1 /*
2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
28 #include "gc_implementation/shared/vmGCOperations.hpp"
29 #include "memory/cardTableRS.hpp"
30 #include "memory/collectorPolicy.hpp"
31 #include "memory/gcLocker.inline.hpp"
32 #include "memory/genCollectedHeap.hpp"
33 #include "memory/generationSpec.hpp"
34 #include "memory/space.hpp"
35 #include "memory/universe.hpp"
36 #include "runtime/arguments.hpp"
37 #include "runtime/globals_extension.hpp"
38 #include "runtime/handles.inline.hpp"
39 #include "runtime/java.hpp"
40 #include "runtime/thread.inline.hpp"
41 #include "runtime/vmThread.hpp"
42 #include "utilities/macros.hpp"
43 #if INCLUDE_ALL_GCS
44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
46 #endif // INCLUDE_ALL_GCS
47
48 // CollectorPolicy methods
49
50 CollectorPolicy::CollectorPolicy() :
51 _space_alignment(0),
52 _heap_alignment(0),
53 _initial_heap_byte_size(InitialHeapSize),
54 _max_heap_byte_size(MaxHeapSize),
55 _min_heap_byte_size(Arguments::min_heap_size()),
56 _max_heap_size_cmdline(false),
57 _size_policy(NULL),
58 _should_clear_all_soft_refs(false),
59 _all_soft_refs_clear(false)
60 {}
61
62 #ifdef ASSERT
63 void CollectorPolicy::assert_flags() {
64 assert(InitialHeapSize <= MaxHeapSize, "Ergonomics decided on incompatible initial and maximum heap sizes");
65 assert(InitialHeapSize % _heap_alignment == 0, "InitialHeapSize alignment");
66 assert(MaxHeapSize % _heap_alignment == 0, "MaxHeapSize alignment");
67 }
68
69 void CollectorPolicy::assert_size_info() {
70 assert(InitialHeapSize == _initial_heap_byte_size, "Discrepancy between InitialHeapSize flag and local storage");
71 assert(MaxHeapSize == _max_heap_byte_size, "Discrepancy between MaxHeapSize flag and local storage");
72 assert(_max_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible minimum and maximum heap sizes");
73 assert(_initial_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible initial and minimum heap sizes");
74 assert(_max_heap_byte_size >= _initial_heap_byte_size, "Ergonomics decided on incompatible initial and maximum heap sizes");
75 assert(_min_heap_byte_size % _heap_alignment == 0, "min_heap_byte_size alignment");
76 assert(_initial_heap_byte_size % _heap_alignment == 0, "initial_heap_byte_size alignment");
77 assert(_max_heap_byte_size % _heap_alignment == 0, "max_heap_byte_size alignment");
78 }
79 #endif // ASSERT
80
81 void CollectorPolicy::initialize_flags() {
82 assert(_space_alignment != 0, "Space alignment not set up properly");
83 assert(_heap_alignment != 0, "Heap alignment not set up properly");
84 assert(_heap_alignment >= _space_alignment,
85 err_msg("heap_alignment: " SIZE_FORMAT " less than space_alignment: " SIZE_FORMAT,
86 _heap_alignment, _space_alignment));
87 assert(_heap_alignment % _space_alignment == 0,
88 err_msg("heap_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
89 _heap_alignment, _space_alignment));
90
91 if (FLAG_IS_CMDLINE(MaxHeapSize)) {
92 if (FLAG_IS_CMDLINE(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
93 vm_exit_during_initialization("Initial heap size set to a larger value than the maximum heap size");
94 }
95 if (_min_heap_byte_size != 0 && MaxHeapSize < _min_heap_byte_size) {
96 vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
97 }
98 _max_heap_size_cmdline = true;
99 }
100
101 // Check heap parameter properties
102 if (InitialHeapSize < M) {
103 vm_exit_during_initialization("Too small initial heap");
104 }
105 if (_min_heap_byte_size < M) {
106 vm_exit_during_initialization("Too small minimum heap");
107 }
108
109 // User inputs from -Xmx and -Xms must be aligned
110 _min_heap_byte_size = align_size_up(_min_heap_byte_size, _heap_alignment);
111 uintx aligned_initial_heap_size = align_size_up(InitialHeapSize, _heap_alignment);
112 uintx aligned_max_heap_size = align_size_up(MaxHeapSize, _heap_alignment);
113
114 // Write back to flags if the values changed
115 if (aligned_initial_heap_size != InitialHeapSize) {
116 FLAG_SET_ERGO(uintx, InitialHeapSize, aligned_initial_heap_size);
117 }
118 if (aligned_max_heap_size != MaxHeapSize) {
119 FLAG_SET_ERGO(uintx, MaxHeapSize, aligned_max_heap_size);
120 }
121
122 if (FLAG_IS_CMDLINE(InitialHeapSize) && _min_heap_byte_size != 0 &&
123 InitialHeapSize < _min_heap_byte_size) {
124 vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
125 }
126 if (!FLAG_IS_DEFAULT(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
127 FLAG_SET_ERGO(uintx, MaxHeapSize, InitialHeapSize);
128 } else if (!FLAG_IS_DEFAULT(MaxHeapSize) && InitialHeapSize > MaxHeapSize) {
129 FLAG_SET_ERGO(uintx, InitialHeapSize, MaxHeapSize);
130 if (InitialHeapSize < _min_heap_byte_size) {
131 _min_heap_byte_size = InitialHeapSize;
132 }
133 }
134
135 _initial_heap_byte_size = InitialHeapSize;
136 _max_heap_byte_size = MaxHeapSize;
137
138 FLAG_SET_ERGO(uintx, MinHeapDeltaBytes, align_size_up(MinHeapDeltaBytes, _space_alignment));
139
140 DEBUG_ONLY(CollectorPolicy::assert_flags();)
141 }
142
143 void CollectorPolicy::initialize_size_info() {
144 if (PrintGCDetails && Verbose) {
145 gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT " Initial heap "
146 SIZE_FORMAT " Maximum heap " SIZE_FORMAT,
147 _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
148 }
149
150 DEBUG_ONLY(CollectorPolicy::assert_size_info();)
151 }
152
153 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
154 bool result = _should_clear_all_soft_refs;
155 set_should_clear_all_soft_refs(false);
156 return result;
157 }
158
159 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
160 int max_covered_regions) {
161 return new CardTableRS(whole_heap, max_covered_regions);
162 }
163
164 void CollectorPolicy::cleared_all_soft_refs() {
165 // If near gc overhear limit, continue to clear SoftRefs. SoftRefs may
166 // have been cleared in the last collection but if the gc overhear
167 // limit continues to be near, SoftRefs should still be cleared.
168 if (size_policy() != NULL) {
169 _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
170 }
171 _all_soft_refs_clear = true;
172 }
173
174 size_t CollectorPolicy::compute_heap_alignment() {
175 // The card marking array and the offset arrays for old generations are
176 // committed in os pages as well. Make sure they are entirely full (to
177 // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
178 // byte entry and the os page size is 4096, the maximum heap size should
179 // be 512*4096 = 2MB aligned.
180
181 size_t alignment = GenRemSet::max_alignment_constraint();
182
183 // Parallel GC does its own alignment of the generations to avoid requiring a
184 // large page (256M on some platforms) for the permanent generation. The
185 // other collectors should also be updated to do their own alignment and then
186 // this use of lcm() should be removed.
187 if (UseLargePages && !UseParallelGC) {
188 // In presence of large pages we have to make sure that our
189 // alignment is large page aware
190 alignment = lcm(os::large_page_size(), alignment);
191 }
192
193 return alignment;
194 }
195
196 // GenCollectorPolicy methods
197
198 GenCollectorPolicy::GenCollectorPolicy() :
199 _min_gen0_size(0),
200 _initial_gen0_size(0),
201 _max_gen0_size(0),
202 _gen_alignment(0),
203 _min_gen1_size(0),
204 _initial_gen1_size(0),
205 _max_gen1_size(0),
206 _generations(NULL)
207 {}
208
209 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
210 return align_size_down_bounded(base_size / (NewRatio + 1), _gen_alignment);
211 }
212
213 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
214 size_t maximum_size) {
215 size_t max_minus = maximum_size - _gen_alignment;
216 return desired_size < max_minus ? desired_size : max_minus;
217 }
218
219
220 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
221 size_t init_promo_size,
222 size_t init_survivor_size) {
223 const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
224 _size_policy = new AdaptiveSizePolicy(init_eden_size,
225 init_promo_size,
226 init_survivor_size,
227 max_gc_pause_sec,
228 GCTimeRatio);
229 }
230
231 size_t GenCollectorPolicy::young_gen_size_lower_bound() {
232 // The young generation must be aligned and have room for eden + two survivors
233 return align_size_up(3 * _space_alignment, _gen_alignment);
234 }
235
236 #ifdef ASSERT
237 void GenCollectorPolicy::assert_flags() {
238 CollectorPolicy::assert_flags();
239 assert(NewSize >= _min_gen0_size, "Ergonomics decided on a too small young gen size");
240 assert(NewSize <= MaxNewSize, "Ergonomics decided on incompatible initial and maximum young gen sizes");
241 assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young gen and heap sizes");
242 assert(NewSize % _gen_alignment == 0, "NewSize alignment");
243 assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize % _gen_alignment == 0, "MaxNewSize alignment");
244 assert(OldSize + NewSize <= MaxHeapSize, "Ergonomics decided on incompatible generation and heap sizes");
245 assert(OldSize % _gen_alignment == 0, "OldSize alignment");
246 }
247
248 void GenCollectorPolicy::assert_size_info() {
249 CollectorPolicy::assert_size_info();
250 // GenCollectorPolicy::initialize_size_info may update the MaxNewSize
251 assert(MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young and heap sizes");
252 assert(NewSize == _initial_gen0_size, "Discrepancy between NewSize flag and local storage");
253 assert(MaxNewSize == _max_gen0_size, "Discrepancy between MaxNewSize flag and local storage");
254 assert(OldSize == _initial_gen1_size, "Discrepancy between OldSize flag and local storage");
255 assert(_min_gen0_size <= _initial_gen0_size, "Ergonomics decided on incompatible minimum and initial young gen sizes");
256 assert(_initial_gen0_size <= _max_gen0_size, "Ergonomics decided on incompatible initial and maximum young gen sizes");
257 assert(_min_gen0_size % _gen_alignment == 0, "_min_gen0_size alignment");
258 assert(_initial_gen0_size % _gen_alignment == 0, "_initial_gen0_size alignment");
259 assert(_max_gen0_size % _gen_alignment == 0, "_max_gen0_size alignment");
260 assert(_min_gen0_size <= bound_minus_alignment(_min_gen0_size, _min_heap_byte_size),
261 "Ergonomics made minimum young generation larger than minimum heap");
262 assert(_initial_gen0_size <= bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size),
263 "Ergonomics made initial young generation larger than initial heap");
264 assert(_max_gen0_size <= bound_minus_alignment(_max_gen0_size, _max_heap_byte_size),
265 "Ergonomics made maximum young generation lager than maximum heap");
266 assert(_min_gen1_size <= _initial_gen1_size, "Ergonomics decided on incompatible minimum and initial old gen sizes");
267 assert(_initial_gen1_size <= _max_gen1_size, "Ergonomics decided on incompatible initial and maximum old gen sizes");
268 assert(_max_gen1_size % _gen_alignment == 0, "_max_gen1_size alignment");
269 assert(_initial_gen1_size % _gen_alignment == 0, "_initial_gen1_size alignment");
270 assert(_max_heap_byte_size <= (_max_gen0_size + _max_gen1_size), "Total maximum heap sizes must be sum of generation maximum sizes");
271 assert(_min_gen0_size + _min_gen1_size <= _min_heap_byte_size, "Minimum generation sizes exceed minimum heap size");
272 assert(_initial_gen0_size + _initial_gen1_size == _initial_heap_byte_size, "Initial generation sizes should match initial heap size");
273 assert(_max_gen0_size + _max_gen1_size == _max_heap_byte_size, "Maximum generation sizes should match maximum heap size");
274 }
275 #endif // ASSERT
276
277 void GenCollectorPolicy::initialize_flags() {
278 CollectorPolicy::initialize_flags();
279
280 assert(_gen_alignment != 0, "Generation alignment not set up properly");
281 assert(_heap_alignment >= _gen_alignment,
282 err_msg("heap_alignment: " SIZE_FORMAT " less than gen_alignment: " SIZE_FORMAT,
283 _heap_alignment, _gen_alignment));
284 assert(_gen_alignment % _space_alignment == 0,
285 err_msg("gen_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
286 _gen_alignment, _space_alignment));
287 assert(_heap_alignment % _gen_alignment == 0,
288 err_msg("heap_alignment: " SIZE_FORMAT " not aligned by gen_alignment: " SIZE_FORMAT,
289 _heap_alignment, _gen_alignment));
290
291 // All generational heaps have a youngest gen; handle those flags here
292
293 // Make sure the heap is large enough for two generations
294 uintx smallest_new_size = young_gen_size_lower_bound();
295 uintx smallest_heap_size = align_size_up(smallest_new_size + align_size_up(_space_alignment, _gen_alignment),
296 _heap_alignment);
297 if (MaxHeapSize < smallest_heap_size) {
298 FLAG_SET_ERGO(uintx, MaxHeapSize, smallest_heap_size);
299 _max_heap_byte_size = MaxHeapSize;
300 }
301 // If needed, synchronize _min_heap_byte size and _initial_heap_byte_size
302 if (_min_heap_byte_size < smallest_heap_size) {
303 _min_heap_byte_size = smallest_heap_size;
304 if (InitialHeapSize < _min_heap_byte_size) {
305 FLAG_SET_ERGO(uintx, InitialHeapSize, smallest_heap_size);
306 _initial_heap_byte_size = smallest_heap_size;
307 }
308 }
309
310 // Make sure NewSize allows an old generation to fit even if set on the command line
311 if (FLAG_IS_CMDLINE(NewSize) && NewSize >= _initial_heap_byte_size) {
312 warning("NewSize was set larger than initial heap size, will use initial heap size.");
313 NewSize = bound_minus_alignment(NewSize, _initial_heap_byte_size);
314 }
315
316 // Now take the actual NewSize into account. We will silently increase NewSize
317 // if the user specified a smaller or unaligned value.
318 uintx bounded_new_size = bound_minus_alignment(NewSize, MaxHeapSize);
319 bounded_new_size = MAX2(smallest_new_size, (uintx)align_size_down(bounded_new_size, _gen_alignment));
320 if (bounded_new_size != NewSize) {
321 // Do not use FLAG_SET_ERGO to update NewSize here, since this will override
322 // if NewSize was set on the command line or not. This information is needed
323 // later when setting the initial and minimum young generation size.
324 NewSize = bounded_new_size;
325 }
326 _min_gen0_size = smallest_new_size;
327 _initial_gen0_size = NewSize;
328
329 if (!FLAG_IS_DEFAULT(MaxNewSize)) {
330 if (MaxNewSize >= MaxHeapSize) {
331 // Make sure there is room for an old generation
332 uintx smaller_max_new_size = MaxHeapSize - _gen_alignment;
333 if (FLAG_IS_CMDLINE(MaxNewSize)) {
334 warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or greater than the entire "
335 "heap (" SIZE_FORMAT "k). A new max generation size of " SIZE_FORMAT "k will be used.",
336 MaxNewSize/K, MaxHeapSize/K, smaller_max_new_size/K);
337 }
338 FLAG_SET_ERGO(uintx, MaxNewSize, smaller_max_new_size);
339 if (NewSize > MaxNewSize) {
340 FLAG_SET_ERGO(uintx, NewSize, MaxNewSize);
341 _initial_gen0_size = NewSize;
342 }
343 } else if (MaxNewSize < _initial_gen0_size) {
344 FLAG_SET_ERGO(uintx, MaxNewSize, _initial_gen0_size);
345 } else if (!is_size_aligned(MaxNewSize, _gen_alignment)) {
346 FLAG_SET_ERGO(uintx, MaxNewSize, align_size_down(MaxNewSize, _gen_alignment));
347 }
348 _max_gen0_size = MaxNewSize;
349 }
350
351 if (NewSize > MaxNewSize) {
352 // At this point this should only happen if the user specifies a large NewSize and/or
353 // a small (but not too small) MaxNewSize.
354 if (FLAG_IS_CMDLINE(MaxNewSize)) {
355 warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
356 "A new max generation size of " SIZE_FORMAT "k will be used.",
357 NewSize/K, MaxNewSize/K, NewSize/K);
358 }
359 FLAG_SET_ERGO(uintx, MaxNewSize, NewSize);
360 _max_gen0_size = MaxNewSize;
361 }
362
363 if (SurvivorRatio < 1 || NewRatio < 1) {
364 vm_exit_during_initialization("Invalid young gen ratio specified");
365 }
366
367 if (!is_size_aligned(OldSize, _gen_alignment)) {
368 // Setting OldSize directly to preserve information about the possible
369 // setting of OldSize on the command line.
370 OldSize = align_size_down(OldSize, _gen_alignment);
371 }
372
373 if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(MaxHeapSize)) {
374 // NewRatio will be used later to set the young generation size so we use
375 // it to calculate how big the heap should be based on the requested OldSize
376 // and NewRatio.
377 assert(NewRatio > 0, "NewRatio should have been set up earlier");
378 size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
379
380 calculated_heapsize = align_size_up(calculated_heapsize, _heap_alignment);
381 FLAG_SET_ERGO(uintx, MaxHeapSize, calculated_heapsize);
382 _max_heap_byte_size = MaxHeapSize;
383 FLAG_SET_ERGO(uintx, InitialHeapSize, calculated_heapsize);
384 _initial_heap_byte_size = InitialHeapSize;
385 }
386
387 // Adjust NewSize and OldSize or MaxHeapSize to match each other
388 if (NewSize + OldSize > MaxHeapSize) {
389 if (_max_heap_size_cmdline) {
390 // Somebody has set a maximum heap size with the intention that we should not
391 // exceed it. Adjust New/OldSize as necessary.
392 uintx calculated_size = NewSize + OldSize;
393 double shrink_factor = (double) MaxHeapSize / calculated_size;
394 uintx smaller_new_size = align_size_down((uintx)(NewSize * shrink_factor), _gen_alignment);
395 FLAG_SET_ERGO(uintx, NewSize, MAX2(young_gen_size_lower_bound(), (size_t)smaller_new_size));
396 _initial_gen0_size = NewSize;
397
398 // OldSize is already aligned because above we aligned MaxHeapSize to
399 // _heap_alignment, and we just made sure that NewSize is aligned to
400 // _gen_alignment. In initialize_flags() we verified that _heap_alignment
401 // is a multiple of _gen_alignment.
402 FLAG_SET_ERGO(uintx, OldSize, MaxHeapSize - NewSize);
403 } else {
404 FLAG_SET_ERGO(uintx, MaxHeapSize, align_size_up(NewSize + OldSize, _heap_alignment));
405 _max_heap_byte_size = MaxHeapSize;
406 }
407 }
408
409 // Update NewSize, if possible, to avoid sizing gen0 to small when only
410 // OldSize is set on the command line.
411 if (FLAG_IS_CMDLINE(OldSize) && !FLAG_IS_CMDLINE(NewSize)) {
412 if (OldSize < _initial_heap_byte_size) {
413 size_t new_size = _initial_heap_byte_size - OldSize;
414 // Need to compare against the flag value for max since _max_gen0_size
415 // might not have been set yet.
416 if (new_size >= _min_gen0_size && new_size <= MaxNewSize) {
417 FLAG_SET_ERGO(uintx, NewSize, new_size);
418 _initial_gen0_size = NewSize;
419 }
420 }
421 }
422
423 always_do_update_barrier = UseConcMarkSweepGC;
424
425 DEBUG_ONLY(GenCollectorPolicy::assert_flags();)
426 }
427
428 // Values set on the command line win over any ergonomically
429 // set command line parameters.
430 // Ergonomic choice of parameters are done before this
431 // method is called. Values for command line parameters such as NewSize
432 // and MaxNewSize feed those ergonomic choices into this method.
433 // This method makes the final generation sizings consistent with
434 // themselves and with overall heap sizings.
435 // In the absence of explicitly set command line flags, policies
436 // such as the use of NewRatio are used to size the generation.
437
438 // Minimum sizes of the generations may be different than
439 // the initial sizes. An inconsistency is permitted here
440 // in the total size that can be specified explicitly by
441 // command line specification of OldSize and NewSize and
442 // also a command line specification of -Xms. Issue a warning
443 // but allow the values to pass.
444 void GenCollectorPolicy::initialize_size_info() {
445 CollectorPolicy::initialize_size_info();
446
447 // _space_alignment is used for alignment within a generation.
448 // There is additional alignment done down stream for some
449 // collectors that sometimes causes unwanted rounding up of
450 // generations sizes.
451
452 // Determine maximum size of gen0
453
454 size_t max_new_size = 0;
455 if (!FLAG_IS_DEFAULT(MaxNewSize)) {
456 max_new_size = MaxNewSize;
457 } else {
458 max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
459 // Bound the maximum size by NewSize below (since it historically
460 // would have been NewSize and because the NewRatio calculation could
461 // yield a size that is too small) and bound it by MaxNewSize above.
462 // Ergonomics plays here by previously calculating the desired
463 // NewSize and MaxNewSize.
464 max_new_size = MIN2(MAX2(max_new_size, (size_t)NewSize), (size_t)MaxNewSize);
465 }
466 assert(max_new_size > 0, "All paths should set max_new_size");
467
468 // Given the maximum gen0 size, determine the initial and
469 // minimum gen0 sizes.
470
471 if (_max_heap_byte_size == _initial_heap_byte_size) {
472 // The maxium and initial heap sizes are the same so the generation's
473 // initial size must be the same as it maximum size. Use NewSize as the
474 // size if set on command line.
475 size_t fixed_young_size = FLAG_IS_CMDLINE(NewSize) ? NewSize : max_new_size;
476
477 _initial_gen0_size = fixed_young_size;
478 _max_gen0_size = fixed_young_size;
479
480 // Also update the minimum size if min == initial == max.
481 if (_max_heap_byte_size == _min_heap_byte_size) {
482 _min_gen0_size = fixed_young_size;
483 }
484 } else {
485 size_t desired_new_size = 0;
486 if (FLAG_IS_CMDLINE(NewSize)) {
487 // If NewSize is set on the command line, we should use it as
488 // the initial size, but make sure it is within the heap bounds.
489 desired_new_size =
490 MIN2(max_new_size, bound_minus_alignment(NewSize, _initial_heap_byte_size));
491 _min_gen0_size = bound_minus_alignment(desired_new_size, _min_heap_byte_size);
492 } else {
493 // For the case where NewSize is not set on the command line, use
494 // NewRatio to size the initial generation size. Use the current
495 // NewSize as the floor, because if NewRatio is overly large, the resulting
496 // size can be too small.
497 desired_new_size =
498 MIN2(max_new_size, MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), (size_t)NewSize));
499 }
500 _initial_gen0_size = desired_new_size;
501 _max_gen0_size = max_new_size;
502 }
503
504 // Write back to flags if necessary.
505 if (NewSize != _initial_gen0_size) {
506 FLAG_SET_ERGO(uintx, NewSize, _initial_gen0_size);
507 }
508
509 if (MaxNewSize != _max_gen0_size) {
510 FLAG_SET_ERGO(uintx, MaxNewSize, _max_gen0_size);
511 }
512
513 if (PrintGCDetails && Verbose) {
514 gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT " Initial gen0 "
515 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
516 _min_gen0_size, _initial_gen0_size, _max_gen0_size);
517 }
518
519 // At this point the minimum, initial and maximum sizes
520 // of the overall heap and of gen0 have been determined.
521 // The maximum gen1 size can be determined from the maximum gen0
522 // and maximum heap size since no explicit flags exist
523 // for setting the gen1 maximum.
524 _max_gen1_size = MAX2(_max_heap_byte_size - _max_gen0_size, _gen_alignment);
525
526 // If no explicit command line flag has been set for the
527 // gen1 size, use what is left for gen1
528 if (!FLAG_IS_CMDLINE(OldSize)) {
529 // The user has not specified any value but the ergonomics
530 // may have chosen a value (which may or may not be consistent
531 // with the overall heap size). In either case make
532 // the minimum, maximum and initial sizes consistent
533 // with the gen0 sizes and the overall heap sizes.
534 _min_gen1_size = _gen_alignment;
535 _initial_gen1_size = MIN2(_max_gen1_size, MAX2(_initial_heap_byte_size - _initial_gen0_size, _min_gen1_size));
536 // _max_gen1_size has already been made consistent above
537 FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);
538 } else {
539 // OldSize has been explicitly set on the command line. Use it
540 // for the initial size but make sure the minimum allow a young
541 // generation to fit as well.
542 // If the user has explicitly set an OldSize that is inconsistent
543 // with other command line flags, issue a warning.
544 // The generation minimums and the overall heap minimum should
545 // be within one generation alignment.
546 if (OldSize > _max_gen1_size) {
547 warning("Inconsistency between maximum heap size and maximum "
548 "generation sizes: using maximum heap = " SIZE_FORMAT
549 " -XX:OldSize flag is being ignored",
550 _max_heap_byte_size);
551 FLAG_SET_ERGO(uintx, OldSize, _max_gen1_size);
552 }
553
554 _min_gen1_size = MIN2((size_t)OldSize, _min_heap_byte_size - _min_gen0_size);
555 _initial_gen1_size = OldSize;
556 }
557
558 // The initial generation sizes should match the initial heap size,
559 // if not issue a warning and resize the generations. This behavior
560 // differs from JDK8 where the generation sizes have higher priority
561 // than the initial heap size.
562 if ((_initial_gen1_size + _initial_gen0_size) != _initial_heap_byte_size) {
563 warning("Inconsistency between generation sizes and heap size, resizing "
564 "the generations to fit the heap.");
565
566 size_t desired_gen0_size = _initial_heap_byte_size - _initial_gen1_size;
567 if (_initial_heap_byte_size < _initial_gen1_size) {
568 // Old want all memory, use minimum for young and rest for old
569 _initial_gen0_size = _min_gen0_size;
570 _initial_gen1_size = _initial_heap_byte_size - _min_gen0_size;
571 } else if (desired_gen0_size > _max_gen0_size) {
572 // Need to increase both young and old generation
573 _initial_gen0_size = _max_gen0_size;
574 _initial_gen1_size = _initial_heap_byte_size - _max_gen0_size;
575 } else if (desired_gen0_size < _min_gen0_size) {
576 // Need to decrease both young and old generation
577 _initial_gen0_size = _min_gen0_size;
578 _initial_gen1_size = _initial_heap_byte_size - _min_gen0_size;
579 } else {
580 // The young generation boundaries allow us to only update the
581 // young generation.
582 _initial_gen0_size = desired_gen0_size;
583 }
584
585 if (PrintGCDetails && Verbose) {
586 gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT " Initial gen0 "
587 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
588 _min_gen0_size, _initial_gen0_size, _max_gen0_size);
589 }
590 }
591
592 // Write back to flags if necessary
593 if (NewSize != _initial_gen0_size) {
594 FLAG_SET_ERGO(uintx, NewSize, _initial_gen0_size);
595 }
596
597 if (MaxNewSize != _max_gen0_size) {
598 FLAG_SET_ERGO(uintx, MaxNewSize, _max_gen0_size);
599 }
600
601 if (OldSize != _initial_gen1_size) {
602 FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);
603 }
604
605 if (PrintGCDetails && Verbose) {
606 gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT " Initial gen1 "
607 SIZE_FORMAT " Maximum gen1 " SIZE_FORMAT,
608 _min_gen1_size, _initial_gen1_size, _max_gen1_size);
609 }
610
611 DEBUG_ONLY(GenCollectorPolicy::assert_size_info();)
612 }
613
614 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
615 bool is_tlab,
616 bool* gc_overhead_limit_was_exceeded) {
617 GenCollectedHeap *gch = GenCollectedHeap::heap();
618
619 debug_only(gch->check_for_valid_allocation_state());
620 assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
621
622 // In general gc_overhead_limit_was_exceeded should be false so
623 // set it so here and reset it to true only if the gc time
624 // limit is being exceeded as checked below.
625 *gc_overhead_limit_was_exceeded = false;
626
627 HeapWord* result = NULL;
628
629 // Loop until the allocation is satisfied, or unsatisfied after GC.
630 for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
631 HandleMark hm; // Discard any handles allocated in each iteration.
632
633 // First allocation attempt is lock-free.
634 Generation *gen0 = gch->get_gen(0);
635 assert(gen0->supports_inline_contig_alloc(),
636 "Otherwise, must do alloc within heap lock");
637 if (gen0->should_allocate(size, is_tlab)) {
638 result = gen0->par_allocate(size, is_tlab);
639 if (result != NULL) {
640 assert(gch->is_in_reserved(result), "result not in heap");
641 return result;
642 }
643 }
644 unsigned int gc_count_before; // Read inside the Heap_lock locked region.
645 {
646 MutexLocker ml(Heap_lock);
647 if (PrintGC && Verbose) {
648 gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
649 " attempting locked slow path allocation");
650 }
651 // Note that only large objects get a shot at being
652 // allocated in later generations.
653 bool first_only = ! should_try_older_generation_allocation(size);
654
655 result = gch->attempt_allocation(size, is_tlab, first_only);
656 if (result != NULL) {
657 assert(gch->is_in_reserved(result), "result not in heap");
658 return result;
659 }
660
661 if (GC_locker::is_active_and_needs_gc()) {
662 if (is_tlab) {
663 return NULL; // Caller will retry allocating individual object.
664 }
665 if (!gch->is_maximal_no_gc()) {
666 // Try and expand heap to satisfy request.
667 result = expand_heap_and_allocate(size, is_tlab);
668 // Result could be null if we are out of space.
669 if (result != NULL) {
670 return result;
671 }
672 }
673
674 if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
675 return NULL; // We didn't get to do a GC and we didn't get any memory.
676 }
677
678 // If this thread is not in a jni critical section, we stall
679 // the requestor until the critical section has cleared and
680 // GC allowed. When the critical section clears, a GC is
681 // initiated by the last thread exiting the critical section; so
682 // we retry the allocation sequence from the beginning of the loop,
683 // rather than causing more, now probably unnecessary, GC attempts.
684 JavaThread* jthr = JavaThread::current();
685 if (!jthr->in_critical()) {
686 MutexUnlocker mul(Heap_lock);
687 // Wait for JNI critical section to be exited
688 GC_locker::stall_until_clear();
689 gclocker_stalled_count += 1;
690 continue;
691 } else {
692 if (CheckJNICalls) {
693 fatal("Possible deadlock due to allocating while"
694 " in jni critical section");
695 }
696 return NULL;
697 }
698 }
699
700 // Read the gc count while the heap lock is held.
701 gc_count_before = Universe::heap()->total_collections();
702 }
703
704 VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
705 VMThread::execute(&op);
706 if (op.prologue_succeeded()) {
707 result = op.result();
708 if (op.gc_locked()) {
709 assert(result == NULL, "must be NULL if gc_locked() is true");
710 continue; // Retry and/or stall as necessary.
711 }
712
713 // Allocation has failed and a collection
714 // has been done. If the gc time limit was exceeded the
715 // this time, return NULL so that an out-of-memory
716 // will be thrown. Clear gc_overhead_limit_exceeded
717 // so that the overhead exceeded does not persist.
718
719 const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
720 const bool softrefs_clear = all_soft_refs_clear();
721
722 if (limit_exceeded && softrefs_clear) {
723 *gc_overhead_limit_was_exceeded = true;
724 size_policy()->set_gc_overhead_limit_exceeded(false);
725 if (op.result() != NULL) {
726 CollectedHeap::fill_with_object(op.result(), size);
727 }
728 return NULL;
729 }
730 assert(result == NULL || gch->is_in_reserved(result),
731 "result not in heap");
732 return result;
733 }
734
735 // Give a warning if we seem to be looping forever.
736 if ((QueuedAllocationWarningCount > 0) &&
737 (try_count % QueuedAllocationWarningCount == 0)) {
738 warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
739 " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
740 }
741 }
742 }
743
744 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
745 bool is_tlab) {
746 GenCollectedHeap *gch = GenCollectedHeap::heap();
747 HeapWord* result = NULL;
748 for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
749 Generation *gen = gch->get_gen(i);
750 if (gen->should_allocate(size, is_tlab)) {
751 result = gen->expand_and_allocate(size, is_tlab);
752 }
753 }
754 assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
755 return result;
756 }
757
758 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
759 bool is_tlab) {
760 GenCollectedHeap *gch = GenCollectedHeap::heap();
761 GCCauseSetter x(gch, GCCause::_allocation_failure);
762 HeapWord* result = NULL;
763
764 assert(size != 0, "Precondition violated");
765 if (GC_locker::is_active_and_needs_gc()) {
766 // GC locker is active; instead of a collection we will attempt
767 // to expand the heap, if there's room for expansion.
768 if (!gch->is_maximal_no_gc()) {
769 result = expand_heap_and_allocate(size, is_tlab);
770 }
771 return result; // Could be null if we are out of space.
772 } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
773 // Do an incremental collection.
774 gch->do_collection(false /* full */,
775 false /* clear_all_soft_refs */,
776 size /* size */,
777 is_tlab /* is_tlab */,
778 number_of_generations() - 1 /* max_level */);
779 } else {
780 if (Verbose && PrintGCDetails) {
781 gclog_or_tty->print(" :: Trying full because partial may fail :: ");
782 }
783 // Try a full collection; see delta for bug id 6266275
784 // for the original code and why this has been simplified
785 // with from-space allocation criteria modified and
786 // such allocation moved out of the safepoint path.
787 gch->do_collection(true /* full */,
788 false /* clear_all_soft_refs */,
789 size /* size */,
790 is_tlab /* is_tlab */,
791 number_of_generations() - 1 /* max_level */);
792 }
793
794 result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
795
796 if (result != NULL) {
797 assert(gch->is_in_reserved(result), "result not in heap");
798 return result;
799 }
800
801 // OK, collection failed, try expansion.
802 result = expand_heap_and_allocate(size, is_tlab);
803 if (result != NULL) {
804 return result;
805 }
806
807 // If we reach this point, we're really out of memory. Try every trick
808 // we can to reclaim memory. Force collection of soft references. Force
809 // a complete compaction of the heap. Any additional methods for finding
810 // free memory should be here, especially if they are expensive. If this
811 // attempt fails, an OOM exception will be thrown.
812 {
813 UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
814
815 gch->do_collection(true /* full */,
816 true /* clear_all_soft_refs */,
817 size /* size */,
818 is_tlab /* is_tlab */,
819 number_of_generations() - 1 /* max_level */);
820 }
821
822 result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
823 if (result != NULL) {
824 assert(gch->is_in_reserved(result), "result not in heap");
825 return result;
826 }
827
828 assert(!should_clear_all_soft_refs(),
829 "Flag should have been handled and cleared prior to this point");
830
831 // What else? We might try synchronous finalization later. If the total
832 // space available is large enough for the allocation, then a more
833 // complete compaction phase than we've tried so far might be
834 // appropriate.
835 return NULL;
836 }
837
838 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
839 ClassLoaderData* loader_data,
840 size_t word_size,
841 Metaspace::MetadataType mdtype) {
842 uint loop_count = 0;
843 uint gc_count = 0;
844 uint full_gc_count = 0;
845
846 assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
847
848 do {
849 MetaWord* result = NULL;
850 if (GC_locker::is_active_and_needs_gc()) {
851 // If the GC_locker is active, just expand and allocate.
852 // If that does not succeed, wait if this thread is not
853 // in a critical section itself.
854 result =
855 loader_data->metaspace_non_null()->expand_and_allocate(word_size,
856 mdtype);
857 if (result != NULL) {
858 return result;
859 }
860 JavaThread* jthr = JavaThread::current();
861 if (!jthr->in_critical()) {
862 // Wait for JNI critical section to be exited
863 GC_locker::stall_until_clear();
864 // The GC invoked by the last thread leaving the critical
865 // section will be a young collection and a full collection
866 // is (currently) needed for unloading classes so continue
867 // to the next iteration to get a full GC.
868 continue;
869 } else {
870 if (CheckJNICalls) {
871 fatal("Possible deadlock due to allocating while"
872 " in jni critical section");
873 }
874 return NULL;
875 }
876 }
877
878 { // Need lock to get self consistent gc_count's
879 MutexLocker ml(Heap_lock);
880 gc_count = Universe::heap()->total_collections();
881 full_gc_count = Universe::heap()->total_full_collections();
882 }
883
884 // Generate a VM operation
885 VM_CollectForMetadataAllocation op(loader_data,
886 word_size,
887 mdtype,
888 gc_count,
889 full_gc_count,
890 GCCause::_metadata_GC_threshold);
891 VMThread::execute(&op);
892
893 // If GC was locked out, try again. Check before checking success because the
894 // prologue could have succeeded and the GC still have been locked out.
895 if (op.gc_locked()) {
896 continue;
897 }
898
899 if (op.prologue_succeeded()) {
900 return op.result();
901 }
902 loop_count++;
903 if ((QueuedAllocationWarningCount > 0) &&
904 (loop_count % QueuedAllocationWarningCount == 0)) {
905 warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
906 " size=" SIZE_FORMAT, loop_count, word_size);
907 }
908 } while (true); // Until a GC is done
909 }
910
911 // Return true if any of the following is true:
912 // . the allocation won't fit into the current young gen heap
913 // . gc locker is occupied (jni critical section)
914 // . heap memory is tight -- the most recent previous collection
915 // was a full collection because a partial collection (would
916 // have) failed and is likely to fail again
917 bool GenCollectorPolicy::should_try_older_generation_allocation(
918 size_t word_size) const {
919 GenCollectedHeap* gch = GenCollectedHeap::heap();
920 size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
921 return (word_size > heap_word_size(gen0_capacity))
922 || GC_locker::is_active_and_needs_gc()
923 || gch->incremental_collection_failed();
924 }
925
926
927 //
928 // MarkSweepPolicy methods
929 //
930
931 void MarkSweepPolicy::initialize_alignments() {
932 _space_alignment = _gen_alignment = (uintx)Generation::GenGrain;
933 _heap_alignment = compute_heap_alignment();
934 }
935
936 void MarkSweepPolicy::initialize_generations() {
937 _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
938 if (_generations == NULL) {
939 vm_exit_during_initialization("Unable to allocate gen spec");
940 }
941
942 if (UseParNewGC) {
943 _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
944 } else {
945 _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
946 }
947 _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
948
949 if (_generations[0] == NULL || _generations[1] == NULL) {
950 vm_exit_during_initialization("Unable to allocate gen spec");
951 }
952 }
953
954 void MarkSweepPolicy::initialize_gc_policy_counters() {
955 // Initialize the policy counters - 2 collectors, 3 generations.
956 if (UseParNewGC) {
957 _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
958 } else {
959 _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
960 }
961 }
962
963 /////////////// Unit tests ///////////////
964
965 #ifndef PRODUCT
966 // Testing that the NewSize flag is handled correct is hard because it
967 // depends on so many other configurable variables. This test only tries to
968 // verify that there are some basic rules for NewSize honored by the policies.
969 class TestGenCollectorPolicy {
970 public:
971 static void test_new_size() {
972 size_t flag_value;
973
974 save_flags();
975
976 // If NewSize is set on the command line, it should be used
977 // for both min and initial young size if less than min heap.
978 flag_value = 20 * M;
979 set_basic_flag_values();
980 FLAG_SET_CMDLINE(uintx, NewSize, flag_value);
981 verify_gen0_min(flag_value);
982
983 set_basic_flag_values();
984 FLAG_SET_CMDLINE(uintx, NewSize, flag_value);
985 verify_gen0_initial(flag_value);
986
987 // If NewSize is set on command line, but is larger than the min
988 // heap size, it should only be used for initial young size.
989 flag_value = 80 * M;
990 set_basic_flag_values();
991 FLAG_SET_CMDLINE(uintx, NewSize, flag_value);
992 verify_gen0_initial(flag_value);
993
994 // If NewSize has been ergonomically set, the collector policy
995 // should use it for min but calculate the initial young size
996 // using NewRatio.
997 flag_value = 20 * M;
998 set_basic_flag_values();
999 FLAG_SET_ERGO(uintx, NewSize, flag_value);
1000 verify_gen0_min(flag_value);
1001
1002 set_basic_flag_values();
1003 FLAG_SET_ERGO(uintx, NewSize, flag_value);
1004 verify_scaled_gen0_initial(InitialHeapSize);
1005
1006 restore_flags();
1007 }
1008
1009 static void test_old_size() {
1010 size_t flag_value;
1011
1012 save_flags();
1013
1014 // If OldSize is set on the command line, it should be used
1015 // for both min and initial old size if less than min heap.
1016 flag_value = 20 * M;
1017 set_basic_flag_values();
1018 FLAG_SET_CMDLINE(uintx, OldSize, flag_value);
1019 verify_gen1_min(flag_value);
1020
1021 set_basic_flag_values();
1022 FLAG_SET_CMDLINE(uintx, OldSize, flag_value);
1023 verify_gen1_initial(flag_value);
1024
1025 // If MaxNewSize is large, the maximum OldSize will be less than
1026 // what's requested on the command line and it should be reset
1027 // ergonomically.
1028 flag_value = 30 * M;
1029 set_basic_flag_values();
1030 FLAG_SET_CMDLINE(uintx, OldSize, flag_value);
1031 FLAG_SET_CMDLINE(uintx, MaxNewSize, 170*M);
1032 // Calculate what we expect the flag to be.
1033 flag_value = MaxHeapSize - MaxNewSize;
1034 verify_gen1_initial(flag_value);
1035
1036 }
1037
1038 static void verify_gen0_min(size_t expected) {
1039 MarkSweepPolicy msp;
1040 msp.initialize_all();
1041
1042 assert(msp.min_gen0_size() <= expected, err_msg("%zu > %zu", msp.min_gen0_size(), expected));
1043 }
1044
1045 static void verify_gen0_initial(size_t expected) {
1046 MarkSweepPolicy msp;
1047 msp.initialize_all();
1048
1049 assert(msp.initial_gen0_size() == expected, err_msg("%zu != %zu", msp.initial_gen0_size(), expected));
1050 }
1051
1052 static void verify_scaled_gen0_initial(size_t initial_heap_size) {
1053 MarkSweepPolicy msp;
1054 msp.initialize_all();
1055
1056 size_t expected = msp.scale_by_NewRatio_aligned(initial_heap_size);
1057 assert(msp.initial_gen0_size() == expected, err_msg("%zu != %zu", msp.initial_gen0_size(), expected));
1058 assert(FLAG_IS_ERGO(NewSize) && NewSize == expected,
1059 err_msg("NewSize should have been set ergonomically to %zu, but was %zu", expected, NewSize));
1060 }
1061
1062 static void verify_gen1_min(size_t expected) {
1063 MarkSweepPolicy msp;
1064 msp.initialize_all();
1065
1066 assert(msp.min_gen1_size() <= expected, err_msg("%zu > %zu", msp.min_gen1_size(), expected));
1067 }
1068
1069 static void verify_gen1_initial(size_t expected) {
1070 MarkSweepPolicy msp;
1071 msp.initialize_all();
1072
1073 assert(msp.initial_gen1_size() == expected, err_msg("%zu != %zu", msp.initial_gen1_size(), expected));
1074 }
1075
1076
1077 private:
1078 static size_t original_InitialHeapSize;
1079 static size_t original_MaxHeapSize;
1080 static size_t original_MaxNewSize;
1081 static size_t original_MinHeapDeltaBytes;
1082 static size_t original_NewSize;
1083 static size_t original_OldSize;
1084
1085 static void set_basic_flag_values() {
1086 FLAG_SET_ERGO(uintx, MaxHeapSize, 180 * M);
1087 FLAG_SET_ERGO(uintx, InitialHeapSize, 100 * M);
1088 FLAG_SET_ERGO(uintx, OldSize, 4 * M);
1089 FLAG_SET_ERGO(uintx, NewSize, 1 * M);
1090 FLAG_SET_ERGO(uintx, MaxNewSize, 80 * M);
1091 Arguments::set_min_heap_size(40 * M);
1092 }
1093
1094 static void save_flags() {
1095 original_InitialHeapSize = InitialHeapSize;
1096 original_MaxHeapSize = MaxHeapSize;
1097 original_MaxNewSize = MaxNewSize;
1098 original_MinHeapDeltaBytes = MinHeapDeltaBytes;
1099 original_NewSize = NewSize;
1100 original_OldSize = OldSize;
1101 }
1102
1103 static void restore_flags() {
1104 InitialHeapSize = original_InitialHeapSize;
1105 MaxHeapSize = original_MaxHeapSize;
1106 MaxNewSize = original_MaxNewSize;
1107 MinHeapDeltaBytes = original_MinHeapDeltaBytes;
1108 NewSize = original_NewSize;
1109 OldSize = original_OldSize;
1110 }
1111 };
1112
1113 size_t TestGenCollectorPolicy::original_InitialHeapSize = 0;
1114 size_t TestGenCollectorPolicy::original_MaxHeapSize = 0;
1115 size_t TestGenCollectorPolicy::original_MaxNewSize = 0;
1116 size_t TestGenCollectorPolicy::original_MinHeapDeltaBytes = 0;
1117 size_t TestGenCollectorPolicy::original_NewSize = 0;
1118 size_t TestGenCollectorPolicy::original_OldSize = 0;
1119
1120 void TestNewSize_test() {
1121 TestGenCollectorPolicy::test_new_size();
1122 }
1123
1124 void TestOldSize_test() {
1125 TestGenCollectorPolicy::test_old_size();
1126 }
1127
1128 #endif