that has 699 // data that compacts into itself does not count itself as a destination. 700 // This maintains the invariant that a zero count means the region is 701 // available and can be claimed and then filled. 702 uint destination_count = 0; 703 if (split_info.is_split(cur_region)) { 704 // The current region has been split: the partial object will be copied 705 // to one destination space and the remaining data will be copied to 706 // another destination space. Adjust the initial destination_count and, 707 // if necessary, set the source_region field if the partial object will 708 // cross a destination region boundary. 709 destination_count = split_info.destination_count(); 710 if (destination_count == 2) { 711 size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr()); 712 _region_data[dest_idx].set_source_region(cur_region); 713 } 714 } 715 716 HeapWord* const last_addr = dest_addr + words - 1; 717 const size_t dest_region_1 = addr_to_region_idx(dest_addr); 718 const size_t dest_region_2 = addr_to_region_idx(last_addr); 719 720 // Initially assume that the destination regions will be the same and 721 // adjust the value below if necessary. Under this assumption, if 722 // cur_region == dest_region_2, then cur_region will be compacted 723 // completely into itself. 724 destination_count += cur_region == dest_region_2 ? 0 : 1; 725 if (dest_region_1 != dest_region_2) { 726 // Destination regions differ; adjust destination_count. 727 destination_count += 1; 728 // Data from cur_region will be copied to the start of dest_region_2. 729 _region_data[dest_region_2].set_source_region(cur_region); 730 } else if (region_offset(dest_addr) == 0) { 731 // Data from cur_region will be copied to the start of the destination 732 // region. 733 _region_data[dest_region_1].set_source_region(cur_region); 734 } 735 736 _region_data[cur_region].set_destination_count(destination_count); 737 _region_data[cur_region].set_data_location(region_to_addr(cur_region)); 738 dest_addr += words; 739 } 740 741 ++cur_region; 742 } 743 744 *target_next = dest_addr; 745 return true; 746 } 747 748 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) { 749 assert(addr != NULL, "Should detect NULL oop earlier"); 750 assert(PSParallelCompact::gc_heap()->is_in(addr), "not in heap"); 751 assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked"); 752 753 // Region covering the object. 754 RegionData* const region_ptr = addr_to_region_ptr(addr); 755 HeapWord* result = region_ptr->destination(); 756 757 // If the entire Region is live, the new location is region->destination + the 758 // offset of the object within in the Region. 759 760 // Run some performance tests to determine if this special case pays off. It 761 // is worth it for pointers into the dense prefix. If the optimization to 762 // avoid pointer updates in regions that only point to the dense prefix is 763 // ever implemented, this should be revisited. 764 if (region_ptr->data_size() == RegionSize) { 765 result += region_offset(addr); 766 return result; 767 } 768 769 // Otherwise, the new location is region->destination + block offset + the 770 // number of live words in the Block that are (a) to the left of addr and (b) 771 // due to objects that start in the Block. 772 773 // Fill in the block table if necessary. This is unsynchronized, so multiple 774 // threads may fill the block table for a region (harmless, since it is 775 // idempotent). 776 if (!region_ptr->blocks_filled()) { 777 PSParallelCompact::fill_blocks(addr_to_region_idx(addr)); 778 region_ptr->set_blocks_filled(); 779 } 780 781 HeapWord* const search_start = block_align_down(addr); 782 const size_t block_offset = addr_to_block_ptr(addr)->offset(); 783 784 const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap(); 785 const size_t live = bitmap->live_words_in_range(search_start, oop(addr)); 786 result += block_offset + live; 787 DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result)); 788 return result; 789 } 790 791 #ifdef ASSERT 792 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace) 793 { 794 const size_t* const beg = (const size_t*)vspace->committed_low_addr(); 795 const size_t* const end = (const size_t*)vspace->committed_high_addr(); 796 for (const size_t* p = beg; p < end; ++p) { 797 assert(*p == 0, "not zero"); 798 } 799 } 800 801 void ParallelCompactData::verify_clear() 802 { 803 verify_clear(_region_vspace); 804 verify_clear(_block_vspace); 805 } 806 #endif // #ifdef ASSERT 807 808 STWGCTimer PSParallelCompact::_gc_timer; 809 ParallelOldTracer PSParallelCompact::_gc_tracer; 810 elapsedTimer PSParallelCompact::_accumulated_time; 811 unsigned int PSParallelCompact::_total_invocations = 0; 812 unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0; 813 jlong PSParallelCompact::_time_of_last_gc = 0; 814 CollectorCounters* PSParallelCompact::_counters = NULL; 815 ParMarkBitMap PSParallelCompact::_mark_bitmap; 816 ParallelCompactData PSParallelCompact::_summary_data; 817 818 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure; 819 820 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); } 821 822 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); } 823 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); } 824 825 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure; 826 PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure; 827 828 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p) { adjust_pointer(p); } 829 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p); } 830 831 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); } 832 833 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p) { 834 mark_and_push(_compaction_manager, p); 835 } 836 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); } 837 838 void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) { 839 klass->oops_do(_mark_and_push_closure); 840 } 841 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) { 842 klass->oops_do(&PSParallelCompact::_adjust_pointer_closure); 843 } 844 845 void PSParallelCompact::post_initialize() { 846 ParallelScavengeHeap* heap = gc_heap(); 847 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); 848 849 MemRegion mr = heap->reserved_region(); 850 _ref_processor = 851 new ReferenceProcessor(mr, // span 852 ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing 853 (int) ParallelGCThreads, // mt processing degree 854 true, // mt discovery 855 (int) ParallelGCThreads, // mt discovery degree 856 true, // atomic_discovery 857 &_is_alive_closure, // non-header is alive closure 858 false); // write barrier for next field updates 859 _counters = new CollectorCounters("PSParallelCompact", 1); 860 861 // Initialize static fields in ParCompactionManager. 862 ParCompactionManager::initialize(mark_bitmap()); 863 } 864 865 bool PSParallelCompact::initialize() { 866 ParallelScavengeHeap* heap = gc_heap(); 867 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); 868 MemRegion mr = heap->reserved_region(); 869 870 // Was the old gen get allocated successfully? 871 if (!heap->old_gen()->is_allocated()) { 872 return false; 873 } 874 875 initialize_space_info(); 876 initialize_dead_wood_limiter(); 877 878 if (!_mark_bitmap.initialize(mr)) { 879 vm_shutdown_during_initialization( 880 err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel " 881 "garbage collection for the requested " SIZE_FORMAT "KB heap.", 882 _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K)); 883 return false; 884 } 885 886 if (!_summary_data.initialize(mr)) { 887 vm_shutdown_during_initialization( 888 err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel " 889 "garbage collection for the requested " SIZE_FORMAT "KB heap.", 890 _summary_data.reserved_byte_size()/K, mr.byte_size()/K)); 891 return false; 892 } 893 894 return true; 895 } 896 897 void PSParallelCompact::initialize_space_info() 898 { 899 memset(&_space_info, 0, sizeof(_space_info)); 900 901 ParallelScavengeHeap* heap = gc_heap(); 902 PSYoungGen* young_gen = heap->young_gen(); 903 904 _space_info[old_space_id].set_space(heap->old_gen()->object_space()); 905 _space_info[eden_space_id].set_space(young_gen->eden_space()); 906 _space_info[from_space_id].set_space(young_gen->from_space()); 907 _space_info[to_space_id].set_space(young_gen->to_space()); 908 909 _space_info[old_space_id].set_start_array(heap->old_gen()->start_array()); 910 } 911 912 void PSParallelCompact::initialize_dead_wood_limiter() 913 { 914 const size_t max = 100; 915 _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0; 916 _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0; 917 _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev); 918 DEBUG_ONLY(_dwl_initialized = true;) 919 _dwl_adjustment = normal_distribution(1.0); 920 } 921 922 // Simple class for storing info about the heap at the start of GC, to be used 923 // after GC for comparison/printing. 924 class PreGCValues { 925 public: 926 PreGCValues() { } 927 PreGCValues(ParallelScavengeHeap* heap) { fill(heap); } 928 929 void fill(ParallelScavengeHeap* heap) { 930 _heap_used = heap->used(); 931 _young_gen_used = heap->young_gen()->used_in_bytes(); 932 _old_gen_used = heap->old_gen()->used_in_bytes(); 933 _metadata_used = MetaspaceAux::used_bytes(); 934 }; 935 936 size_t heap_used() const { return _heap_used; } 937 size_t young_gen_used() const { return _young_gen_used; } 938 size_t old_gen_used() const { return _old_gen_used; } 939 size_t metadata_used() const { return _metadata_used; } 940 941 private: 942 size_t _heap_used; 943 size_t _young_gen_used; 944 size_t _old_gen_used; 945 size_t _metadata_used; 946 }; 947 948 void 949 PSParallelCompact::clear_data_covering_space(SpaceId id) 950 { 951 // At this point, top is the value before GC, new_top() is the value that will 952 // be set at the end of GC. The marking bitmap is cleared to top; nothing 953 // should be marked above top. The summary data is cleared to the larger of 954 // top & new_top. 955 MutableSpace* const space = _space_info[id].space(); 956 HeapWord* const bot = space->bottom(); 957 HeapWord* const top = space->top(); 958 HeapWord* const max_top = MAX2(top, _space_info[id].new_top()); 959 960 const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot); 961 const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top)); 962 _mark_bitmap.clear_range(beg_bit, end_bit); 963 964 const size_t beg_region = _summary_data.addr_to_region_idx(bot); 965 const size_t end_region = 966 _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top)); 967 _summary_data.clear_range(beg_region, end_region); 968 969 // Clear the data used to 'split' regions. 970 SplitInfo& split_info = _space_info[id].split_info(); 971 if (split_info.is_valid()) { 972 split_info.clear(); 973 } 974 DEBUG_ONLY(split_info.verify_clear();) 975 } 976 977 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values) 978 { 979 // Update the from & to space pointers in space_info, since they are swapped 980 // at each young gen gc. Do the update unconditionally (even though a 981 // promotion failure does not swap spaces) because an unknown number of minor 982 // collections will have swapped the spaces an unknown number of times. 983 GCTraceTime tm("pre compact", print_phases(), true, &_gc_timer); 984 ParallelScavengeHeap* heap = gc_heap(); 985 _space_info[from_space_id].set_space(heap->young_gen()->from_space()); 986 _space_info[to_space_id].set_space(heap->young_gen()->to_space()); 987 988 pre_gc_values->fill(heap); 989 990 DEBUG_ONLY(add_obj_count = add_obj_size = 0;) 991 DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;) 992 993 // Increment the invocation count 994 heap->increment_total_collections(true); 995 996 // We need to track unique mark sweep invocations as well. 997 _total_invocations++; 998 999 heap->print_heap_before_gc(); 1000 heap->trace_heap_before_gc(&_gc_tracer); 1001 1002 // Fill in TLABs 1003 heap->accumulate_statistics_all_tlabs(); 1004 heap->ensure_parsability(true); // retire TLABs 1005 1006 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) { 1007 HandleMark hm; // Discard invalid handles created during verification 1008 Universe::verify(" VerifyBeforeGC:"); 1009 } 1010 1011 // Verify object start arrays 1012 if (VerifyObjectStartArray && 1013 VerifyBeforeGC) { 1014 heap->old_gen()->verify_object_start_array(); 1015 } 1016 1017 DEBUG_ONLY(mark_bitmap()->verify_clear();) 1018 DEBUG_ONLY(summary_data().verify_clear();) 1019 1020 // Have worker threads release resources the next time they run a task. 1021 gc_task_manager()->release_all_resources(); 1022 } 1023 1024 void PSParallelCompact::post_compact() 1025 { 1026 GCTraceTime tm("post compact", print_phases(), true, &_gc_timer); 1027 1028 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 1029 // Clear the marking bitmap, summary data and split info. 1030 clear_data_covering_space(SpaceId(id)); 1031 // Update top(). Must be done after clearing the bitmap and summary data. 1032 _space_info[id].publish_new_top(); 1033 } 1034 1035 MutableSpace* const eden_space = _space_info[eden_space_id].space(); 1036 MutableSpace* const from_space = _space_info[from_space_id].space(); 1037 MutableSpace* const to_space = _space_info[to_space_id].space(); 1038 1039 ParallelScavengeHeap* heap = gc_heap(); 1040 bool eden_empty = eden_space->is_empty(); 1041 if (!eden_empty) { 1042 eden_empty = absorb_live_data_from_eden(heap->size_policy(), 1043 heap->young_gen(), heap->old_gen()); 1044 } 1045 1046 // Update heap occupancy information which is used as input to the soft ref 1047 // clearing policy at the next gc. 1048 Universe::update_heap_info_at_gc(); 1049 1050 bool young_gen_empty = eden_empty && from_space->is_empty() && 1051 to_space->is_empty(); 1052 1053 BarrierSet* bs = heap->barrier_set(); 1054 if (bs->is_a(BarrierSet::ModRef)) { 1055 ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs; 1056 MemRegion old_mr = heap->old_gen()->reserved(); 1057 1058 if (young_gen_empty) { 1059 modBS->clear(MemRegion(old_mr.start(), old_mr.end())); 1060 } else { 1061 modBS->invalidate(MemRegion(old_mr.start(), old_mr.end())); 1062 } 1063 } 1064 1065 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1066 ClassLoaderDataGraph::purge(); 1067 MetaspaceAux::verify_metrics(); 1068 1069 Threads::gc_epilogue(); 1070 CodeCache::gc_epilogue(); 1071 JvmtiExport::gc_epilogue(); 1072 1073 COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); 1074 1075 ref_processor()->enqueue_discovered_references(NULL); 1076 1077 if (ZapUnusedHeapArea) { 1078 heap->gen_mangle_unused_area(); 1079 } 1080 1081 // Update time of last GC 1082 reset_millis_since_last_gc(); 1083 } 1084 1085 HeapWord* 1086 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id, 1087 bool maximum_compaction) 1088 { 1089 const size_t region_size = ParallelCompactData::RegionSize; 1090 const ParallelCompactData& sd = summary_data(); 1091 1092 const MutableSpace* const space = _space_info[id].space(); 1093 HeapWord* const top_aligned_up = sd.region_align_up(space->top()); 1094 const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom()); 1095 const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up); 1096 1097 // Skip full regions at the beginning of the space--they are necessarily part 1098 // of the dense prefix. 1099 size_t full_count = 0; 1100 const RegionData* cp; 1101 for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) { 1102 ++full_count; 1103 } 1104 1105 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity"); 1106 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num; 1107 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval; 1108 if (maximum_compaction || cp == end_cp || interval_ended) { 1109 _maximum_compaction_gc_num = total_invocations(); 1110 return sd.region_to_addr(cp); 1111 } 1112 1113 HeapWord* const new_top = _space_info[id].new_top(); 1114 const size_t space_live = pointer_delta(new_top, space->bottom()); 1115 const size_t space_used = space->used_in_words(); 1116 const size_t space_capacity = space->capacity_in_words(); 1117 1118 const double cur_density = double(space_live) / space_capacity; 1119 const double deadwood_density = 1120 (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density; 1121 const size_t deadwood_goal = size_t(space_capacity * deadwood_density); 1122 1123 if (TraceParallelOldGCDensePrefix) { 1124 tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT, 1125 cur_density, deadwood_density, deadwood_goal); 1126 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " " 1127 "space_cap=" SIZE_FORMAT, 1128 space_live, space_used, 1129 space_capacity); 1130 } 1131 1132 // XXX - Use binary search? 1133 HeapWord* dense_prefix = sd.region_to_addr(cp); 1134 const RegionData* full_cp = cp; 1135 const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1); 1136 while (cp < end_cp) { 1137 HeapWord* region_destination = cp->destination(); 1138 const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination); 1139 if (TraceParallelOldGCDensePrefix && Verbose) { 1140 tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " " 1141 "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8), 1142 sd.region(cp), region_destination, 1143 dense_prefix, cur_deadwood); 1144 } 1145 1146 if (cur_deadwood >= deadwood_goal) { 1147 // Found the region that has the correct amount of deadwood to the left. 1148 // This typically occurs after crossing a fairly sparse set of regions, so 1149 // iterate backwards over those sparse regions, looking for the region 1150 // that has the lowest density of live objects 'to the right.' 1151 size_t space_to_left = sd.region(cp) * region_size; 1152 size_t live_to_left = space_to_left - cur_deadwood; 1153 size_t space_to_right = space_capacity - space_to_left; 1154 size_t live_to_right = space_live - live_to_left; 1155 double density_to_right = double(live_to_right) / space_to_right; 1156 while (cp > full_cp) { 1157 --cp; 1158 const size_t prev_region_live_to_right = live_to_right - 1159 cp->data_size(); 1160 const size_t prev_region_space_to_right = space_to_right + region_size; 1161 double prev_region_density_to_right = 1162 double(prev_region_live_to_right) / prev_region_space_to_right; 1163 if (density_to_right <= prev_region_density_to_right) { 1164 return dense_prefix; 1165 } 1166 if (TraceParallelOldGCDensePrefix && Verbose) { 1167 tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f " 1168 "pc_d2r=%10.8f", sd.region(cp), density_to_right, 1169 prev_region_density_to_right); 1170 } 1171 dense_prefix -= region_size; 1172 live_to_right = prev_region_live_to_right; 1173 space_to_right = prev_region_space_to_right; 1174 density_to_right = prev_region_density_to_right; 1175 } 1176 return dense_prefix; 1177 } 1178 1179 dense_prefix += region_size; 1180 ++cp; 1181 } 1182 1183 return dense_prefix; 1184 } 1185 1186 #ifndef PRODUCT 1187 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm, 1188 const SpaceId id, 1189 const bool maximum_compaction, 1190 HeapWord* const addr) 1191 { 1192 const size_t region_idx = summary_data().addr_to_region_idx(addr); 1193 RegionData* const cp = summary_data().region(region_idx); 1194 const MutableSpace* const space = _space_info[id].space(); 1195 HeapWord* const new_top = _space_info[id].new_top(); 1196 1197 const size_t space_live = pointer_delta(new_top, space->bottom()); 1198 const size_t dead_to_left = pointer_delta(addr, cp->destination()); 1199 const size_t space_cap = space->capacity_in_words(); 1200 const double dead_to_left_pct = double(dead_to_left) / space_cap; 1201 const size_t live_to_right = new_top - cp->destination(); 1202 const size_t dead_to_right = space->top() - addr - live_to_right; 1203 1204 tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " " 1205 "spl=" SIZE_FORMAT " " 1206 "d2l=" SIZE_FORMAT " d2l%%=%6.4f " 1207 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT 1208 " ratio=%10.8f", 1209 algorithm, addr, region_idx, 1210 space_live, 1211 dead_to_left, dead_to_left_pct, 1212 dead_to_right, live_to_right, 1213 double(dead_to_right) / live_to_right); 1214 } 1215 #endif // #ifndef PRODUCT 1216 1217 // Return a fraction indicating how much of the generation can be treated as 1218 // "dead wood" (i.e., not reclaimed). The function uses a normal distribution 1219 // based on the density of live objects in the generation to determine a limit, 1220 // which is then adjusted so the return value is min_percent when the density is 1221 // 1. 1222 // 1223 // The following table shows some return values for a different values of the 1224 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and 1225 // min_percent is 1. 1226 // 1227 // fraction allowed as dead wood 1228 // ----------------------------------------------------------------- 1229 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95 1230 // ------- ---------- ---------- ---------- ---------- ---------- ---------- 1231 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 1232 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941 1233 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272 1234 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066 1235 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975 1236 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313 1237 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132 1238 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289 1239 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500 1240 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386 1241 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510 1242 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386 1243 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500 1244 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289 1245 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132 1246 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313 1247 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975 1248 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066 1249 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272 1250 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941 1251 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 1252 1253 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent) 1254 { 1255 assert(_dwl_initialized, "uninitialized"); 1256 1257 // The raw limit is the value of the normal distribution at x = density. 1258 const double raw_limit = normal_distribution(density); 1259 1260 // Adjust the raw limit so it becomes the minimum when the density is 1. 1261 // 1262 // First subtract the adjustment value (which is simply the precomputed value 1263 // normal_distribution(1.0)); this yields a value of 0 when the density is 1. 1264 // Then add the minimum value, so the minimum is returned when the density is 1265 // 1. Finally, prevent negative values, which occur when the mean is not 0.5. 1266 const double min = double(min_percent) / 100.0; 1267 const double limit = raw_limit - _dwl_adjustment + min; 1268 return MAX2(limit, 0.0); 1269 } 1270 1271 ParallelCompactData::RegionData* 1272 PSParallelCompact::first_dead_space_region(const RegionData* beg, 1273 const RegionData* end) 1274 { 1275 const size_t region_size = ParallelCompactData::RegionSize; 1276 ParallelCompactData& sd = summary_data(); 1277 size_t left = sd.region(beg); 1278 size_t right = end > beg ? sd.region(end) - 1 : left; 1279 1280 // Binary search. 1281 while (left < right) { 1282 // Equivalent to (left + right) / 2, but does not overflow. 1283 const size_t middle = left + (right - left) / 2; 1284 RegionData* const middle_ptr = sd.region(middle); 1285 HeapWord* const dest = middle_ptr->destination(); 1286 HeapWord* const addr = sd.region_to_addr(middle); 1287 assert(dest != NULL, "sanity"); 1288 assert(dest <= addr, "must move left"); 1289 1290 if (middle > left && dest < addr) { 1291 right = middle - 1; 1292 } else if (middle < right && middle_ptr->data_size() == region_size) { 1293 left = middle + 1; 1294 } else { 1295 return middle_ptr; 1296 } 1297 } 1298 return sd.region(left); 1299 } 1300 1301 ParallelCompactData::RegionData* 1302 PSParallelCompact::dead_wood_limit_region(const RegionData* beg, 1303 const RegionData* end, 1304 size_t dead_words) 1305 { 1306 ParallelCompactData& sd = summary_data(); 1307 size_t left = sd.region(beg); 1308 size_t right = end > beg ? sd.region(end) - 1 : left; 1309 1310 // Binary search. 1311 while (left < right) { 1312 // Equivalent to (left + right) / 2, but does not overflow. 1313 const size_t middle = left + (right - left) / 2; 1314 RegionData* const middle_ptr = sd.region(middle); 1315 HeapWord* const dest = middle_ptr->destination(); 1316 HeapWord* const addr = sd.region_to_addr(middle); 1317 assert(dest != NULL, "sanity"); 1318 assert(dest <= addr, "must move left"); 1319 1320 const size_t dead_to_left = pointer_delta(addr, dest); 1321 if (middle > left && dead_to_left > dead_words) { 1322 right = middle - 1; 1323 } else if (middle < right && dead_to_left < dead_words) { 1324 left = middle + 1; 1325 } else { 1326 return middle_ptr; 1327 } 1328 } 1329 return sd.region(left); 1330 } 1331 1332 // The result is valid during the summary phase, after the initial summarization 1333 // of each space into itself, and before final summarization. 1334 inline double 1335 PSParallelCompact::reclaimed_ratio(const RegionData* const cp, 1336 HeapWord* const bottom, 1337 HeapWord* const top, 1338 HeapWord* const new_top) 1339 { 1340 ParallelCompactData& sd = summary_data(); 1341 1342 assert(cp != NULL, "sanity"); 1343 assert(bottom != NULL, "sanity"); 1344 assert(top != NULL, "sanity"); 1345 assert(new_top != NULL, "sanity"); 1346 assert(top >= new_top, "summary data problem?"); 1347 assert(new_top > bottom, "space is empty; should not be here"); 1348 assert(new_top >= cp->destination(), "sanity"); 1349 assert(top >= sd.region_to_addr(cp), "sanity"); 1350 1351 HeapWord* const destination = cp->destination(); 1352 const size_t dense_prefix_live = pointer_delta(destination, bottom); 1353 const size_t compacted_region_live = pointer_delta(new_top, destination); 1354 const size_t compacted_region_used = pointer_delta(top, 1355 sd.region_to_addr(cp)); 1356 const size_t reclaimable = compacted_region_used - compacted_region_live; 1357 1358 const double divisor = dense_prefix_live + 1.25 * compacted_region_live; 1359 return double(reclaimable) / divisor; 1360 } 1361 1362 // Return the address of the end of the dense prefix, a.k.a. the start of the 1363 // compacted region. The address is always on a region boundary. 1364 // 1365 // Completely full regions at the left are skipped, since no compaction can 1366 // occur in those regions. Then the maximum amount of dead wood to allow is 1367 // computed, based on the density (amount live / capacity) of the generation; 1368 // the region with approximately that amount of dead space to the left is 1369 // identified as the limit region. Regions between the last completely full 1370 // region and the limit region are scanned and the one that has the best 1371 // (maximum) reclaimed_ratio() is selected. 1372 HeapWord* 1373 PSParallelCompact::compute_dense_prefix(const SpaceId id, 1374 bool maximum_compaction) 1375 { 1376 if (ParallelOldGCSplitALot) { 1377 if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) { 1378 // The value was chosen to provoke splitting a young gen space; use it. 1379 return _space_info[id].dense_prefix(); 1380 } 1381 } 1382 1383 const size_t region_size = ParallelCompactData::RegionSize; 1384 const ParallelCompactData& sd = summary_data(); 1385 1386 const MutableSpace* const space = _space_info[id].space(); 1387 HeapWord* const top = space->top(); 1388 HeapWord* const top_aligned_up = sd.region_align_up(top); 1389 HeapWord* const new_top = _space_info[id].new_top(); 1390 HeapWord* const new_top_aligned_up = sd.region_align_up(new_top); 1391 HeapWord* const bottom = space->bottom(); 1392 const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom); 1393 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up); 1394 const RegionData* const new_top_cp = 1395 sd.addr_to_region_ptr(new_top_aligned_up); 1396 1397 // Skip full regions at the beginning of the space--they are necessarily part 1398 // of the dense prefix. 1399 const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp); 1400 assert(full_cp->destination() == sd.region_to_addr(full_cp) || 1401 space->is_empty(), "no dead space allowed to the left"); 1402 assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1, 1403 "region must have dead space"); 1404 1405 // The gc number is saved whenever a maximum compaction is done, and used to 1406 // determine when the maximum compaction interval has expired. This avoids 1407 // successive max compactions for different reasons. 1408 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity"); 1409 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num; 1410 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval || 1411 total_invocations() == HeapFirstMaximumCompactionCount; 1412 if (maximum_compaction || full_cp == top_cp || interval_ended) { 1413 _maximum_compaction_gc_num = total_invocations(); 1414 return sd.region_to_addr(full_cp); 1415 } 1416 1417 const size_t space_live = pointer_delta(new_top, bottom); 1418 const size_t space_used = space->used_in_words(); 1419 const size_t space_capacity = space->capacity_in_words(); 1420 1421 const double density = double(space_live) / double(space_capacity); 1422 const size_t min_percent_free = MarkSweepDeadRatio; 1423 const double limiter = dead_wood_limiter(density, min_percent_free); 1424 const size_t dead_wood_max = space_used - space_live; 1425 const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter), 1426 dead_wood_max); 1427 1428 if (TraceParallelOldGCDensePrefix) { 1429 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " " 1430 "space_cap=" SIZE_FORMAT, 1431 space_live, space_used, 1432 space_capacity); 1433 tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f " 1434 "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT, 1435 density, min_percent_free, limiter, 1436 dead_wood_max, dead_wood_limit); 1437 } 1438 1439 // Locate the region with the desired amount of dead space to the left. 1440 const RegionData* const limit_cp = 1441 dead_wood_limit_region(full_cp, top_cp, dead_wood_limit); 1442 1443 // Scan from the first region with dead space to the limit region and find the 1444 // one with the best (largest) reclaimed ratio. 1445 double best_ratio = 0.0; 1446 const RegionData* best_cp = full_cp; 1447 for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) { 1448 double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top); 1449 if (tmp_ratio > best_ratio) { 1450 best_cp = cp; 1451 best_ratio = tmp_ratio; 1452 } 1453 } 1454 1455 #if 0 1456 // Something to consider: if the region with the best ratio is 'close to' the 1457 // first region w/free space, choose the first region with free space 1458 // ("first-free"). The first-free region is usually near the start of the 1459 // heap, which means we are copying most of the heap already, so copy a bit 1460 // more to get complete compaction. 1461 if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) { 1462 _maximum_compaction_gc_num = total_invocations(); 1463 best_cp = full_cp; 1464 } 1465 #endif // #if 0 1466 1467 return sd.region_to_addr(best_cp); 1468 } 1469 1470 #ifndef PRODUCT 1471 void 1472 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start, 1473 size_t words) 1474 { 1475 if (TraceParallelOldGCSummaryPhase) { 1476 tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") " 1477 SIZE_FORMAT, start, start + words, words); 1478 } 1479 1480 ObjectStartArray* const start_array = _space_info[id].start_array(); 1481 CollectedHeap::fill_with_objects(start, words); 1482 for (HeapWord* p = start; p < start + words; p += oop(p)->size()) { 1483 _mark_bitmap.mark_obj(p, words); 1484 _summary_data.add_obj(p, words); 1485 start_array->allocate_block(p); 1486 } 1487 } 1488 1489 void 1490 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start) 1491 { 1492 ParallelCompactData& sd = summary_data(); 1493 MutableSpace* space = _space_info[id].space(); 1494 1495 // Find the source and destination start addresses. 1496 HeapWord* const src_addr = sd.region_align_down(start); 1497 HeapWord* dst_addr; 1498 if (src_addr < start) { 1499 dst_addr = sd.addr_to_region_ptr(src_addr)->destination(); 1500 } else if (src_addr > space->bottom()) { 1501 // The start (the original top() value) is aligned to a region boundary so 1502 // the associated region does not have a destination. Compute the 1503 // destination from the previous region. 1504 RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1; 1505 dst_addr = cp->destination() + cp->data_size(); 1506 } else { 1507 // Filling the entire space. 1508 dst_addr = space->bottom(); 1509 } 1510 assert(dst_addr != NULL, "sanity"); 1511 1512 // Update the summary data. 1513 bool result = _summary_data.summarize(_space_info[id].split_info(), 1514 src_addr, space->top(), NULL, 1515 dst_addr, space->end(), 1516 _space_info[id].new_top_addr()); 1517 assert(result, "should not fail: bad filler object size"); 1518 } 1519 1520 void 1521 PSParallelCompact::provoke_split_fill_survivor(SpaceId id) 1522 { 1523 if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) { 1524 return; 1525 } 1526 1527 MutableSpace* const space = _space_info[id].space(); 1528 if (space->is_empty()) { 1529 HeapWord* b = space->bottom(); 1530 HeapWord* t = b + space->capacity_in_words() / 2; 1531 space->set_top(t); 1532 if (ZapUnusedHeapArea) { 1533 space->set_top_for_allocations(); 1534 } 1535 1536 size_t min_size = CollectedHeap::min_fill_size(); 1537 size_t obj_len = min_size; 1538 while (b + obj_len <= t) { 1539 CollectedHeap::fill_with_object(b, obj_len); 1540 mark_bitmap()->mark_obj(b, obj_len); 1541 summary_data().add_obj(b, obj_len); 1542 b += obj_len; 1543 obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ... 1544 } 1545 if (b < t) { 1546 // The loop didn't completely fill to t (top); adjust top downward. 1547 space->set_top(b); 1548 if (ZapUnusedHeapArea) { 1549 space->set_top_for_allocations(); 1550 } 1551 } 1552 1553 HeapWord** nta = _space_info[id].new_top_addr(); 1554 bool result = summary_data().summarize(_space_info[id].split_info(), 1555 space->bottom(), space->top(), NULL, 1556 space->bottom(), space->end(), nta); 1557 assert(result, "space must fit into itself"); 1558 } 1559 } 1560 1561 void 1562 PSParallelCompact::provoke_split(bool & max_compaction) 1563 { 1564 if (total_invocations() % ParallelOldGCSplitInterval != 0) { 1565 return; 1566 } 1567 1568 const size_t region_size = ParallelCompactData::RegionSize; 1569 ParallelCompactData& sd = summary_data(); 1570 1571 MutableSpace* const eden_space = _space_info[eden_space_id].space(); 1572 MutableSpace* const from_space = _space_info[from_space_id].space(); 1573 const size_t eden_live = pointer_delta(eden_space->top(), 1574 _space_info[eden_space_id].new_top()); 1575 const size_t from_live = pointer_delta(from_space->top(), 1576 _space_info[from_space_id].new_top()); 1577 1578 const size_t min_fill_size = CollectedHeap::min_fill_size(); 1579 const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top()); 1580 const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0; 1581 const size_t from_free = pointer_delta(from_space->end(), from_space->top()); 1582 const size_t from_fillable = from_free >= min_fill_size ? from_free : 0; 1583 1584 // Choose the space to split; need at least 2 regions live (or fillable). 1585 SpaceId id; 1586 MutableSpace* space; 1587 size_t live_words; 1588 size_t fill_words; 1589 if (eden_live + eden_fillable >= region_size * 2) { 1590 id = eden_space_id; 1591 space = eden_space; 1592 live_words = eden_live; 1593 fill_words = eden_fillable; 1594 } else if (from_live + from_fillable >= region_size * 2) { 1595 id = from_space_id; 1596 space = from_space; 1597 live_words = from_live; 1598 fill_words = from_fillable; 1599 } else { 1600 return; // Give up. 1601 } 1602 assert(fill_words == 0 || fill_words >= min_fill_size, "sanity"); 1603 1604 if (live_words < region_size * 2) { 1605 // Fill from top() to end() w/live objects of mixed sizes. 1606 HeapWord* const fill_start = space->top(); 1607 live_words += fill_words; 1608 1609 space->set_top(fill_start + fill_words); 1610 if (ZapUnusedHeapArea) { 1611 space->set_top_for_allocations(); 1612 } 1613 1614 HeapWord* cur_addr = fill_start; 1615 while (fill_words > 0) { 1616 const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size; 1617 size_t cur_size = MIN2(align_object_size_(r), fill_words); 1618 if (fill_words - cur_size < min_fill_size) { 1619 cur_size = fill_words; // Avoid leaving a fragment too small to fill. 1620 } 1621 1622 CollectedHeap::fill_with_object(cur_addr, cur_size); 1623 mark_bitmap()->mark_obj(cur_addr, cur_size); 1624 sd.add_obj(cur_addr, cur_size); 1625 1626 cur_addr += cur_size; 1627 fill_words -= cur_size; 1628 } 1629 1630 summarize_new_objects(id, fill_start); 1631 } 1632 1633 max_compaction = false; 1634 1635 // Manipulate the old gen so that it has room for about half of the live data 1636 // in the target young gen space (live_words / 2). 1637 id = old_space_id; 1638 space = _space_info[id].space(); 1639 const size_t free_at_end = space->free_in_words(); 1640 const size_t free_target = align_object_size(live_words / 2); 1641 const size_t dead = pointer_delta(space->top(), _space_info[id].new_top()); 1642 1643 if (free_at_end >= free_target + min_fill_size) { 1644 // Fill space above top() and set the dense prefix so everything survives. 1645 HeapWord* const fill_start = space->top(); 1646 const size_t fill_size = free_at_end - free_target; 1647 space->set_top(space->top() + fill_size); 1648 if (ZapUnusedHeapArea) { 1649 space->set_top_for_allocations(); 1650 } 1651 fill_with_live_objects(id, fill_start, fill_size); 1652 summarize_new_objects(id, fill_start); 1653 _space_info[id].set_dense_prefix(sd.region_align_down(space->top())); 1654 } else if (dead + free_at_end > free_target) { 1655 // Find a dense prefix that makes the right amount of space available. 1656 HeapWord* cur = sd.region_align_down(space->top()); 1657 HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination(); 1658 size_t dead_to_right = pointer_delta(space->end(), cur_destination); 1659 while (dead_to_right < free_target) { 1660 cur -= region_size; 1661 cur_destination = sd.addr_to_region_ptr(cur)->destination(); 1662 dead_to_right = pointer_delta(space->end(), cur_destination); 1663 } 1664 _space_info[id].set_dense_prefix(cur); 1665 } 1666 } 1667 #endif // #ifndef PRODUCT 1668 1669 void PSParallelCompact::summarize_spaces_quick() 1670 { 1671 for (unsigned int i = 0; i < last_space_id; ++i) { 1672 const MutableSpace* space = _space_info[i].space(); 1673 HeapWord** nta = _space_info[i].new_top_addr(); 1674 bool result = _summary_data.summarize(_space_info[i].split_info(), 1675 space->bottom(), space->top(), NULL, 1676 space->bottom(), space->end(), nta); 1677 assert(result, "space must fit into itself"); 1678 _space_info[i].set_dense_prefix(space->bottom()); 1679 } 1680 1681 #ifndef PRODUCT 1682 if (ParallelOldGCSplitALot) { 1683 provoke_split_fill_survivor(to_space_id); 1684 } 1685 #endif // #ifndef PRODUCT 1686 } 1687 1688 void PSParallelCompact::fill_dense_prefix_end(SpaceId id) 1689 { 1690 HeapWord* const dense_prefix_end = dense_prefix(id); 1691 const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end); 1692 const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end); 1693 if (dead_space_crosses_boundary(region, dense_prefix_bit)) { 1694 // Only enough dead space is filled so that any remaining dead space to the 1695 // left is larger than the minimum filler object. (The remainder is filled 1696 // during the copy/update phase.) 1697 // 1698 // The size of the dead space to the right of the boundary is not a 1699 // concern, since compaction will be able to use whatever space is 1700 // available. 1701 // 1702 // Here '||' is the boundary, 'x' represents a don't care bit and a box 1703 // surrounds the space to be filled with an object. 1704 // 1705 // In the 32-bit VM, each bit represents two 32-bit words: 1706 // +---+ 1707 // a) beg_bits: ... x x x | 0 | || 0 x x ... 1708 // end_bits: ... x x x | 0 | || 0 x x ... 1709 // +---+ 1710 // 1711 // In the 64-bit VM, each bit represents one 64-bit word: 1712 // +------------+ 1713 // b) beg_bits: ... x x x | 0 || 0 | x x ... 1714 // end_bits: ... x x 1 | 0 || 0 | x x ... 1715 // +------------+ 1716 // +-------+ 1717 // c) beg_bits: ... x x | 0 0 | || 0 x x ... 1718 // end_bits: ... x 1 | 0 0 | || 0 x x ... 1719 // +-------+ 1720 // +-----------+ 1721 // d) beg_bits: ... x | 0 0 0 | || 0 x x ... 1722 // end_bits: ... 1 | 0 0 0 | || 0 x x ... 1723 // +-----------+ 1724 // +-------+ 1725 // e) beg_bits: ... 0 0 | 0 0 | || 0 x x ... 1726 // end_bits: ... 0 0 | 0 0 | || 0 x x ... 1727 // +-------+ 1728 1729 // Initially assume case a, c or e will apply. 1730 size_t obj_len = CollectedHeap::min_fill_size(); 1731 HeapWord* obj_beg = dense_prefix_end - obj_len; 1732 1733 #ifdef _LP64 1734 if (MinObjAlignment > 1) { // object alignment > heap word size 1735 // Cases a, c or e. 1736 } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) { 1737 // Case b above. 1738 obj_beg = dense_prefix_end - 1; 1739 } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) && 1740 _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) { 1741 // Case d above. 1742 obj_beg = dense_prefix_end - 3; 1743 obj_len = 3; 1744 } 1745 #endif // #ifdef _LP64 1746 1747 CollectedHeap::fill_with_object(obj_beg, obj_len); 1748 _mark_bitmap.mark_obj(obj_beg, obj_len); 1749 _summary_data.add_obj(obj_beg, obj_len); 1750 assert(start_array(id) != NULL, "sanity"); 1751 start_array(id)->allocate_block(obj_beg); 1752 } 1753 } 1754 1755 void 1756 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr) 1757 { 1758 RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr); 1759 HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr); 1760 RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up); 1761 for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) { 1762 cur->set_source_region(0); 1763 } 1764 } 1765 1766 void 1767 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction) 1768 { 1769 assert(id < last_space_id, "id out of range"); 1770 assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() || 1771 ParallelOldGCSplitALot && id == old_space_id, 1772 "should have been reset in summarize_spaces_quick()"); 1773 1774 const MutableSpace* space = _space_info[id].space(); 1775 if (_space_info[id].new_top() != space->bottom()) { 1776 HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction); 1777 _space_info[id].set_dense_prefix(dense_prefix_end); 1778 1779 #ifndef PRODUCT 1780 if (TraceParallelOldGCDensePrefix) { 1781 print_dense_prefix_stats("ratio", id, maximum_compaction, 1782 dense_prefix_end); 1783 HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction); 1784 print_dense_prefix_stats("density", id, maximum_compaction, addr); 1785 } 1786 #endif // #ifndef PRODUCT 1787 1788 // Recompute the summary data, taking into account the dense prefix. If 1789 // every last byte will be reclaimed, then the existing summary data which 1790 // compacts everything can be left in place. 1791 if (!maximum_compaction && dense_prefix_end != space->bottom()) { 1792 // If dead space crosses the dense prefix boundary, it is (at least 1793 // partially) filled with a dummy object, marked live and added to the 1794 // summary data. This simplifies the copy/update phase and must be done 1795 // before the final locations of objects are determined, to prevent 1796 // leaving a fragment of dead space that is too small to fill. 1797 fill_dense_prefix_end(id); 1798 1799 // Compute the destination of each Region, and thus each object. 1800 _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end); 1801 _summary_data.summarize(_space_info[id].split_info(), 1802 dense_prefix_end, space->top(), NULL, 1803 dense_prefix_end, space->end(), 1804 _space_info[id].new_top_addr()); 1805 } 1806 } 1807 1808 if (TraceParallelOldGCSummaryPhase) { 1809 const size_t region_size = ParallelCompactData::RegionSize; 1810 HeapWord* const dense_prefix_end = _space_info[id].dense_prefix(); 1811 const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end); 1812 const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom()); 1813 HeapWord* const new_top = _space_info[id].new_top(); 1814 const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top); 1815 const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end); 1816 tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " " 1817 "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " " 1818 "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT, 1819 id, space->capacity_in_words(), dense_prefix_end, 1820 dp_region, dp_words / region_size, 1821 cr_words / region_size, new_top); 1822 } 1823 } 1824 1825 #ifndef PRODUCT 1826 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id, 1827 HeapWord* dst_beg, HeapWord* dst_end, 1828 SpaceId src_space_id, 1829 HeapWord* src_beg, HeapWord* src_end) 1830 { 1831 if (TraceParallelOldGCSummaryPhase) { 1832 tty->print_cr("summarizing %d [%s] into %d [%s]: " 1833 "src=" PTR_FORMAT "-" PTR_FORMAT " " 1834 SIZE_FORMAT "-" SIZE_FORMAT " " 1835 "dst=" PTR_FORMAT "-" PTR_FORMAT " " 1836 SIZE_FORMAT "-" SIZE_FORMAT, 1837 src_space_id, space_names[src_space_id], 1838 dst_space_id, space_names[dst_space_id], 1839 src_beg, src_end, 1840 _summary_data.addr_to_region_idx(src_beg), 1841 _summary_data.addr_to_region_idx(src_end), 1842 dst_beg, dst_end, 1843 _summary_data.addr_to_region_idx(dst_beg), 1844 _summary_data.addr_to_region_idx(dst_end)); 1845 } 1846 } 1847 #endif // #ifndef PRODUCT 1848 1849 void PSParallelCompact::summary_phase(ParCompactionManager* cm, 1850 bool maximum_compaction) 1851 { 1852 GCTraceTime tm("summary phase", print_phases(), true, &_gc_timer); 1853 // trace("2"); 1854 1855 #ifdef ASSERT 1856 if (TraceParallelOldGCMarkingPhase) { 1857 tty->print_cr("add_obj_count=" SIZE_FORMAT " " 1858 "add_obj_bytes=" SIZE_FORMAT, 1859 add_obj_count, add_obj_size * HeapWordSize); 1860 tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " " 1861 "mark_bitmap_bytes=" SIZE_FORMAT, 1862 mark_bitmap_count, mark_bitmap_size * HeapWordSize); 1863 } 1864 #endif // #ifdef ASSERT 1865 1866 // Quick summarization of each space into itself, to see how much is live. 1867 summarize_spaces_quick(); 1868 1869 if (TraceParallelOldGCSummaryPhase) { 1870 tty->print_cr("summary_phase: after summarizing each space to self"); 1871 Universe::print(); 1872 NOT_PRODUCT(print_region_ranges()); 1873 if (Verbose) { 1874 NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info)); 1875 } 1876 } 1877 1878 // The amount of live data that will end up in old space (assuming it fits). 1879 size_t old_space_total_live = 0; 1880 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 1881 old_space_total_live += pointer_delta(_space_info[id].new_top(), 1882 _space_info[id].space()->bottom()); 1883 } 1884 1885 MutableSpace* const old_space = _space_info[old_space_id].space(); 1886 const size_t old_capacity = old_space->capacity_in_words(); 1887 if (old_space_total_live > old_capacity) { 1888 // XXX - should also try to expand 1889 maximum_compaction = true; 1890 } 1891 #ifndef PRODUCT 1892 if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) { 1893 provoke_split(maximum_compaction); 1894 } 1895 #endif // #ifndef PRODUCT 1896 1897 // Old generations. 1898 summarize_space(old_space_id, maximum_compaction); 1899 1900 // Summarize the remaining spaces in the young gen. The initial target space 1901 // is the old gen. If a space does not fit entirely into the target, then the 1902 // remainder is compacted into the space itself and that space becomes the new 1903 // target. 1904 SpaceId dst_space_id = old_space_id; 1905 HeapWord* dst_space_end = old_space->end(); 1906 HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr(); 1907 for (unsigned int id = eden_space_id; id < last_space_id; ++id) { 1908 const MutableSpace* space = _space_info[id].space(); 1909 const size_t live = pointer_delta(_space_info[id].new_top(), 1910 space->bottom()); 1911 const size_t available = pointer_delta(dst_space_end, *new_top_addr); 1912 1913 NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end, 1914 SpaceId(id), space->bottom(), space->top());) 1915 if (live > 0 && live <= available) { 1916 // All the live data will fit. 1917 bool done = _summary_data.summarize(_space_info[id].split_info(), 1918 space->bottom(), space->top(), 1919 NULL, 1920 *new_top_addr, dst_space_end, 1921 new_top_addr); 1922 assert(done, "space must fit into old gen"); 1923 1924 // Reset the new_top value for the space. 1925 _space_info[id].set_new_top(space->bottom()); 1926 } else if (live > 0) { 1927 // Attempt to fit part of the source space into the target space. 1928 HeapWord* next_src_addr = NULL; 1929 bool done = _summary_data.summarize(_space_info[id].split_info(), 1930 space->bottom(), space->top(), 1931 &next_src_addr, 1932 *new_top_addr, dst_space_end, 1933 new_top_addr); 1934 assert(!done, "space should not fit into old gen"); 1935 assert(next_src_addr != NULL, "sanity"); 1936 1937 // The source space becomes the new target, so the remainder is compacted 1938 // within the space itself. 1939 dst_space_id = SpaceId(id); 1940 dst_space_end = space->end(); 1941 new_top_addr = _space_info[id].new_top_addr(); 1942 NOT_PRODUCT(summary_phase_msg(dst_space_id, 1943 space->bottom(), dst_space_end, 1944 SpaceId(id), next_src_addr, space->top());) 1945 done = _summary_data.summarize(_space_info[id].split_info(), 1946 next_src_addr, space->top(), 1947 NULL, 1948 space->bottom(), dst_space_end, 1949 new_top_addr); 1950 assert(done, "space must fit when compacted into itself"); 1951 assert(*new_top_addr <= space->top(), "usage should not grow"); 1952 } 1953 } 1954 1955 if (TraceParallelOldGCSummaryPhase) { 1956 tty->print_cr("summary_phase: after final summarization"); 1957 Universe::print(); 1958 NOT_PRODUCT(print_region_ranges()); 1959 if (Verbose) { 1960 NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info)); 1961 } 1962 } 1963 } 1964 1965 // This method should contain all heap-specific policy for invoking a full 1966 // collection. invoke_no_policy() will only attempt to compact the heap; it 1967 // will do nothing further. If we need to bail out for policy reasons, scavenge 1968 // before full gc, or any other specialized behavior, it needs to be added here. 1969 // 1970 // Note that this method should only be called from the vm_thread while at a 1971 // safepoint. 1972 // 1973 // Note that the all_soft_refs_clear flag in the collector policy 1974 // may be true because this method can be called without intervening 1975 // activity. For example when the heap space is tight and full measure 1976 // are being taken to free space. 1977 void PSParallelCompact::invoke(bool maximum_heap_compaction) { 1978 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); 1979 assert(Thread::current() == (Thread*)VMThread::vm_thread(), 1980 "should be in vm thread"); 1981 1982 ParallelScavengeHeap* heap = gc_heap(); 1983 GCCause::Cause gc_cause = heap->gc_cause(); 1984 assert(!heap->is_gc_active(), "not reentrant"); 1985 1986 PSAdaptiveSizePolicy* policy = heap->size_policy(); 1987 IsGCActiveMark mark; 1988 1989 if (ScavengeBeforeFullGC) { 1990 PSScavenge::invoke_no_policy(); 1991 } 1992 1993 const bool clear_all_soft_refs = 1994 heap->collector_policy()->should_clear_all_soft_refs(); 1995 1996 PSParallelCompact::invoke_no_policy(clear_all_soft_refs || 1997 maximum_heap_compaction); 1998 } 1999 2000 // This method contains no policy. You should probably 2001 // be calling invoke() instead. 2002 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) { 2003 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); 2004 assert(ref_processor() != NULL, "Sanity"); 2005 2006 if (GC_locker::check_active_before_gc()) { 2007 return false; 2008 } 2009 2010 ParallelScavengeHeap* heap = gc_heap(); 2011 2012 _gc_timer.register_gc_start(); 2013 _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start()); 2014 2015 TimeStamp marking_start; 2016 TimeStamp compaction_start; 2017 TimeStamp collection_exit; 2018 2019 GCCause::Cause gc_cause = heap->gc_cause(); 2020 PSYoungGen* young_gen = heap->young_gen(); 2021 PSOldGen* old_gen = heap->old_gen(); 2022 PSAdaptiveSizePolicy* size_policy = heap->size_policy(); 2023 2024 // The scope of casr should end after code that can change 2025 // CollectorPolicy::_should_clear_all_soft_refs. 2026 ClearedAllSoftRefs casr(maximum_heap_compaction, 2027 heap->collector_policy()); 2028 2029 if (ZapUnusedHeapArea) { 2030 // Save information needed to minimize mangling 2031 heap->record_gen_tops_before_GC(); 2032 } 2033 2034 heap->pre_full_gc_dump(&_gc_timer); 2035 2036 _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes; 2037 2038 // Make sure data structures are sane, make the heap parsable, and do other 2039 // miscellaneous bookkeeping. 2040 PreGCValues pre_gc_values; 2041 pre_compact(&pre_gc_values); 2042 2043 // Get the compaction manager reserved for the VM thread. 2044 ParCompactionManager* const vmthread_cm = 2045 ParCompactionManager::manager_array(gc_task_manager()->workers()); 2046 2047 // Place after pre_compact() where the number of invocations is incremented. 2048 AdaptiveSizePolicyOutput(size_policy, heap->total_collections()); 2049 2050 { 2051 ResourceMark rm; 2052 HandleMark hm; 2053 2054 // Set the number of GC threads to be used in this collection 2055 gc_task_manager()->set_active_gang(); 2056 gc_task_manager()->task_idle_workers(); 2057 heap->set_par_threads(gc_task_manager()->active_workers()); 2058 2059 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps); 2060 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 2061 GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL); 2062 TraceCollectorStats tcs(counters()); 2063 TraceMemoryManagerStats tms(true /* Full GC */,gc_cause); 2064 2065 if (TraceGen1Time) accumulated_time()->start(); 2066 2067 // Let the size policy know we're starting 2068 size_policy->major_collection_begin(); 2069 2070 CodeCache::gc_prologue(); 2071 Threads::gc_prologue(); 2072 2073 COMPILER2_PRESENT(DerivedPointerTable::clear()); 2074 2075 ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/); 2076 ref_processor()->setup_policy(maximum_heap_compaction); 2077 2078 bool marked_for_unloading = false; 2079 2080 marking_start.update(); 2081 marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer); 2082 2083 bool max_on_system_gc = UseMaximumCompactionOnSystemGC 2084 && gc_cause == GCCause::_java_lang_system_gc; 2085 summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc); 2086 2087 COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity")); 2088 COMPILER2_PRESENT(DerivedPointerTable::set_active(false)); 2089 2090 // adjust_roots() updates Universe::_intArrayKlassObj which is 2091 // needed by the compaction for filling holes in the dense prefix. 2092 adjust_roots(); 2093 2094 compaction_start.update(); 2095 compact(); 2096 2097 // Reset the mark bitmap, summary data, and do other bookkeeping. Must be 2098 // done before resizing. 2099 post_compact(); 2100 2101 // Let the size policy know we're done 2102 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause); 2103 2104 if (UseAdaptiveSizePolicy) { 2105 if (PrintAdaptiveSizePolicy) { 2106 gclog_or_tty->print("AdaptiveSizeStart: "); 2107 gclog_or_tty->stamp(); 2108 gclog_or_tty->print_cr(" collection: %d ", 2109 heap->total_collections()); 2110 if (Verbose) { 2111 gclog_or_tty->print("old_gen_capacity: " SIZE_FORMAT 2112 " young_gen_capacity: " SIZE_FORMAT, 2113 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes()); 2114 } 2115 } 2116 2117 // Don't check if the size_policy is ready here. Let 2118 // the size_policy check that internally. 2119 if (UseAdaptiveGenerationSizePolicyAtMajorCollection && 2120 ((gc_cause != GCCause::_java_lang_system_gc) || 2121 UseAdaptiveSizePolicyWithSystemGC)) { 2122 // Swap the survivor spaces if from_space is empty. The 2123 // resize_young_gen() called below is normally used after 2124 // a successful young GC and swapping of survivor spaces; 2125 // otherwise, it will fail to resize the young gen with 2126 // the current implementation. 2127 if (young_gen->from_space()->is_empty()) { 2128 young_gen->from_space()->clear(SpaceDecorator::Mangle); 2129 young_gen->swap_spaces(); 2130 } 2131 2132 // Calculate optimal free space amounts 2133 assert(young_gen->max_size() > 2134 young_gen->from_space()->capacity_in_bytes() + 2135 young_gen->to_space()->capacity_in_bytes(), 2136 "Sizes of space in young gen are out-of-bounds"); 2137 2138 size_t young_live = young_gen->used_in_bytes(); 2139 size_t eden_live = young_gen->eden_space()->used_in_bytes(); 2140 size_t old_live = old_gen->used_in_bytes(); 2141 size_t cur_eden = young_gen->eden_space()->capacity_in_bytes(); 2142 size_t max_old_gen_size = old_gen->max_gen_size(); 2143 size_t max_eden_size = young_gen->max_size() - 2144 young_gen->from_space()->capacity_in_bytes() - 2145 young_gen->to_space()->capacity_in_bytes(); 2146 2147 // Used for diagnostics 2148 size_policy->clear_generation_free_space_flags(); 2149 2150 size_policy->compute_generations_free_space(young_live, 2151 eden_live, 2152 old_live, 2153 cur_eden, 2154 max_old_gen_size, 2155 max_eden_size, 2156 true /* full gc*/); 2157 2158 size_policy->check_gc_overhead_limit(young_live, 2159 eden_live, 2160 max_old_gen_size, 2161 max_eden_size, 2162 true /* full gc*/, 2163 gc_cause, 2164 heap->collector_policy()); 2165 2166 size_policy->decay_supplemental_growth(true /* full gc*/); 2167 2168 heap->resize_old_gen( 2169 size_policy->calculated_old_free_size_in_bytes()); 2170 2171 heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(), 2172 size_policy->calculated_survivor_size_in_bytes()); 2173 } 2174 if (PrintAdaptiveSizePolicy) { 2175 gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ", 2176 heap->total_collections()); 2177 } 2178 } 2179 2180 if (UsePerfData) { 2181 PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters(); 2182 counters->update_counters(); 2183 counters->update_old_capacity(old_gen->capacity_in_bytes()); 2184 counters->update_young_capacity(young_gen->capacity_in_bytes()); 2185 } 2186 2187 heap->resize_all_tlabs(); 2188 2189 // Resize the metaspace capacity after a collection 2190 MetaspaceGC::compute_new_size(); 2191 2192 if (TraceGen1Time) accumulated_time()->stop(); 2193 2194 if (PrintGC) { 2195 if (PrintGCDetails) { 2196 // No GC timestamp here. This is after GC so it would be confusing. 2197 young_gen->print_used_change(pre_gc_values.young_gen_used()); 2198 old_gen->print_used_change(pre_gc_values.old_gen_used()); 2199 heap->print_heap_change(pre_gc_values.heap_used()); 2200 MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used()); 2201 } else { 2202 heap->print_heap_change(pre_gc_values.heap_used()); 2203 } 2204 } 2205 2206 // Track memory usage and detect low memory 2207 MemoryService::track_memory_usage(); 2208 heap->update_counters(); 2209 gc_task_manager()->release_idle_workers(); 2210 } 2211 2212 #ifdef ASSERT 2213 for (size_t i = 0; i < ParallelGCThreads + 1; ++i) { 2214 ParCompactionManager* const cm = 2215 ParCompactionManager::manager_array(int(i)); 2216 assert(cm->marking_stack()->is_empty(), "should be empty"); 2217 assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty"); 2218 } 2219 #endif // ASSERT 2220 2221 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) { 2222 HandleMark hm; // Discard invalid handles created during verification 2223 Universe::verify(" VerifyAfterGC:"); 2224 } 2225 2226 // Re-verify object start arrays 2227 if (VerifyObjectStartArray && 2228 VerifyAfterGC) { 2229 old_gen->verify_object_start_array(); 2230 } 2231 2232 if (ZapUnusedHeapArea) { 2233 old_gen->object_space()->check_mangled_unused_area_complete(); 2234 } 2235 2236 NOT_PRODUCT(ref_processor()->verify_no_references_recorded()); 2237 2238 collection_exit.update(); 2239 2240 heap->print_heap_after_gc(); 2241 heap->trace_heap_after_gc(&_gc_tracer); 2242 2243 if (PrintGCTaskTimeStamps) { 2244 gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " " 2245 INT64_FORMAT, 2246 marking_start.ticks(), compaction_start.ticks(), 2247 collection_exit.ticks()); 2248 gc_task_manager()->print_task_time_stamps(); 2249 } 2250 2251 heap->post_full_gc_dump(&_gc_timer); 2252 2253 #ifdef TRACESPINNING 2254 ParallelTaskTerminator::print_termination_counts(); 2255 #endif 2256 2257 _gc_timer.register_gc_end(); 2258 2259 _gc_tracer.report_dense_prefix(dense_prefix(old_space_id)); 2260 _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions()); 2261 2262 return true; 2263 } 2264 2265 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy, 2266 PSYoungGen* young_gen, 2267 PSOldGen* old_gen) { 2268 MutableSpace* const eden_space = young_gen->eden_space(); 2269 assert(!eden_space->is_empty(), "eden must be non-empty"); 2270 assert(young_gen->virtual_space()->alignment() == 2271 old_gen->virtual_space()->alignment(), "alignments do not match"); 2272 2273 if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) { 2274 return false; 2275 } 2276 2277 // Both generations must be completely committed. 2278 if (young_gen->virtual_space()->uncommitted_size() != 0) { 2279 return false; 2280 } 2281 if (old_gen->virtual_space()->uncommitted_size() != 0) { 2282 return false; 2283 } 2284 2285 // Figure out how much to take from eden. Include the average amount promoted 2286 // in the total; otherwise the next young gen GC will simply bail out to a 2287 // full GC. 2288 const size_t alignment = old_gen->virtual_space()->alignment(); 2289 const size_t eden_used = eden_space->used_in_bytes(); 2290 const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average(); 2291 const size_t absorb_size = align_size_up(eden_used + promoted, alignment); 2292 const size_t eden_capacity = eden_space->capacity_in_bytes(); 2293 2294 if (absorb_size >= eden_capacity) { 2295 return false; // Must leave some space in eden. 2296 } 2297 2298 const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size; 2299 if (new_young_size < young_gen->min_gen_size()) { 2300 return false; // Respect young gen minimum size. 2301 } 2302 2303 if (TraceAdaptiveGCBoundary && Verbose) { 2304 gclog_or_tty->print(" absorbing " SIZE_FORMAT "K: " 2305 "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K " 2306 "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K " 2307 "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ", 2308 absorb_size / K, 2309 eden_capacity / K, (eden_capacity - absorb_size) / K, 2310 young_gen->from_space()->used_in_bytes() / K, 2311 young_gen->to_space()->used_in_bytes() / K, 2312 young_gen->capacity_in_bytes() / K, new_young_size / K); 2313 } 2314 2315 // Fill the unused part of the old gen. 2316 MutableSpace* const old_space = old_gen->object_space(); 2317 HeapWord* const unused_start = old_space->top(); 2318 size_t const unused_words = pointer_delta(old_space->end(), unused_start); 2319 2320 if (unused_words > 0) { 2321 if (unused_words < CollectedHeap::min_fill_size()) { 2322 return false; // If the old gen cannot be filled, must give up. 2323 } 2324 CollectedHeap::fill_with_objects(unused_start, unused_words); 2325 } 2326 2327 // Take the live data from eden and set both top and end in the old gen to 2328 // eden top. (Need to set end because reset_after_change() mangles the region 2329 // from end to virtual_space->high() in debug builds). 2330 HeapWord* const new_top = eden_space->top(); 2331 old_gen->virtual_space()->expand_into(young_gen->virtual_space(), 2332 absorb_size); 2333 young_gen->reset_after_change(); 2334 old_space->set_top(new_top); 2335 old_space->set_end(new_top); 2336 old_gen->reset_after_change(); 2337 2338 // Update the object start array for the filler object and the data from eden. 2339 ObjectStartArray* const start_array = old_gen->start_array(); 2340 for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) { 2341 start_array->allocate_block(p); 2342 } 2343 2344 // Could update the promoted average here, but it is not typically updated at 2345 // full GCs and the value to use is unclear. Something like 2346 // 2347 // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc. 2348 2349 size_policy->set_bytes_absorbed_from_eden(absorb_size); 2350 return true; 2351 } 2352 2353 GCTaskManager* const PSParallelCompact::gc_task_manager() { 2354 assert(ParallelScavengeHeap::gc_task_manager() != NULL, 2355 "shouldn't return NULL"); 2356 return ParallelScavengeHeap::gc_task_manager(); 2357 } 2358 2359 void PSParallelCompact::marking_phase(ParCompactionManager* cm, 2360 bool maximum_heap_compaction, 2361 ParallelOldTracer *gc_tracer) { 2362 // Recursively traverse all live objects and mark them 2363 GCTraceTime tm("marking phase", print_phases(), true, &_gc_timer); 2364 2365 ParallelScavengeHeap* heap = gc_heap(); 2366 uint parallel_gc_threads = heap->gc_task_manager()->workers(); 2367 uint active_gc_threads = heap->gc_task_manager()->active_workers(); 2368 TaskQueueSetSuper* qset = ParCompactionManager::region_array(); 2369 ParallelTaskTerminator terminator(active_gc_threads, qset); 2370 2371 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm); 2372 PSParallelCompact::FollowStackClosure follow_stack_closure(cm); 2373 2374 // Need new claim bits before marking starts. 2375 ClassLoaderDataGraph::clear_claimed_marks(); 2376 2377 { 2378 GCTraceTime tm_m("par mark", print_phases(), true, &_gc_timer); 2379 2380 ParallelScavengeHeap::ParStrongRootsScope psrs; 2381 2382 GCTaskQueue* q = GCTaskQueue::create(); 2383 2384 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe)); 2385 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles)); 2386 // We scan the thread roots in parallel 2387 Threads::create_thread_roots_marking_tasks(q); 2388 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer)); 2389 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler)); 2390 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management)); 2391 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary)); 2392 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data)); 2393 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti)); 2394 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache)); 2395 2396 if (active_gc_threads > 1) { 2397 for (uint j = 0; j < active_gc_threads; j++) { 2398 q->enqueue(new StealMarkingTask(&terminator)); 2399 } 2400 } 2401 2402 gc_task_manager()->execute_and_wait(q); 2403 } 2404 2405 // Process reference objects found during marking 2406 { 2407 GCTraceTime tm_r("reference processing", print_phases(), true, &_gc_timer); 2408 2409 ReferenceProcessorStats stats; 2410 if (ref_processor()->processing_is_mt()) { 2411 RefProcTaskExecutor task_executor; 2412 stats = ref_processor()->process_discovered_references( 2413 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, 2414 &task_executor, &_gc_timer); 2415 } else { 2416 stats = ref_processor()->process_discovered_references( 2417 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL, 2418 &_gc_timer); 2419 } 2420 2421 gc_tracer->report_gc_reference_stats(stats); 2422 } 2423 2424 GCTraceTime tm_c("class unloading", print_phases(), true, &_gc_timer); 2425 2426 // This is the point where the entire marking should have completed. 2427 assert(cm->marking_stacks_empty(), "Marking should have completed"); 2428 2429 // Follow system dictionary roots and unload classes. 2430 bool purged_class = SystemDictionary::do_unloading(is_alive_closure()); 2431 2432 // Unload nmethods. 2433 CodeCache::do_unloading(is_alive_closure(), purged_class); 2434 2435 // Prune dead klasses from subklass/sibling/implementor lists. 2436 Klass::clean_weak_klass_links(is_alive_closure()); 2437 2438 // Delete entries for dead interned strings. 2439 StringTable::unlink(is_alive_closure()); 2440 2441 // Clean up unreferenced symbols in symbol table. 2442 SymbolTable::unlink(); 2443 _gc_tracer.report_object_count_after_gc(is_alive_closure()); 2444 } 2445 2446 void PSParallelCompact::follow_class_loader(ParCompactionManager* cm, 2447 ClassLoaderData* cld) { 2448 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm); 2449 PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure); 2450 2451 cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true); 2452 } 2453 2454 // This should be moved to the shared markSweep code! 2455 class PSAlwaysTrueClosure: public BoolObjectClosure { 2456 public: 2457 bool do_object_b(oop p) { return true; } 2458 }; 2459 static PSAlwaysTrueClosure always_true; 2460 2461 void PSParallelCompact::adjust_roots() { 2462 // Adjust the pointers to reflect the new locations 2463 GCTraceTime tm("adjust roots", print_phases(), true, &_gc_timer); 2464 2465 // Need new claim bits when tracing through and adjusting pointers. 2466 ClassLoaderDataGraph::clear_claimed_marks(); 2467 2468 // General strong roots. 2469 Universe::oops_do(adjust_pointer_closure()); 2470 JNIHandles::oops_do(adjust_pointer_closure()); // Global (strong) JNI handles 2471 CLDToOopClosure adjust_from_cld(adjust_pointer_closure()); 2472 Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL); 2473 ObjectSynchronizer::oops_do(adjust_pointer_closure()); 2474 FlatProfiler::oops_do(adjust_pointer_closure()); 2475 Management::oops_do(adjust_pointer_closure()); 2476 JvmtiExport::oops_do(adjust_pointer_closure()); 2477 // SO_AllClasses 2478 SystemDictionary::oops_do(adjust_pointer_closure()); 2479 ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true); 2480 2481 // Now adjust pointers in remaining weak roots. (All of which should 2482 // have been cleared if they pointed to non-surviving objects.) 2483 // Global (weak) JNI handles 2484 JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure()); 2485 2486 CodeCache::oops_do(adjust_pointer_closure()); 2487 StringTable::oops_do(adjust_pointer_closure()); 2488 ref_processor()->weak_oops_do(adjust_pointer_closure()); 2489 // Roots were visited so references into the young gen in roots 2490 // may have been scanned. Process them also. 2491 // Should the reference processor have a span that excludes 2492 // young gen objects? 2493 PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure()); 2494 } 2495 2496 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q, 2497 uint parallel_gc_threads) 2498 { 2499 GCTraceTime tm("drain task setup", print_phases(), true, &_gc_timer); 2500 2501 // Find the threads that are active 2502 unsigned int which = 0; 2503 2504 const uint task_count = MAX2(parallel_gc_threads, 1U); 2505 for (uint j = 0; j < task_count; j++) { 2506 q->enqueue(new DrainStacksCompactionTask(j)); 2507 ParCompactionManager::verify_region_list_empty(j); 2508 // Set the region stacks variables to "no" region stack values 2509 // so that they will be recognized and needing a region stack 2510 // in the stealing tasks if they do not get one by executing 2511 // a draining stack. 2512 ParCompactionManager* cm = ParCompactionManager::manager_array(j); 2513 cm->set_region_stack(NULL); 2514 cm->set_region_stack_index((uint)max_uintx); 2515 } 2516 ParCompactionManager::reset_recycled_stack_index(); 2517 2518 // Find all regions that are available (can be filled immediately) and 2519 // distribute them to the thread stacks. The iteration is done in reverse 2520 // order (high to low) so the regions will be removed in ascending order. 2521 2522 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 2523 2524 size_t fillable_regions = 0; // A count for diagnostic purposes. 2525 // A region index which corresponds to the tasks created above. 2526 // "which" must be 0 <= which < task_count 2527 2528 which = 0; 2529 // id + 1 is used to test termination so unsigned can 2530 // be used with an old_space_id == 0. 2531 for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) { 2532 SpaceInfo* const space_info = _space_info + id; 2533 MutableSpace* const space = space_info->space(); 2534 HeapWord* const new_top = space_info->new_top(); 2535 2536 const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix()); 2537 const size_t end_region = 2538 sd.addr_to_region_idx(sd.region_align_up(new_top)); 2539 2540 for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) { 2541 if (sd.region(cur)->claim_unsafe()) { 2542 ParCompactionManager::region_list_push(which, cur); 2543 2544 if (TraceParallelOldGCCompactionPhase && Verbose) { 2545 const size_t count_mod_8 = fillable_regions & 7; 2546 if (count_mod_8 == 0) gclog_or_tty->print("fillable: "); 2547 gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur); 2548 if (count_mod_8 == 7) gclog_or_tty->cr(); 2549 } 2550 2551 NOT_PRODUCT(++fillable_regions;) 2552 2553 // Assign regions to tasks in round-robin fashion. 2554 if (++which == task_count) { 2555 assert(which <= parallel_gc_threads, 2556 "Inconsistent number of workers"); 2557 which = 0; 2558 } 2559 } 2560 } 2561 } 2562 2563 if (TraceParallelOldGCCompactionPhase) { 2564 if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr(); 2565 gclog_or_tty->print_cr(SIZE_FORMAT " initially fillable regions", fillable_regions); 2566 } 2567 } 2568 2569 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4 2570 2571 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q, 2572 uint parallel_gc_threads) { 2573 GCTraceTime tm("dense prefix task setup", print_phases(), true, &_gc_timer); 2574 2575 ParallelCompactData& sd = PSParallelCompact::summary_data(); 2576 2577 // Iterate over all the spaces adding tasks for updating 2578 // regions in the dense prefix. Assume that 1 gc thread 2579 // will work on opening the gaps and the remaining gc threads 2580 // will work on the dense prefix. 2581 unsigned int space_id; 2582 for (space_id = old_space_id; space_id < last_space_id; ++ space_id) { 2583 HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix(); 2584 const MutableSpace* const space = _space_info[space_id].space(); 2585 2586 if (dense_prefix_end == space->bottom()) { 2587 // There is no dense prefix for this space. 2588 continue; 2589 } 2590 2591 // The dense prefix is before this region. 2592 size_t region_index_end_dense_prefix = 2593 sd.addr_to_region_idx(dense_prefix_end); 2594 RegionData* const dense_prefix_cp = 2595 sd.region(region_index_end_dense_prefix); 2596 assert(dense_prefix_end == space->end() || 2597 dense_prefix_cp->available() || 2598 dense_prefix_cp->claimed(), 2599 "The region after the dense prefix should always be ready to fill"); 2600 2601 size_t region_index_start = sd.addr_to_region_idx(space->bottom()); 2602 2603 // Is there dense prefix work? 2604 size_t total_dense_prefix_regions = 2605 region_index_end_dense_prefix - region_index_start; 2606 // How many regions of the dense prefix should be given to 2607 // each thread? 2608 if (total_dense_prefix_regions > 0) { 2609 uint tasks_for_dense_prefix = 1; 2610 if (total_dense_prefix_regions <= 2611 (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) { 2612 // Don't over partition. This assumes that 2613 // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value 2614 // so there are not many regions to process. 2615 tasks_for_dense_prefix = parallel_gc_threads; 2616 } else { 2617 // Over partition 2618 tasks_for_dense_prefix = parallel_gc_threads * 2619 PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING; 2620 } 2621 size_t regions_per_thread = total_dense_prefix_regions / 2622 tasks_for_dense_prefix; 2623 // Give each thread at least 1 region. 2624 if (regions_per_thread == 0) { 2625 regions_per_thread = 1; 2626 } 2627 2628 for (uint k = 0; k < tasks_for_dense_prefix; k++) { 2629 if (region_index_start >= region_index_end_dense_prefix) { 2630 break; 2631 } 2632 // region_index_end is not processed 2633 size_t region_index_end = MIN2(region_index_start + regions_per_thread, 2634 region_index_end_dense_prefix); 2635 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id), 2636 region_index_start, 2637 region_index_end)); 2638 region_index_start = region_index_end; 2639 } 2640 } 2641 // This gets any part of the dense prefix that did not 2642 // fit evenly. 2643 if (region_index_start < region_index_end_dense_prefix) { 2644 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id), 2645 region_index_start, 2646 region_index_end_dense_prefix)); 2647 } 2648 } 2649 } 2650 2651 void PSParallelCompact::enqueue_region_stealing_tasks( 2652 GCTaskQueue* q, 2653 ParallelTaskTerminator* terminator_ptr, 2654 uint parallel_gc_threads) { 2655 GCTraceTime tm("steal task setup", print_phases(), true, &_gc_timer); 2656 2657 // Once a thread has drained it's stack, it should try to steal regions from 2658 // other threads. 2659 if (parallel_gc_threads > 1) { 2660 for (uint j = 0; j < parallel_gc_threads; j++) { 2661 q->enqueue(new StealRegionCompactionTask(terminator_ptr)); 2662 } 2663 } 2664 } 2665 2666 #ifdef ASSERT 2667 // Write a histogram of the number of times the block table was filled for a 2668 // region. 2669 void PSParallelCompact::write_block_fill_histogram(outputStream* const out) 2670 { 2671 if (!TraceParallelOldGCCompactionPhase) return; 2672 2673 typedef ParallelCompactData::RegionData rd_t; 2674 ParallelCompactData& sd = summary_data(); 2675 2676 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2677 MutableSpace* const spc = _space_info[id].space(); 2678 if (spc->bottom() != spc->top()) { 2679 const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom()); 2680 HeapWord* const top_aligned_up = sd.region_align_up(spc->top()); 2681 const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up); 2682 2683 size_t histo[5] = { 0, 0, 0, 0, 0 }; 2684 const size_t histo_len = sizeof(histo) / sizeof(size_t); 2685 const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t)); 2686 2687 for (const rd_t* cur = beg; cur < end; ++cur) { 2688 ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)]; 2689 } 2690 out->print("%u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt); 2691 for (size_t i = 0; i < histo_len; ++i) { 2692 out->print(" " SIZE_FORMAT_W(5) " %5.1f%%", 2693 histo[i], 100.0 * histo[i] / region_cnt); 2694 } 2695 out->cr(); 2696 } 2697 } 2698 } 2699 #endif // #ifdef ASSERT 2700 2701 void PSParallelCompact::compact() { 2702 // trace("5"); 2703 GCTraceTime tm("compaction phase", print_phases(), true, &_gc_timer); 2704 2705 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); 2706 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); 2707 PSOldGen* old_gen = heap->old_gen(); 2708 old_gen->start_array()->reset(); 2709 uint parallel_gc_threads = heap->gc_task_manager()->workers(); 2710 uint active_gc_threads = heap->gc_task_manager()->active_workers(); 2711 TaskQueueSetSuper* qset = ParCompactionManager::region_array(); 2712 ParallelTaskTerminator terminator(active_gc_threads, qset); 2713 2714 GCTaskQueue* q = GCTaskQueue::create(); 2715 enqueue_region_draining_tasks(q, active_gc_threads); 2716 enqueue_dense_prefix_tasks(q, active_gc_threads); 2717 enqueue_region_stealing_tasks(q, &terminator, active_gc_threads); 2718 2719 { 2720 GCTraceTime tm_pc("par compact", print_phases(), true, &_gc_timer); 2721 2722 gc_task_manager()->execute_and_wait(q); 2723 2724 #ifdef ASSERT 2725 // Verify that all regions have been processed before the deferred updates. 2726 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2727 verify_complete(SpaceId(id)); 2728 } 2729 #endif 2730 } 2731 2732 { 2733 // Update the deferred objects, if any. Any compaction manager can be used. 2734 GCTraceTime tm_du("deferred updates", print_phases(), true, &_gc_timer); 2735 ParCompactionManager* cm = ParCompactionManager::manager_array(0); 2736 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2737 update_deferred_objects(cm, SpaceId(id)); 2738 } 2739 } 2740 2741 DEBUG_ONLY(write_block_fill_histogram(gclog_or_tty)); 2742 } 2743 2744 #ifdef ASSERT 2745 void PSParallelCompact::verify_complete(SpaceId space_id) { 2746 // All Regions between space bottom() to new_top() should be marked as filled 2747 // and all Regions between new_top() and top() should be available (i.e., 2748 // should have been emptied). 2749 ParallelCompactData& sd = summary_data(); 2750 SpaceInfo si = _space_info[space_id]; 2751 HeapWord* new_top_addr = sd.region_align_up(si.new_top()); 2752 HeapWord* old_top_addr = sd.region_align_up(si.space()->top()); 2753 const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom()); 2754 const size_t new_top_region = sd.addr_to_region_idx(new_top_addr); 2755 const size_t old_top_region = sd.addr_to_region_idx(old_top_addr); 2756 2757 bool issued_a_warning = false; 2758 2759 size_t cur_region; 2760 for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) { 2761 const RegionData* const c = sd.region(cur_region); 2762 if (!c->completed()) { 2763 warning("region " SIZE_FORMAT " not filled: " 2764 "destination_count=" SIZE_FORMAT, 2765 cur_region, c->destination_count()); 2766 issued_a_warning = true; 2767 } 2768 } 2769 2770 for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) { 2771 const RegionData* const c = sd.region(cur_region); 2772 if (!c->available()) { 2773 warning("region " SIZE_FORMAT " not empty: " 2774 "destination_count=" SIZE_FORMAT, 2775 cur_region, c->destination_count()); 2776 issued_a_warning = true; 2777 } 2778 } 2779 2780 if (issued_a_warning) { 2781 print_region_ranges(); 2782 } 2783 } 2784 #endif // #ifdef ASSERT 2785 2786 // Update interior oops in the ranges of regions [beg_region, end_region). 2787 void 2788 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm, 2789 SpaceId space_id, 2790 size_t beg_region, 2791 size_t end_region) { 2792 ParallelCompactData& sd = summary_data(); 2793 ParMarkBitMap* const mbm = mark_bitmap(); 2794 2795 HeapWord* beg_addr = sd.region_to_addr(beg_region); 2796 HeapWord* const end_addr = sd.region_to_addr(end_region); 2797 assert(beg_region <= end_region, "bad region range"); 2798 assert(end_addr <= dense_prefix(space_id), "not in the dense prefix"); 2799 2800 #ifdef ASSERT 2801 // Claim the regions to avoid triggering an assert when they are marked as 2802 // filled. 2803 for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) { 2804 assert(sd.region(claim_region)->claim_unsafe(), "claim() failed"); 2805 } 2806 #endif // #ifdef ASSERT 2807 2808 if (beg_addr != space(space_id)->bottom()) { 2809 // Find the first live object or block of dead space that *starts* in this 2810 // range of regions. If a partial object crosses onto the region, skip it; 2811 // it will be marked for 'deferred update' when the object head is 2812 // processed. If dead space crosses onto the region, it is also skipped; it 2813 // will be filled when the prior region is processed. If neither of those 2814 // apply, the first word in the region is the start of a live object or dead 2815 // space. 2816 assert(beg_addr > space(space_id)->bottom(), "sanity"); 2817 const RegionData* const cp = sd.region(beg_region); 2818 if (cp->partial_obj_size() != 0) { 2819 beg_addr = sd.partial_obj_end(beg_region); 2820 } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) { 2821 beg_addr = mbm->find_obj_beg(beg_addr, end_addr); 2822 } 2823 } 2824 2825 if (beg_addr < end_addr) { 2826 // A live object or block of dead space starts in this range of Regions. 2827 HeapWord* const dense_prefix_end = dense_prefix(space_id); 2828 2829 // Create closures and iterate. 2830 UpdateOnlyClosure update_closure(mbm, cm, space_id); 2831 FillClosure fill_closure(cm, space_id); 2832 ParMarkBitMap::IterationStatus status; 2833 status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr, 2834 dense_prefix_end); 2835 if (status == ParMarkBitMap::incomplete) { 2836 update_closure.do_addr(update_closure.source()); 2837 } 2838 } 2839 2840 // Mark the regions as filled. 2841 RegionData* const beg_cp = sd.region(beg_region); 2842 RegionData* const end_cp = sd.region(end_region); 2843 for (RegionData* cp = beg_cp; cp < end_cp; ++cp) { 2844 cp->set_completed(); 2845 } 2846 } 2847 2848 // Return the SpaceId for the space containing addr. If addr is not in the 2849 // heap, last_space_id is returned. In debug mode it expects the address to be 2850 // in the heap and asserts such. 2851 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) { 2852 assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap"); 2853 2854 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2855 if (_space_info[id].space()->contains(addr)) { 2856 return SpaceId(id); 2857 } 2858 } 2859 2860 assert(false, "no space contains the addr"); 2861 return last_space_id; 2862 } 2863 2864 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm, 2865 SpaceId id) { 2866 assert(id < last_space_id, "bad space id"); 2867 2868 ParallelCompactData& sd = summary_data(); 2869 const SpaceInfo* const space_info = _space_info + id; 2870 ObjectStartArray* const start_array = space_info->start_array(); 2871 2872 const MutableSpace* const space = space_info->space(); 2873 assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set"); 2874 HeapWord* const beg_addr = space_info->dense_prefix(); 2875 HeapWord* const end_addr = sd.region_align_up(space_info->new_top()); 2876 2877 const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr); 2878 const RegionData* const end_region = sd.addr_to_region_ptr(end_addr); 2879 const RegionData* cur_region; 2880 for (cur_region = beg_region; cur_region < end_region; ++cur_region) { 2881 HeapWord* const addr = cur_region->deferred_obj_addr(); 2882 if (addr != NULL) { 2883 if (start_array != NULL) { 2884 start_array->allocate_block(addr); 2885 } 2886 oop(addr)->update_contents(cm); 2887 assert(oop(addr)->is_oop_or_null(), "should be an oop now"); 2888 } 2889 } 2890 } 2891 2892 // Skip over count live words starting from beg, and return the address of the 2893 // next live word. Unless marked, the word corresponding to beg is assumed to 2894 // be dead. Callers must either ensure beg does not correspond to the middle of 2895 // an object, or account for those live words in some other way. Callers must 2896 // also ensure that there are enough live words in the range [beg, end) to skip. 2897 HeapWord* 2898 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count) 2899 { 2900 assert(count > 0, "sanity"); 2901 2902 ParMarkBitMap* m = mark_bitmap(); 2903 idx_t bits_to_skip = m->words_to_bits(count); 2904 idx_t cur_beg = m->addr_to_bit(beg); 2905 const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end)); 2906 2907 do { 2908 cur_beg = m->find_obj_beg(cur_beg, search_end); 2909 idx_t cur_end = m->find_obj_end(cur_beg, search_end); 2910 const size_t obj_bits = cur_end - cur_beg + 1; 2911 if (obj_bits > bits_to_skip) { 2912 return m->bit_to_addr(cur_beg + bits_to_skip); 2913 } 2914 bits_to_skip -= obj_bits; 2915 cur_beg = cur_end + 1; 2916 } while (bits_to_skip > 0); 2917 2918 // Skipping the desired number of words landed just past the end of an object. 2919 // Find the start of the next object. 2920 cur_beg = m->find_obj_beg(cur_beg, search_end); 2921 assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip"); 2922 return m->bit_to_addr(cur_beg); 2923 } 2924 2925 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr, 2926 SpaceId src_space_id, 2927 size_t src_region_idx) 2928 { 2929 assert(summary_data().is_region_aligned(dest_addr), "not aligned"); 2930 2931 const SplitInfo& split_info = _space_info[src_space_id].split_info(); 2932 if (split_info.dest_region_addr() == dest_addr) { 2933 // The partial object ending at the split point contains the first word to 2934 // be copied to dest_addr. 2935 return split_info.first_src_addr(); 2936 } 2937 2938 const ParallelCompactData& sd = summary_data(); 2939 ParMarkBitMap* const bitmap = mark_bitmap(); 2940 const size_t RegionSize = ParallelCompactData::RegionSize; 2941 2942 assert(sd.is_region_aligned(dest_addr), "not aligned"); 2943 const RegionData* const src_region_ptr = sd.region(src_region_idx); 2944 const size_t partial_obj_size = src_region_ptr->partial_obj_size(); 2945 HeapWord* const src_region_destination = src_region_ptr->destination(); 2946 2947 assert(dest_addr >= src_region_destination, "wrong src region"); 2948 assert(src_region_ptr->data_size() > 0, "src region cannot be empty"); 2949 2950 HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx); 2951 HeapWord* const src_region_end = src_region_beg + RegionSize; 2952 2953 HeapWord* addr = src_region_beg; 2954 if (dest_addr == src_region_destination) { 2955 // Return the first live word in the source region. 2956 if (partial_obj_size == 0) { 2957 addr = bitmap->find_obj_beg(addr, src_region_end); 2958 assert(addr < src_region_end, "no objects start in src region"); 2959 } 2960 return addr; 2961 } 2962 2963 // Must skip some live data. 2964 size_t words_to_skip = dest_addr - src_region_destination; 2965 assert(src_region_ptr->data_size() > words_to_skip, "wrong src region"); 2966 2967 if (partial_obj_size >= words_to_skip) { 2968 // All the live words to skip are part of the partial object. 2969 addr += words_to_skip; 2970 if (partial_obj_size == words_to_skip) { 2971 // Find the first live word past the partial object. 2972 addr = bitmap->find_obj_beg(addr, src_region_end); 2973 assert(addr < src_region_end, "wrong src region"); 2974 } 2975 return addr; 2976 } 2977 2978 // Skip over the partial object (if any). 2979 if (partial_obj_size != 0) { 2980 words_to_skip -= partial_obj_size; 2981 addr += partial_obj_size; 2982 } 2983 2984 // Skip over live words due to objects that start in the region. 2985 addr = skip_live_words(addr, src_region_end, words_to_skip); 2986 assert(addr < src_region_end, "wrong src region"); 2987 return addr; 2988 } 2989 2990 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm, 2991 SpaceId src_space_id, 2992 size_t beg_region, 2993 HeapWord* end_addr) 2994 { 2995 ParallelCompactData& sd = summary_data(); 2996 2997 #ifdef ASSERT 2998 MutableSpace* const src_space = _space_info[src_space_id].space(); 2999 HeapWord* const beg_addr = sd.region_to_addr(beg_region); 3000 assert(src_space->contains(beg_addr) || beg_addr == src_space->end(), 3001 "src_space_id does not match beg_addr"); 3002 assert(src_space->contains(end_addr) || end_addr == src_space->end(), 3003 "src_space_id does not match end_addr"); 3004 #endif // #ifdef ASSERT 3005 3006 RegionData* const beg = sd.region(beg_region); 3007 RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr)); 3008 3009 // Regions up to new_top() are enqueued if they become available. 3010 HeapWord* const new_top = _space_info[src_space_id].new_top(); 3011 RegionData* const enqueue_end = 3012 sd.addr_to_region_ptr(sd.region_align_up(new_top)); 3013 3014 for (RegionData* cur = beg; cur < end; ++cur) { 3015 assert(cur->data_size() > 0, "region must have live data"); 3016 cur->decrement_destination_count(); 3017 if (cur < enqueue_end && cur->available() && cur->claim()) { 3018 cm->push_region(sd.region(cur)); 3019 } 3020 } 3021 } 3022 3023 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure, 3024 SpaceId& src_space_id, 3025 HeapWord*& src_space_top, 3026 HeapWord* end_addr) 3027 { 3028 typedef ParallelCompactData::RegionData RegionData; 3029 3030 ParallelCompactData& sd = PSParallelCompact::summary_data(); 3031 const size_t region_size = ParallelCompactData::RegionSize; 3032 3033 size_t src_region_idx = 0; 3034 3035 // Skip empty regions (if any) up to the top of the space. 3036 HeapWord* const src_aligned_up = sd.region_align_up(end_addr); 3037 RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up); 3038 HeapWord* const top_aligned_up = sd.region_align_up(src_space_top); 3039 const RegionData* const top_region_ptr = 3040 sd.addr_to_region_ptr(top_aligned_up); 3041 while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) { 3042 ++src_region_ptr; 3043 } 3044 3045 if (src_region_ptr < top_region_ptr) { 3046 // The next source region is in the current space. Update src_region_idx 3047 // and the source address to match src_region_ptr. 3048 src_region_idx = sd.region(src_region_ptr); 3049 HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx); 3050 if (src_region_addr > closure.source()) { 3051 closure.set_source(src_region_addr); 3052 } 3053 return src_region_idx; 3054 } 3055 3056 // Switch to a new source space and find the first non-empty region. 3057 unsigned int space_id = src_space_id + 1; 3058 assert(space_id < last_space_id, "not enough spaces"); 3059 3060 HeapWord* const destination = closure.destination(); 3061 3062 do { 3063 MutableSpace* space = _space_info[space_id].space(); 3064 HeapWord* const bottom = space->bottom(); 3065 const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom); 3066 3067 // Iterate over the spaces that do not compact into themselves. 3068 if (bottom_cp->destination() != bottom) { 3069 HeapWord* const top_aligned_up = sd.region_align_up(space->top()); 3070 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up); 3071 3072 for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) { 3073 if (src_cp->live_obj_size() > 0) { 3074 // Found it. 3075 assert(src_cp->destination() == destination, 3076 "first live obj in the space must match the destination"); 3077 assert(src_cp->partial_obj_size() == 0, 3078 "a space cannot begin with a partial obj"); 3079 3080 src_space_id = SpaceId(space_id); 3081 src_space_top = space->top(); 3082 const size_t src_region_idx = sd.region(src_cp); 3083 closure.set_source(sd.region_to_addr(src_region_idx)); 3084 return src_region_idx; 3085 } else { 3086 assert(src_cp->data_size() == 0, "sanity"); 3087 } 3088 } 3089 } 3090 } while (++space_id < last_space_id); 3091 3092 assert(false, "no source region was found"); 3093 return 0; 3094 } 3095 3096 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx) 3097 { 3098 typedef ParMarkBitMap::IterationStatus IterationStatus; 3099 const size_t RegionSize = ParallelCompactData::RegionSize; 3100 ParMarkBitMap* const bitmap = mark_bitmap(); 3101 ParallelCompactData& sd = summary_data(); 3102 RegionData* const region_ptr = sd.region(region_idx); 3103 3104 // Get the items needed to construct the closure. 3105 HeapWord* dest_addr = sd.region_to_addr(region_idx); 3106 SpaceId dest_space_id = space_id(dest_addr); 3107 ObjectStartArray* start_array = _space_info[dest_space_id].start_array(); 3108 HeapWord* new_top = _space_info[dest_space_id].new_top(); 3109 assert(dest_addr < new_top, "sanity"); 3110 const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize); 3111 3112 // Get the source region and related info. 3113 size_t src_region_idx = region_ptr->source_region(); 3114 SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx)); 3115 HeapWord* src_space_top = _space_info[src_space_id].space()->top(); 3116 3117 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words); 3118 closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx)); 3119 3120 // Adjust src_region_idx to prepare for decrementing destination counts (the 3121 // destination count is not decremented when a region is copied to itself). 3122 if (src_region_idx == region_idx) { 3123 src_region_idx += 1; 3124 } 3125 3126 if (bitmap->is_unmarked(closure.source())) { 3127 // The first source word is in the middle of an object; copy the remainder 3128 // of the object or as much as will fit. The fact that pointer updates were 3129 // deferred will be noted when the object header is processed. 3130 HeapWord* const old_src_addr = closure.source(); 3131 closure.copy_partial_obj(); 3132 if (closure.is_full()) { 3133 decrement_destination_counts(cm, src_space_id, src_region_idx, 3134 closure.source()); 3135 region_ptr->set_deferred_obj_addr(NULL); 3136 region_ptr->set_completed(); 3137 return; 3138 } 3139 3140 HeapWord* const end_addr = sd.region_align_down(closure.source()); 3141 if (sd.region_align_down(old_src_addr) != end_addr) { 3142 // The partial object was copied from more than one source region. 3143 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); 3144 3145 // Move to the next source region, possibly switching spaces as well. All 3146 // args except end_addr may be modified. 3147 src_region_idx = next_src_region(closure, src_space_id, src_space_top, 3148 end_addr); 3149 } 3150 } 3151 3152 do { 3153 HeapWord* const cur_addr = closure.source(); 3154 HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1), 3155 src_space_top); 3156 IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr); 3157 3158 if (status == ParMarkBitMap::incomplete) { 3159 // The last obj that starts in the source region does not end in the 3160 // region. 3161 assert(closure.source() < end_addr, "sanity"); 3162 HeapWord* const obj_beg = closure.source(); 3163 HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(), 3164 src_space_top); 3165 HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end); 3166 if (obj_end < range_end) { 3167 // The end was found; the entire object will fit. 3168 status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end)); 3169 assert(status != ParMarkBitMap::would_overflow, "sanity"); 3170 } else { 3171 // The end was not found; the object will not fit. 3172 assert(range_end < src_space_top, "obj cannot cross space boundary"); 3173 status = ParMarkBitMap::would_overflow; 3174 } 3175 } 3176 3177 if (status == ParMarkBitMap::would_overflow) { 3178 // The last object did not fit. Note that interior oop updates were 3179 // deferred, then copy enough of the object to fill the region. 3180 region_ptr->set_deferred_obj_addr(closure.destination()); 3181 status = closure.copy_until_full(); // copies from closure.source() 3182 3183 decrement_destination_counts(cm, src_space_id, src_region_idx, 3184 closure.source()); 3185 region_ptr->set_completed(); 3186 return; 3187 } 3188 3189 if (status == ParMarkBitMap::full) { 3190 decrement_destination_counts(cm, src_space_id, src_region_idx, 3191 closure.source()); 3192 region_ptr->set_deferred_obj_addr(NULL); 3193 region_ptr->set_completed(); 3194 return; 3195 } 3196 3197 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); 3198 3199 // Move to the next source region, possibly switching spaces as well. All 3200 // args except end_addr may be modified. 3201 src_region_idx = next_src_region(closure, src_space_id, src_space_top, 3202 end_addr); 3203 } while (true); 3204 } 3205 3206 void PSParallelCompact::fill_blocks(size_t region_idx) 3207 { 3208 // Fill in the block table elements for the specified region. Each block 3209 // table element holds the number of live words in the region that are to the 3210 // left of the first object that starts in the block. Thus only blocks in 3211 // which an object starts need to be filled. 3212 // 3213 // The algorithm scans the section of the bitmap that corresponds to the 3214 // region, keeping a running total of the live words. When an object start is 3215 // found, if it's the first to start in the block that contains it, the 3216 // current total is written to the block table element. 3217 const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize; 3218 const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize; 3219 const size_t RegionSize = ParallelCompactData::RegionSize; 3220 3221 ParallelCompactData& sd = summary_data(); 3222 const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size(); 3223 if (partial_obj_size >= RegionSize) { 3224 return; // No objects start in this region. 3225 } 3226 3227 // Ensure the first loop iteration decides that the block has changed. 3228 size_t cur_block = sd.block_count(); 3229 3230 const ParMarkBitMap* const bitmap = mark_bitmap(); 3231 3232 const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment; 3233 assert((size_t)1 << Log2BitsPerBlock == 3234 bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity"); 3235 3236 size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize); 3237 const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize); 3238 size_t live_bits = bitmap->words_to_bits(partial_obj_size); 3239 beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end); 3240 while (beg_bit < range_end) { 3241 const size_t new_block = beg_bit >> Log2BitsPerBlock; 3242 if (new_block != cur_block) { 3243 cur_block = new_block; 3244 sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits)); 3245 } 3246 3247 const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end); 3248 if (end_bit < range_end - 1) { 3249 live_bits += end_bit - beg_bit + 1; 3250 beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end); 3251 } else { 3252 return; 3253 } 3254 } 3255 } 3256 3257 void 3258 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) { 3259 const MutableSpace* sp = space(space_id); 3260 if (sp->is_empty()) { 3261 return; 3262 } 3263 3264 ParallelCompactData& sd = PSParallelCompact::summary_data(); 3265 ParMarkBitMap* const bitmap = mark_bitmap(); 3266 HeapWord* const dp_addr = dense_prefix(space_id); 3267 HeapWord* beg_addr = sp->bottom(); 3268 HeapWord* end_addr = sp->top(); 3269 3270 assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix"); 3271 3272 const size_t beg_region = sd.addr_to_region_idx(beg_addr); 3273 const size_t dp_region = sd.addr_to_region_idx(dp_addr); 3274 if (beg_region < dp_region) { 3275 update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region); 3276 } 3277 3278 // The destination of the first live object that starts in the region is one 3279 // past the end of the partial object entering the region (if any). 3280 HeapWord* const dest_addr = sd.partial_obj_end(dp_region); 3281 HeapWord* const new_top = _space_info[space_id].new_top(); 3282 assert(new_top >= dest_addr, "bad new_top value"); 3283 const size_t words = pointer_delta(new_top, dest_addr); 3284 3285 if (words > 0) { 3286 ObjectStartArray* start_array = _space_info[space_id].start_array(); 3287 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words); 3288 3289 ParMarkBitMap::IterationStatus status; 3290 status = bitmap->iterate(&closure, dest_addr, end_addr); 3291 assert(status == ParMarkBitMap::full, "iteration not complete"); 3292 assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr, 3293 "live objects skipped because closure is full"); 3294 } 3295 } 3296 3297 jlong PSParallelCompact::millis_since_last_gc() { 3298 // We need a monotonically non-decreasing time in ms but 3299 // os::javaTimeMillis() does not guarantee monotonicity. 3300 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; 3301 jlong ret_val = now - _time_of_last_gc; 3302 // XXX See note in genCollectedHeap::millis_since_last_gc(). 3303 if (ret_val < 0) { 3304 NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);) 3305 return 0; 3306 } 3307 return ret_val; 3308 } 3309 3310 void PSParallelCompact::reset_millis_since_last_gc() { 3311 // We need a monotonically non-decreasing time in ms but 3312 // os::javaTimeMillis() does not guarantee monotonicity. 3313 _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; 3314 } 3315 3316 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full() 3317 { 3318 if (source() != destination()) { 3319 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 3320 Copy::aligned_conjoint_words(source(), destination(), words_remaining()); 3321 } 3322 update_state(words_remaining()); 3323 assert(is_full(), "sanity"); 3324 return ParMarkBitMap::full; 3325 } 3326 3327 void MoveAndUpdateClosure::copy_partial_obj() 3328 { 3329 size_t words = words_remaining(); 3330 3331 HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end()); 3332 HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end); 3333 if (end_addr < range_end) { 3334 words = bitmap()->obj_size(source(), end_addr); 3335 } 3336 3337 // This test is necessary; if omitted, the pointer updates to a partial object 3338 // that crosses the dense prefix boundary could be overwritten. 3339 if (source() != destination()) { 3340 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 3341 Copy::aligned_conjoint_words(source(), destination(), words); 3342 } 3343 update_state(words); 3344 } 3345 3346 ParMarkBitMapClosure::IterationStatus 3347 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) { 3348 assert(destination() != NULL, "sanity"); 3349 assert(bitmap()->obj_size(addr) == words, "bad size"); 3350 3351 _source = addr; 3352 assert(PSParallelCompact::summary_data().calc_new_pointer(source()) == 3353 destination(), "wrong destination"); 3354 3355 if (words > words_remaining()) { 3356 return ParMarkBitMap::would_overflow; 3357 } 3358 3359 // The start_array must be updated even if the object is not moving. 3360 if (_start_array != NULL) { 3361 _start_array->allocate_block(destination()); 3362 } 3363 3364 if (destination() != source()) { 3365 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 3366 Copy::aligned_conjoint_words(source(), destination(), words); 3367 } 3368 3369 oop moved_oop = (oop) destination(); 3370 moved_oop->update_contents(compaction_manager()); 3371 assert(moved_oop->is_oop_or_null(), "Object should be whole at this point"); 3372 3373 update_state(words); 3374 assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity"); 3375 return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete; 3376 } 3377 3378 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm, 3379 ParCompactionManager* cm, 3380 PSParallelCompact::SpaceId space_id) : 3381 ParMarkBitMapClosure(mbm, cm), 3382 _space_id(space_id), 3383 _start_array(PSParallelCompact::start_array(space_id)) 3384 { 3385 } 3386 3387 // Updates the references in the object to their new values. 3388 ParMarkBitMapClosure::IterationStatus 3389 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) { 3390 do_addr(addr); 3391 return ParMarkBitMap::incomplete; 3392 }