1 /*
2 * Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24 #include "precompiled.hpp"
25 #include "gc_interface/collectedHeap.hpp"
26 #include "memory/allocation.hpp"
27 #include "memory/binaryTreeDictionary.hpp"
28 #include "memory/freeList.hpp"
29 #include "memory/collectorPolicy.hpp"
30 #include "memory/filemap.hpp"
31 #include "memory/freeList.hpp"
32 #include "memory/gcLocker.hpp"
33 #include "memory/metachunk.hpp"
34 #include "memory/metaspace.hpp"
35 #include "memory/metaspaceGCThresholdUpdater.hpp"
36 #include "memory/metaspaceShared.hpp"
37 #include "memory/metaspaceTracer.hpp"
38 #include "memory/resourceArea.hpp"
39 #include "memory/universe.hpp"
40 #include "runtime/atomic.inline.hpp"
41 #include "runtime/globals.hpp"
42 #include "runtime/init.hpp"
43 #include "runtime/java.hpp"
44 #include "runtime/mutex.hpp"
45 #include "runtime/orderAccess.inline.hpp"
46 #include "services/memTracker.hpp"
47 #include "services/memoryService.hpp"
48 #include "utilities/copy.hpp"
49 #include "utilities/debug.hpp"
50
51 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
52
53 typedef BinaryTreeDictionary<Metablock, FreeList<Metablock> > BlockTreeDictionary;
54 typedef BinaryTreeDictionary<Metachunk, FreeList<Metachunk> > ChunkTreeDictionary;
55
56 // Set this constant to enable slow integrity checking of the free chunk lists
57 const bool metaspace_slow_verify = false;
58
59 size_t const allocation_from_dictionary_limit = 4 * K;
60
61 MetaWord* last_allocated = 0;
62
63 size_t Metaspace::_compressed_class_space_size;
64 const MetaspaceTracer* Metaspace::_tracer = NULL;
65
66 // Used in declarations in SpaceManager and ChunkManager
67 enum ChunkIndex {
68 ZeroIndex = 0,
69 SpecializedIndex = ZeroIndex,
70 SmallIndex = SpecializedIndex + 1,
71 MediumIndex = SmallIndex + 1,
72 HumongousIndex = MediumIndex + 1,
73 NumberOfFreeLists = 3,
74 NumberOfInUseLists = 4
75 };
76
77 enum ChunkSizes { // in words.
78 ClassSpecializedChunk = 128,
79 SpecializedChunk = 128,
80 ClassSmallChunk = 256,
81 SmallChunk = 512,
82 ClassMediumChunk = 4 * K,
83 MediumChunk = 8 * K
84 };
85
86 static ChunkIndex next_chunk_index(ChunkIndex i) {
87 assert(i < NumberOfInUseLists, "Out of bound");
88 return (ChunkIndex) (i+1);
89 }
90
91 volatile intptr_t MetaspaceGC::_capacity_until_GC = 0;
92 uint MetaspaceGC::_shrink_factor = 0;
93 bool MetaspaceGC::_should_concurrent_collect = false;
94
95 typedef class FreeList<Metachunk> ChunkList;
96
97 // Manages the global free lists of chunks.
98 class ChunkManager : public CHeapObj<mtInternal> {
99 friend class TestVirtualSpaceNodeTest;
100
101 // Free list of chunks of different sizes.
102 // SpecializedChunk
103 // SmallChunk
104 // MediumChunk
105 // HumongousChunk
106 ChunkList _free_chunks[NumberOfFreeLists];
107
108 // HumongousChunk
109 ChunkTreeDictionary _humongous_dictionary;
110
111 // ChunkManager in all lists of this type
112 size_t _free_chunks_total;
113 size_t _free_chunks_count;
114
115 void dec_free_chunks_total(size_t v) {
116 assert(_free_chunks_count > 0 &&
117 _free_chunks_total > 0,
118 "About to go negative");
119 Atomic::add_ptr(-1, &_free_chunks_count);
120 jlong minus_v = (jlong) - (jlong) v;
121 Atomic::add_ptr(minus_v, &_free_chunks_total);
122 }
123
124 // Debug support
125
126 size_t sum_free_chunks();
127 size_t sum_free_chunks_count();
128
129 void locked_verify_free_chunks_total();
130 void slow_locked_verify_free_chunks_total() {
131 if (metaspace_slow_verify) {
132 locked_verify_free_chunks_total();
133 }
134 }
135 void locked_verify_free_chunks_count();
136 void slow_locked_verify_free_chunks_count() {
137 if (metaspace_slow_verify) {
138 locked_verify_free_chunks_count();
139 }
140 }
141 void verify_free_chunks_count();
142
143 public:
144
145 ChunkManager(size_t specialized_size, size_t small_size, size_t medium_size)
146 : _free_chunks_total(0), _free_chunks_count(0) {
147 _free_chunks[SpecializedIndex].set_size(specialized_size);
148 _free_chunks[SmallIndex].set_size(small_size);
149 _free_chunks[MediumIndex].set_size(medium_size);
150 }
151
152 // add or delete (return) a chunk to the global freelist.
153 Metachunk* chunk_freelist_allocate(size_t word_size);
154
155 // Map a size to a list index assuming that there are lists
156 // for special, small, medium, and humongous chunks.
157 static ChunkIndex list_index(size_t size);
158
159 // Remove the chunk from its freelist. It is
160 // expected to be on one of the _free_chunks[] lists.
161 void remove_chunk(Metachunk* chunk);
162
163 // Add the simple linked list of chunks to the freelist of chunks
164 // of type index.
165 void return_chunks(ChunkIndex index, Metachunk* chunks);
166
167 // Total of the space in the free chunks list
168 size_t free_chunks_total_words();
169 size_t free_chunks_total_bytes();
170
171 // Number of chunks in the free chunks list
172 size_t free_chunks_count();
173
174 void inc_free_chunks_total(size_t v, size_t count = 1) {
175 Atomic::add_ptr(count, &_free_chunks_count);
176 Atomic::add_ptr(v, &_free_chunks_total);
177 }
178 ChunkTreeDictionary* humongous_dictionary() {
179 return &_humongous_dictionary;
180 }
181
182 ChunkList* free_chunks(ChunkIndex index);
183
184 // Returns the list for the given chunk word size.
185 ChunkList* find_free_chunks_list(size_t word_size);
186
187 // Remove from a list by size. Selects list based on size of chunk.
188 Metachunk* free_chunks_get(size_t chunk_word_size);
189
190 #define index_bounds_check(index) \
191 assert(index == SpecializedIndex || \
192 index == SmallIndex || \
193 index == MediumIndex || \
194 index == HumongousIndex, err_msg("Bad index: %d", (int) index))
195
196 size_t num_free_chunks(ChunkIndex index) const {
197 index_bounds_check(index);
198
199 if (index == HumongousIndex) {
200 return _humongous_dictionary.total_free_blocks();
201 }
202
203 ssize_t count = _free_chunks[index].count();
204 return count == -1 ? 0 : (size_t) count;
205 }
206
207 size_t size_free_chunks_in_bytes(ChunkIndex index) const {
208 index_bounds_check(index);
209
210 size_t word_size = 0;
211 if (index == HumongousIndex) {
212 word_size = _humongous_dictionary.total_size();
213 } else {
214 const size_t size_per_chunk_in_words = _free_chunks[index].size();
215 word_size = size_per_chunk_in_words * num_free_chunks(index);
216 }
217
218 return word_size * BytesPerWord;
219 }
220
221 MetaspaceChunkFreeListSummary chunk_free_list_summary() const {
222 return MetaspaceChunkFreeListSummary(num_free_chunks(SpecializedIndex),
223 num_free_chunks(SmallIndex),
224 num_free_chunks(MediumIndex),
225 num_free_chunks(HumongousIndex),
226 size_free_chunks_in_bytes(SpecializedIndex),
227 size_free_chunks_in_bytes(SmallIndex),
228 size_free_chunks_in_bytes(MediumIndex),
229 size_free_chunks_in_bytes(HumongousIndex));
230 }
231
232 // Debug support
233 void verify();
234 void slow_verify() {
235 if (metaspace_slow_verify) {
236 verify();
237 }
238 }
239 void locked_verify();
240 void slow_locked_verify() {
241 if (metaspace_slow_verify) {
242 locked_verify();
243 }
244 }
245 void verify_free_chunks_total();
246
247 void locked_print_free_chunks(outputStream* st);
248 void locked_print_sum_free_chunks(outputStream* st);
249
250 void print_on(outputStream* st) const;
251 };
252
253 // Used to manage the free list of Metablocks (a block corresponds
254 // to the allocation of a quantum of metadata).
255 class BlockFreelist VALUE_OBJ_CLASS_SPEC {
256 BlockTreeDictionary* _dictionary;
257
258 // Only allocate and split from freelist if the size of the allocation
259 // is at least 1/4th the size of the available block.
260 const static int WasteMultiplier = 4;
261
262 // Accessors
263 BlockTreeDictionary* dictionary() const { return _dictionary; }
264
265 public:
266 BlockFreelist();
267 ~BlockFreelist();
268
269 // Get and return a block to the free list
270 MetaWord* get_block(size_t word_size);
271 void return_block(MetaWord* p, size_t word_size);
272
273 size_t total_size() {
274 if (dictionary() == NULL) {
275 return 0;
276 } else {
277 return dictionary()->total_size();
278 }
279 }
280
281 void print_on(outputStream* st) const;
282 };
283
284 // A VirtualSpaceList node.
285 class VirtualSpaceNode : public CHeapObj<mtClass> {
286 friend class VirtualSpaceList;
287
288 // Link to next VirtualSpaceNode
289 VirtualSpaceNode* _next;
290
291 // total in the VirtualSpace
292 MemRegion _reserved;
293 ReservedSpace _rs;
294 VirtualSpace _virtual_space;
295 MetaWord* _top;
296 // count of chunks contained in this VirtualSpace
297 uintx _container_count;
298
299 // Convenience functions to access the _virtual_space
300 char* low() const { return virtual_space()->low(); }
301 char* high() const { return virtual_space()->high(); }
302
303 // The first Metachunk will be allocated at the bottom of the
304 // VirtualSpace
305 Metachunk* first_chunk() { return (Metachunk*) bottom(); }
306
307 // Committed but unused space in the virtual space
308 size_t free_words_in_vs() const;
309 public:
310
311 VirtualSpaceNode(size_t byte_size);
312 VirtualSpaceNode(ReservedSpace rs) : _top(NULL), _next(NULL), _rs(rs), _container_count(0) {}
313 ~VirtualSpaceNode();
314
315 // Convenience functions for logical bottom and end
316 MetaWord* bottom() const { return (MetaWord*) _virtual_space.low(); }
317 MetaWord* end() const { return (MetaWord*) _virtual_space.high(); }
318
319 size_t reserved_words() const { return _virtual_space.reserved_size() / BytesPerWord; }
320 size_t committed_words() const { return _virtual_space.actual_committed_size() / BytesPerWord; }
321
322 bool is_pre_committed() const { return _virtual_space.special(); }
323
324 // address of next available space in _virtual_space;
325 // Accessors
326 VirtualSpaceNode* next() { return _next; }
327 void set_next(VirtualSpaceNode* v) { _next = v; }
328
329 void set_reserved(MemRegion const v) { _reserved = v; }
330 void set_top(MetaWord* v) { _top = v; }
331
332 // Accessors
333 MemRegion* reserved() { return &_reserved; }
334 VirtualSpace* virtual_space() const { return (VirtualSpace*) &_virtual_space; }
335
336 // Returns true if "word_size" is available in the VirtualSpace
337 bool is_available(size_t word_size) { return word_size <= pointer_delta(end(), _top, sizeof(MetaWord)); }
338
339 MetaWord* top() const { return _top; }
340 void inc_top(size_t word_size) { _top += word_size; }
341
342 uintx container_count() { return _container_count; }
343 void inc_container_count();
344 void dec_container_count();
345 #ifdef ASSERT
346 uint container_count_slow();
347 void verify_container_count();
348 #endif
349
350 // used and capacity in this single entry in the list
351 size_t used_words_in_vs() const;
352 size_t capacity_words_in_vs() const;
353
354 bool initialize();
355
356 // get space from the virtual space
357 Metachunk* take_from_committed(size_t chunk_word_size);
358
359 // Allocate a chunk from the virtual space and return it.
360 Metachunk* get_chunk_vs(size_t chunk_word_size);
361
362 // Expands/shrinks the committed space in a virtual space. Delegates
363 // to Virtualspace
364 bool expand_by(size_t min_words, size_t preferred_words);
365
366 // In preparation for deleting this node, remove all the chunks
367 // in the node from any freelist.
368 void purge(ChunkManager* chunk_manager);
369
370 // If an allocation doesn't fit in the current node a new node is created.
371 // Allocate chunks out of the remaining committed space in this node
372 // to avoid wasting that memory.
373 // This always adds up because all the chunk sizes are multiples of
374 // the smallest chunk size.
375 void retire(ChunkManager* chunk_manager);
376
377 #ifdef ASSERT
378 // Debug support
379 void mangle();
380 #endif
381
382 void print_on(outputStream* st) const;
383 };
384
385 #define assert_is_ptr_aligned(ptr, alignment) \
386 assert(is_ptr_aligned(ptr, alignment), \
387 err_msg(PTR_FORMAT " is not aligned to " \
388 SIZE_FORMAT, ptr, alignment))
389
390 #define assert_is_size_aligned(size, alignment) \
391 assert(is_size_aligned(size, alignment), \
392 err_msg(SIZE_FORMAT " is not aligned to " \
393 SIZE_FORMAT, size, alignment))
394
395
396 // Decide if large pages should be committed when the memory is reserved.
397 static bool should_commit_large_pages_when_reserving(size_t bytes) {
398 if (UseLargePages && UseLargePagesInMetaspace && !os::can_commit_large_page_memory()) {
399 size_t words = bytes / BytesPerWord;
400 bool is_class = false; // We never reserve large pages for the class space.
401 if (MetaspaceGC::can_expand(words, is_class) &&
402 MetaspaceGC::allowed_expansion() >= words) {
403 return true;
404 }
405 }
406
407 return false;
408 }
409
410 // byte_size is the size of the associated virtualspace.
411 VirtualSpaceNode::VirtualSpaceNode(size_t bytes) : _top(NULL), _next(NULL), _rs(), _container_count(0) {
412 assert_is_size_aligned(bytes, Metaspace::reserve_alignment());
413
414 // This allocates memory with mmap. For DumpSharedspaces, try to reserve
415 // configurable address, generally at the top of the Java heap so other
416 // memory addresses don't conflict.
417 if (DumpSharedSpaces) {
418 bool large_pages = false; // No large pages when dumping the CDS archive.
419 char* shared_base = (char*)align_ptr_up((char*)SharedBaseAddress, Metaspace::reserve_alignment());
420
421 _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages, shared_base, 0);
422 if (_rs.is_reserved()) {
423 assert(shared_base == 0 || _rs.base() == shared_base, "should match");
424 } else {
425 // Get a mmap region anywhere if the SharedBaseAddress fails.
426 _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
427 }
428 MetaspaceShared::set_shared_rs(&_rs);
429 } else {
430 bool large_pages = should_commit_large_pages_when_reserving(bytes);
431
432 _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
433 }
434
435 if (_rs.is_reserved()) {
436 assert(_rs.base() != NULL, "Catch if we get a NULL address");
437 assert(_rs.size() != 0, "Catch if we get a 0 size");
438 assert_is_ptr_aligned(_rs.base(), Metaspace::reserve_alignment());
439 assert_is_size_aligned(_rs.size(), Metaspace::reserve_alignment());
440
441 MemTracker::record_virtual_memory_type((address)_rs.base(), mtClass);
442 }
443 }
444
445 void VirtualSpaceNode::purge(ChunkManager* chunk_manager) {
446 Metachunk* chunk = first_chunk();
447 Metachunk* invalid_chunk = (Metachunk*) top();
448 while (chunk < invalid_chunk ) {
449 assert(chunk->is_tagged_free(), "Should be tagged free");
450 MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
451 chunk_manager->remove_chunk(chunk);
452 assert(chunk->next() == NULL &&
453 chunk->prev() == NULL,
454 "Was not removed from its list");
455 chunk = (Metachunk*) next;
456 }
457 }
458
459 #ifdef ASSERT
460 uint VirtualSpaceNode::container_count_slow() {
461 uint count = 0;
462 Metachunk* chunk = first_chunk();
463 Metachunk* invalid_chunk = (Metachunk*) top();
464 while (chunk < invalid_chunk ) {
465 MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
466 // Don't count the chunks on the free lists. Those are
467 // still part of the VirtualSpaceNode but not currently
468 // counted.
469 if (!chunk->is_tagged_free()) {
470 count++;
471 }
472 chunk = (Metachunk*) next;
473 }
474 return count;
475 }
476 #endif
477
478 // List of VirtualSpaces for metadata allocation.
479 class VirtualSpaceList : public CHeapObj<mtClass> {
480 friend class VirtualSpaceNode;
481
482 enum VirtualSpaceSizes {
483 VirtualSpaceSize = 256 * K
484 };
485
486 // Head of the list
487 VirtualSpaceNode* _virtual_space_list;
488 // virtual space currently being used for allocations
489 VirtualSpaceNode* _current_virtual_space;
490
491 // Is this VirtualSpaceList used for the compressed class space
492 bool _is_class;
493
494 // Sum of reserved and committed memory in the virtual spaces
495 size_t _reserved_words;
496 size_t _committed_words;
497
498 // Number of virtual spaces
499 size_t _virtual_space_count;
500
501 ~VirtualSpaceList();
502
503 VirtualSpaceNode* virtual_space_list() const { return _virtual_space_list; }
504
505 void set_virtual_space_list(VirtualSpaceNode* v) {
506 _virtual_space_list = v;
507 }
508 void set_current_virtual_space(VirtualSpaceNode* v) {
509 _current_virtual_space = v;
510 }
511
512 void link_vs(VirtualSpaceNode* new_entry);
513
514 // Get another virtual space and add it to the list. This
515 // is typically prompted by a failed attempt to allocate a chunk
516 // and is typically followed by the allocation of a chunk.
517 bool create_new_virtual_space(size_t vs_word_size);
518
519 // Chunk up the unused committed space in the current
520 // virtual space and add the chunks to the free list.
521 void retire_current_virtual_space();
522
523 public:
524 VirtualSpaceList(size_t word_size);
525 VirtualSpaceList(ReservedSpace rs);
526
527 size_t free_bytes();
528
529 Metachunk* get_new_chunk(size_t word_size,
530 size_t grow_chunks_by_words,
531 size_t medium_chunk_bunch);
532
533 bool expand_node_by(VirtualSpaceNode* node,
534 size_t min_words,
535 size_t preferred_words);
536
537 bool expand_by(size_t min_words,
538 size_t preferred_words);
539
540 VirtualSpaceNode* current_virtual_space() {
541 return _current_virtual_space;
542 }
543
544 bool is_class() const { return _is_class; }
545
546 bool initialization_succeeded() { return _virtual_space_list != NULL; }
547
548 size_t reserved_words() { return _reserved_words; }
549 size_t reserved_bytes() { return reserved_words() * BytesPerWord; }
550 size_t committed_words() { return _committed_words; }
551 size_t committed_bytes() { return committed_words() * BytesPerWord; }
552
553 void inc_reserved_words(size_t v);
554 void dec_reserved_words(size_t v);
555 void inc_committed_words(size_t v);
556 void dec_committed_words(size_t v);
557 void inc_virtual_space_count();
558 void dec_virtual_space_count();
559
560 // Unlink empty VirtualSpaceNodes and free it.
561 void purge(ChunkManager* chunk_manager);
562
563 void print_on(outputStream* st) const;
564
565 class VirtualSpaceListIterator : public StackObj {
566 VirtualSpaceNode* _virtual_spaces;
567 public:
568 VirtualSpaceListIterator(VirtualSpaceNode* virtual_spaces) :
569 _virtual_spaces(virtual_spaces) {}
570
571 bool repeat() {
572 return _virtual_spaces != NULL;
573 }
574
575 VirtualSpaceNode* get_next() {
576 VirtualSpaceNode* result = _virtual_spaces;
577 if (_virtual_spaces != NULL) {
578 _virtual_spaces = _virtual_spaces->next();
579 }
580 return result;
581 }
582 };
583 };
584
585 class Metadebug : AllStatic {
586 // Debugging support for Metaspaces
587 static int _allocation_fail_alot_count;
588
589 public:
590
591 static void init_allocation_fail_alot_count();
592 #ifdef ASSERT
593 static bool test_metadata_failure();
594 #endif
595 };
596
597 int Metadebug::_allocation_fail_alot_count = 0;
598
599 // SpaceManager - used by Metaspace to handle allocations
600 class SpaceManager : public CHeapObj<mtClass> {
601 friend class Metaspace;
602 friend class Metadebug;
603
604 private:
605
606 // protects allocations
607 Mutex* const _lock;
608
609 // Type of metadata allocated.
610 Metaspace::MetadataType _mdtype;
611
612 // List of chunks in use by this SpaceManager. Allocations
613 // are done from the current chunk. The list is used for deallocating
614 // chunks when the SpaceManager is freed.
615 Metachunk* _chunks_in_use[NumberOfInUseLists];
616 Metachunk* _current_chunk;
617
618 // Number of small chunks to allocate to a manager
619 // If class space manager, small chunks are unlimited
620 static uint const _small_chunk_limit;
621
622 // Sum of all space in allocated chunks
623 size_t _allocated_blocks_words;
624
625 // Sum of all allocated chunks
626 size_t _allocated_chunks_words;
627 size_t _allocated_chunks_count;
628
629 // Free lists of blocks are per SpaceManager since they
630 // are assumed to be in chunks in use by the SpaceManager
631 // and all chunks in use by a SpaceManager are freed when
632 // the class loader using the SpaceManager is collected.
633 BlockFreelist _block_freelists;
634
635 // protects virtualspace and chunk expansions
636 static const char* _expand_lock_name;
637 static const int _expand_lock_rank;
638 static Mutex* const _expand_lock;
639
640 private:
641 // Accessors
642 Metachunk* chunks_in_use(ChunkIndex index) const { return _chunks_in_use[index]; }
643 void set_chunks_in_use(ChunkIndex index, Metachunk* v) {
644 // ensure lock-free iteration sees fully initialized node
645 OrderAccess::storestore();
646 _chunks_in_use[index] = v;
647 }
648
649 BlockFreelist* block_freelists() const {
650 return (BlockFreelist*) &_block_freelists;
651 }
652
653 Metaspace::MetadataType mdtype() { return _mdtype; }
654
655 VirtualSpaceList* vs_list() const { return Metaspace::get_space_list(_mdtype); }
656 ChunkManager* chunk_manager() const { return Metaspace::get_chunk_manager(_mdtype); }
657
658 Metachunk* current_chunk() const { return _current_chunk; }
659 void set_current_chunk(Metachunk* v) {
660 _current_chunk = v;
661 }
662
663 Metachunk* find_current_chunk(size_t word_size);
664
665 // Add chunk to the list of chunks in use
666 void add_chunk(Metachunk* v, bool make_current);
667 void retire_current_chunk();
668
669 Mutex* lock() const { return _lock; }
670
671 const char* chunk_size_name(ChunkIndex index) const;
672
673 protected:
674 void initialize();
675
676 public:
677 SpaceManager(Metaspace::MetadataType mdtype,
678 Mutex* lock);
679 ~SpaceManager();
680
681 enum ChunkMultiples {
682 MediumChunkMultiple = 4
683 };
684
685 bool is_class() { return _mdtype == Metaspace::ClassType; }
686
687 // Accessors
688 size_t specialized_chunk_size() { return (size_t) is_class() ? ClassSpecializedChunk : SpecializedChunk; }
689 size_t small_chunk_size() { return (size_t) is_class() ? ClassSmallChunk : SmallChunk; }
690 size_t medium_chunk_size() { return (size_t) is_class() ? ClassMediumChunk : MediumChunk; }
691 size_t medium_chunk_bunch() { return medium_chunk_size() * MediumChunkMultiple; }
692
693 size_t smallest_chunk_size() { return specialized_chunk_size(); }
694
695 size_t allocated_blocks_words() const { return _allocated_blocks_words; }
696 size_t allocated_blocks_bytes() const { return _allocated_blocks_words * BytesPerWord; }
697 size_t allocated_chunks_words() const { return _allocated_chunks_words; }
698 size_t allocated_chunks_count() const { return _allocated_chunks_count; }
699
700 bool is_humongous(size_t word_size) { return word_size > medium_chunk_size(); }
701
702 static Mutex* expand_lock() { return _expand_lock; }
703
704 // Increment the per Metaspace and global running sums for Metachunks
705 // by the given size. This is used when a Metachunk to added to
706 // the in-use list.
707 void inc_size_metrics(size_t words);
708 // Increment the per Metaspace and global running sums Metablocks by the given
709 // size. This is used when a Metablock is allocated.
710 void inc_used_metrics(size_t words);
711 // Delete the portion of the running sums for this SpaceManager. That is,
712 // the globals running sums for the Metachunks and Metablocks are
713 // decremented for all the Metachunks in-use by this SpaceManager.
714 void dec_total_from_size_metrics();
715
716 // Set the sizes for the initial chunks.
717 void get_initial_chunk_sizes(Metaspace::MetaspaceType type,
718 size_t* chunk_word_size,
719 size_t* class_chunk_word_size);
720
721 size_t sum_capacity_in_chunks_in_use() const;
722 size_t sum_used_in_chunks_in_use() const;
723 size_t sum_free_in_chunks_in_use() const;
724 size_t sum_waste_in_chunks_in_use() const;
725 size_t sum_waste_in_chunks_in_use(ChunkIndex index ) const;
726
727 size_t sum_count_in_chunks_in_use();
728 size_t sum_count_in_chunks_in_use(ChunkIndex i);
729
730 Metachunk* get_new_chunk(size_t word_size, size_t grow_chunks_by_words);
731
732 // Block allocation and deallocation.
733 // Allocates a block from the current chunk
734 MetaWord* allocate(size_t word_size);
735
736 // Helper for allocations
737 MetaWord* allocate_work(size_t word_size);
738
739 // Returns a block to the per manager freelist
740 void deallocate(MetaWord* p, size_t word_size);
741
742 // Based on the allocation size and a minimum chunk size,
743 // returned chunk size (for expanding space for chunk allocation).
744 size_t calc_chunk_size(size_t allocation_word_size);
745
746 // Called when an allocation from the current chunk fails.
747 // Gets a new chunk (may require getting a new virtual space),
748 // and allocates from that chunk.
749 MetaWord* grow_and_allocate(size_t word_size);
750
751 // Notify memory usage to MemoryService.
752 void track_metaspace_memory_usage();
753
754 // debugging support.
755
756 void dump(outputStream* const out) const;
757 void print_on(outputStream* st) const;
758 void locked_print_chunks_in_use_on(outputStream* st) const;
759
760 bool contains(const void *ptr);
761
762 void verify();
763 void verify_chunk_size(Metachunk* chunk);
764 NOT_PRODUCT(void mangle_freed_chunks();)
765 #ifdef ASSERT
766 void verify_allocated_blocks_words();
767 #endif
768
769 size_t get_raw_word_size(size_t word_size) {
770 size_t byte_size = word_size * BytesPerWord;
771
772 size_t raw_bytes_size = MAX2(byte_size, sizeof(Metablock));
773 raw_bytes_size = align_size_up(raw_bytes_size, Metachunk::object_alignment());
774
775 size_t raw_word_size = raw_bytes_size / BytesPerWord;
776 assert(raw_word_size * BytesPerWord == raw_bytes_size, "Size problem");
777
778 return raw_word_size;
779 }
780 };
781
782 uint const SpaceManager::_small_chunk_limit = 4;
783
784 const char* SpaceManager::_expand_lock_name =
785 "SpaceManager chunk allocation lock";
786 const int SpaceManager::_expand_lock_rank = Monitor::leaf - 1;
787 Mutex* const SpaceManager::_expand_lock =
788 new Mutex(SpaceManager::_expand_lock_rank,
789 SpaceManager::_expand_lock_name,
790 Mutex::_allow_vm_block_flag);
791
792 void VirtualSpaceNode::inc_container_count() {
793 assert_lock_strong(SpaceManager::expand_lock());
794 _container_count++;
795 assert(_container_count == container_count_slow(),
796 err_msg("Inconsistency in container_count _container_count " SIZE_FORMAT
797 " container_count_slow() " SIZE_FORMAT,
798 _container_count, container_count_slow()));
799 }
800
801 void VirtualSpaceNode::dec_container_count() {
802 assert_lock_strong(SpaceManager::expand_lock());
803 _container_count--;
804 }
805
806 #ifdef ASSERT
807 void VirtualSpaceNode::verify_container_count() {
808 assert(_container_count == container_count_slow(),
809 err_msg("Inconsistency in container_count _container_count " SIZE_FORMAT
810 " container_count_slow() " SIZE_FORMAT, _container_count, container_count_slow()));
811 }
812 #endif
813
814 // BlockFreelist methods
815
816 BlockFreelist::BlockFreelist() : _dictionary(NULL) {}
817
818 BlockFreelist::~BlockFreelist() {
819 if (_dictionary != NULL) {
820 if (Verbose && TraceMetadataChunkAllocation) {
821 _dictionary->print_free_lists(gclog_or_tty);
822 }
823 delete _dictionary;
824 }
825 }
826
827 void BlockFreelist::return_block(MetaWord* p, size_t word_size) {
828 Metablock* free_chunk = ::new (p) Metablock(word_size);
829 if (dictionary() == NULL) {
830 _dictionary = new BlockTreeDictionary();
831 }
832 dictionary()->return_chunk(free_chunk);
833 }
834
835 MetaWord* BlockFreelist::get_block(size_t word_size) {
836 if (dictionary() == NULL) {
837 return NULL;
838 }
839
840 if (word_size < TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
841 // Dark matter. Too small for dictionary.
842 return NULL;
843 }
844
845 Metablock* free_block =
846 dictionary()->get_chunk(word_size, FreeBlockDictionary<Metablock>::atLeast);
847 if (free_block == NULL) {
848 return NULL;
849 }
850
851 const size_t block_size = free_block->size();
852 if (block_size > WasteMultiplier * word_size) {
853 return_block((MetaWord*)free_block, block_size);
854 return NULL;
855 }
856
857 MetaWord* new_block = (MetaWord*)free_block;
858 assert(block_size >= word_size, "Incorrect size of block from freelist");
859 const size_t unused = block_size - word_size;
860 if (unused >= TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
861 return_block(new_block + word_size, unused);
862 }
863
864 return new_block;
865 }
866
867 void BlockFreelist::print_on(outputStream* st) const {
868 if (dictionary() == NULL) {
869 return;
870 }
871 dictionary()->print_free_lists(st);
872 }
873
874 // VirtualSpaceNode methods
875
876 VirtualSpaceNode::~VirtualSpaceNode() {
877 _rs.release();
878 #ifdef ASSERT
879 size_t word_size = sizeof(*this) / BytesPerWord;
880 Copy::fill_to_words((HeapWord*) this, word_size, 0xf1f1f1f1);
881 #endif
882 }
883
884 size_t VirtualSpaceNode::used_words_in_vs() const {
885 return pointer_delta(top(), bottom(), sizeof(MetaWord));
886 }
887
888 // Space committed in the VirtualSpace
889 size_t VirtualSpaceNode::capacity_words_in_vs() const {
890 return pointer_delta(end(), bottom(), sizeof(MetaWord));
891 }
892
893 size_t VirtualSpaceNode::free_words_in_vs() const {
894 return pointer_delta(end(), top(), sizeof(MetaWord));
895 }
896
897 // Allocates the chunk from the virtual space only.
898 // This interface is also used internally for debugging. Not all
899 // chunks removed here are necessarily used for allocation.
900 Metachunk* VirtualSpaceNode::take_from_committed(size_t chunk_word_size) {
901 // Bottom of the new chunk
902 MetaWord* chunk_limit = top();
903 assert(chunk_limit != NULL, "Not safe to call this method");
904
905 // The virtual spaces are always expanded by the
906 // commit granularity to enforce the following condition.
907 // Without this the is_available check will not work correctly.
908 assert(_virtual_space.committed_size() == _virtual_space.actual_committed_size(),
909 "The committed memory doesn't match the expanded memory.");
910
911 if (!is_available(chunk_word_size)) {
912 if (TraceMetadataChunkAllocation) {
913 gclog_or_tty->print("VirtualSpaceNode::take_from_committed() not available %d words ", chunk_word_size);
914 // Dump some information about the virtual space that is nearly full
915 print_on(gclog_or_tty);
916 }
917 return NULL;
918 }
919
920 // Take the space (bump top on the current virtual space).
921 inc_top(chunk_word_size);
922
923 // Initialize the chunk
924 Metachunk* result = ::new (chunk_limit) Metachunk(chunk_word_size, this);
925 return result;
926 }
927
928
929 // Expand the virtual space (commit more of the reserved space)
930 bool VirtualSpaceNode::expand_by(size_t min_words, size_t preferred_words) {
931 size_t min_bytes = min_words * BytesPerWord;
932 size_t preferred_bytes = preferred_words * BytesPerWord;
933
934 size_t uncommitted = virtual_space()->reserved_size() - virtual_space()->actual_committed_size();
935
936 if (uncommitted < min_bytes) {
937 return false;
938 }
939
940 size_t commit = MIN2(preferred_bytes, uncommitted);
941 bool result = virtual_space()->expand_by(commit, false);
942
943 assert(result, "Failed to commit memory");
944
945 return result;
946 }
947
948 Metachunk* VirtualSpaceNode::get_chunk_vs(size_t chunk_word_size) {
949 assert_lock_strong(SpaceManager::expand_lock());
950 Metachunk* result = take_from_committed(chunk_word_size);
951 if (result != NULL) {
952 inc_container_count();
953 }
954 return result;
955 }
956
957 bool VirtualSpaceNode::initialize() {
958
959 if (!_rs.is_reserved()) {
960 return false;
961 }
962
963 // These are necessary restriction to make sure that the virtual space always
964 // grows in steps of Metaspace::commit_alignment(). If both base and size are
965 // aligned only the middle alignment of the VirtualSpace is used.
966 assert_is_ptr_aligned(_rs.base(), Metaspace::commit_alignment());
967 assert_is_size_aligned(_rs.size(), Metaspace::commit_alignment());
968
969 // ReservedSpaces marked as special will have the entire memory
970 // pre-committed. Setting a committed size will make sure that
971 // committed_size and actual_committed_size agrees.
972 size_t pre_committed_size = _rs.special() ? _rs.size() : 0;
973
974 bool result = virtual_space()->initialize_with_granularity(_rs, pre_committed_size,
975 Metaspace::commit_alignment());
976 if (result) {
977 assert(virtual_space()->committed_size() == virtual_space()->actual_committed_size(),
978 "Checking that the pre-committed memory was registered by the VirtualSpace");
979
980 set_top((MetaWord*)virtual_space()->low());
981 set_reserved(MemRegion((HeapWord*)_rs.base(),
982 (HeapWord*)(_rs.base() + _rs.size())));
983
984 assert(reserved()->start() == (HeapWord*) _rs.base(),
985 err_msg("Reserved start was not set properly " PTR_FORMAT
986 " != " PTR_FORMAT, reserved()->start(), _rs.base()));
987 assert(reserved()->word_size() == _rs.size() / BytesPerWord,
988 err_msg("Reserved size was not set properly " SIZE_FORMAT
989 " != " SIZE_FORMAT, reserved()->word_size(),
990 _rs.size() / BytesPerWord));
991 }
992
993 return result;
994 }
995
996 void VirtualSpaceNode::print_on(outputStream* st) const {
997 size_t used = used_words_in_vs();
998 size_t capacity = capacity_words_in_vs();
999 VirtualSpace* vs = virtual_space();
1000 st->print_cr(" space @ " PTR_FORMAT " " SIZE_FORMAT "K, %3d%% used "
1001 "[" PTR_FORMAT ", " PTR_FORMAT ", "
1002 PTR_FORMAT ", " PTR_FORMAT ")",
1003 vs, capacity / K,
1004 capacity == 0 ? 0 : used * 100 / capacity,
1005 bottom(), top(), end(),
1006 vs->high_boundary());
1007 }
1008
1009 #ifdef ASSERT
1010 void VirtualSpaceNode::mangle() {
1011 size_t word_size = capacity_words_in_vs();
1012 Copy::fill_to_words((HeapWord*) low(), word_size, 0xf1f1f1f1);
1013 }
1014 #endif // ASSERT
1015
1016 // VirtualSpaceList methods
1017 // Space allocated from the VirtualSpace
1018
1019 VirtualSpaceList::~VirtualSpaceList() {
1020 VirtualSpaceListIterator iter(virtual_space_list());
1021 while (iter.repeat()) {
1022 VirtualSpaceNode* vsl = iter.get_next();
1023 delete vsl;
1024 }
1025 }
1026
1027 void VirtualSpaceList::inc_reserved_words(size_t v) {
1028 assert_lock_strong(SpaceManager::expand_lock());
1029 _reserved_words = _reserved_words + v;
1030 }
1031 void VirtualSpaceList::dec_reserved_words(size_t v) {
1032 assert_lock_strong(SpaceManager::expand_lock());
1033 _reserved_words = _reserved_words - v;
1034 }
1035
1036 #define assert_committed_below_limit() \
1037 assert(MetaspaceAux::committed_bytes() <= MaxMetaspaceSize, \
1038 err_msg("Too much committed memory. Committed: " SIZE_FORMAT \
1039 " limit (MaxMetaspaceSize): " SIZE_FORMAT, \
1040 MetaspaceAux::committed_bytes(), MaxMetaspaceSize));
1041
1042 void VirtualSpaceList::inc_committed_words(size_t v) {
1043 assert_lock_strong(SpaceManager::expand_lock());
1044 _committed_words = _committed_words + v;
1045
1046 assert_committed_below_limit();
1047 }
1048 void VirtualSpaceList::dec_committed_words(size_t v) {
1049 assert_lock_strong(SpaceManager::expand_lock());
1050 _committed_words = _committed_words - v;
1051
1052 assert_committed_below_limit();
1053 }
1054
1055 void VirtualSpaceList::inc_virtual_space_count() {
1056 assert_lock_strong(SpaceManager::expand_lock());
1057 _virtual_space_count++;
1058 }
1059 void VirtualSpaceList::dec_virtual_space_count() {
1060 assert_lock_strong(SpaceManager::expand_lock());
1061 _virtual_space_count--;
1062 }
1063
1064 void ChunkManager::remove_chunk(Metachunk* chunk) {
1065 size_t word_size = chunk->word_size();
1066 ChunkIndex index = list_index(word_size);
1067 if (index != HumongousIndex) {
1068 free_chunks(index)->remove_chunk(chunk);
1069 } else {
1070 humongous_dictionary()->remove_chunk(chunk);
1071 }
1072
1073 // Chunk is being removed from the chunks free list.
1074 dec_free_chunks_total(chunk->word_size());
1075 }
1076
1077 // Walk the list of VirtualSpaceNodes and delete
1078 // nodes with a 0 container_count. Remove Metachunks in
1079 // the node from their respective freelists.
1080 void VirtualSpaceList::purge(ChunkManager* chunk_manager) {
1081 assert_lock_strong(SpaceManager::expand_lock());
1082 // Don't use a VirtualSpaceListIterator because this
1083 // list is being changed and a straightforward use of an iterator is not safe.
1084 VirtualSpaceNode* purged_vsl = NULL;
1085 VirtualSpaceNode* prev_vsl = virtual_space_list();
1086 VirtualSpaceNode* next_vsl = prev_vsl;
1087 while (next_vsl != NULL) {
1088 VirtualSpaceNode* vsl = next_vsl;
1089 next_vsl = vsl->next();
1090 // Don't free the current virtual space since it will likely
1091 // be needed soon.
1092 if (vsl->container_count() == 0 && vsl != current_virtual_space()) {
1093 // Unlink it from the list
1094 if (prev_vsl == vsl) {
1095 // This is the case of the current node being the first node.
1096 assert(vsl == virtual_space_list(), "Expected to be the first node");
1097 set_virtual_space_list(vsl->next());
1098 } else {
1099 prev_vsl->set_next(vsl->next());
1100 }
1101
1102 vsl->purge(chunk_manager);
1103 dec_reserved_words(vsl->reserved_words());
1104 dec_committed_words(vsl->committed_words());
1105 dec_virtual_space_count();
1106 purged_vsl = vsl;
1107 delete vsl;
1108 } else {
1109 prev_vsl = vsl;
1110 }
1111 }
1112 #ifdef ASSERT
1113 if (purged_vsl != NULL) {
1114 // List should be stable enough to use an iterator here.
1115 VirtualSpaceListIterator iter(virtual_space_list());
1116 while (iter.repeat()) {
1117 VirtualSpaceNode* vsl = iter.get_next();
1118 assert(vsl != purged_vsl, "Purge of vsl failed");
1119 }
1120 }
1121 #endif
1122 }
1123
1124 void VirtualSpaceList::retire_current_virtual_space() {
1125 assert_lock_strong(SpaceManager::expand_lock());
1126
1127 VirtualSpaceNode* vsn = current_virtual_space();
1128
1129 ChunkManager* cm = is_class() ? Metaspace::chunk_manager_class() :
1130 Metaspace::chunk_manager_metadata();
1131
1132 vsn->retire(cm);
1133 }
1134
1135 void VirtualSpaceNode::retire(ChunkManager* chunk_manager) {
1136 for (int i = (int)MediumIndex; i >= (int)ZeroIndex; --i) {
1137 ChunkIndex index = (ChunkIndex)i;
1138 size_t chunk_size = chunk_manager->free_chunks(index)->size();
1139
1140 while (free_words_in_vs() >= chunk_size) {
1141 DEBUG_ONLY(verify_container_count();)
1142 Metachunk* chunk = get_chunk_vs(chunk_size);
1143 assert(chunk != NULL, "allocation should have been successful");
1144
1145 chunk_manager->return_chunks(index, chunk);
1146 chunk_manager->inc_free_chunks_total(chunk_size);
1147 DEBUG_ONLY(verify_container_count();)
1148 }
1149 }
1150 assert(free_words_in_vs() == 0, "should be empty now");
1151 }
1152
1153 VirtualSpaceList::VirtualSpaceList(size_t word_size) :
1154 _is_class(false),
1155 _virtual_space_list(NULL),
1156 _current_virtual_space(NULL),
1157 _reserved_words(0),
1158 _committed_words(0),
1159 _virtual_space_count(0) {
1160 MutexLockerEx cl(SpaceManager::expand_lock(),
1161 Mutex::_no_safepoint_check_flag);
1162 create_new_virtual_space(word_size);
1163 }
1164
1165 VirtualSpaceList::VirtualSpaceList(ReservedSpace rs) :
1166 _is_class(true),
1167 _virtual_space_list(NULL),
1168 _current_virtual_space(NULL),
1169 _reserved_words(0),
1170 _committed_words(0),
1171 _virtual_space_count(0) {
1172 MutexLockerEx cl(SpaceManager::expand_lock(),
1173 Mutex::_no_safepoint_check_flag);
1174 VirtualSpaceNode* class_entry = new VirtualSpaceNode(rs);
1175 bool succeeded = class_entry->initialize();
1176 if (succeeded) {
1177 link_vs(class_entry);
1178 }
1179 }
1180
1181 size_t VirtualSpaceList::free_bytes() {
1182 return virtual_space_list()->free_words_in_vs() * BytesPerWord;
1183 }
1184
1185 // Allocate another meta virtual space and add it to the list.
1186 bool VirtualSpaceList::create_new_virtual_space(size_t vs_word_size) {
1187 assert_lock_strong(SpaceManager::expand_lock());
1188
1189 if (is_class()) {
1190 assert(false, "We currently don't support more than one VirtualSpace for"
1191 " the compressed class space. The initialization of the"
1192 " CCS uses another code path and should not hit this path.");
1193 return false;
1194 }
1195
1196 if (vs_word_size == 0) {
1197 assert(false, "vs_word_size should always be at least _reserve_alignment large.");
1198 return false;
1199 }
1200
1201 // Reserve the space
1202 size_t vs_byte_size = vs_word_size * BytesPerWord;
1203 assert_is_size_aligned(vs_byte_size, Metaspace::reserve_alignment());
1204
1205 // Allocate the meta virtual space and initialize it.
1206 VirtualSpaceNode* new_entry = new VirtualSpaceNode(vs_byte_size);
1207 if (!new_entry->initialize()) {
1208 delete new_entry;
1209 return false;
1210 } else {
1211 assert(new_entry->reserved_words() == vs_word_size,
1212 "Reserved memory size differs from requested memory size");
1213 link_vs(new_entry);
1214 return true;
1215 }
1216 }
1217
1218 void VirtualSpaceList::link_vs(VirtualSpaceNode* new_entry) {
1219 if (virtual_space_list() == NULL) {
1220 set_virtual_space_list(new_entry);
1221 } else {
1222 current_virtual_space()->set_next(new_entry);
1223 }
1224 set_current_virtual_space(new_entry);
1225 inc_reserved_words(new_entry->reserved_words());
1226 inc_committed_words(new_entry->committed_words());
1227 inc_virtual_space_count();
1228 #ifdef ASSERT
1229 new_entry->mangle();
1230 #endif
1231 if (TraceMetavirtualspaceAllocation && Verbose) {
1232 VirtualSpaceNode* vsl = current_virtual_space();
1233 vsl->print_on(gclog_or_tty);
1234 }
1235 }
1236
1237 bool VirtualSpaceList::expand_node_by(VirtualSpaceNode* node,
1238 size_t min_words,
1239 size_t preferred_words) {
1240 size_t before = node->committed_words();
1241
1242 bool result = node->expand_by(min_words, preferred_words);
1243
1244 size_t after = node->committed_words();
1245
1246 // after and before can be the same if the memory was pre-committed.
1247 assert(after >= before, "Inconsistency");
1248 inc_committed_words(after - before);
1249
1250 return result;
1251 }
1252
1253 bool VirtualSpaceList::expand_by(size_t min_words, size_t preferred_words) {
1254 assert_is_size_aligned(min_words, Metaspace::commit_alignment_words());
1255 assert_is_size_aligned(preferred_words, Metaspace::commit_alignment_words());
1256 assert(min_words <= preferred_words, "Invalid arguments");
1257
1258 if (!MetaspaceGC::can_expand(min_words, this->is_class())) {
1259 return false;
1260 }
1261
1262 size_t allowed_expansion_words = MetaspaceGC::allowed_expansion();
1263 if (allowed_expansion_words < min_words) {
1264 return false;
1265 }
1266
1267 size_t max_expansion_words = MIN2(preferred_words, allowed_expansion_words);
1268
1269 // Commit more memory from the the current virtual space.
1270 bool vs_expanded = expand_node_by(current_virtual_space(),
1271 min_words,
1272 max_expansion_words);
1273 if (vs_expanded) {
1274 return true;
1275 }
1276 retire_current_virtual_space();
1277
1278 // Get another virtual space.
1279 size_t grow_vs_words = MAX2((size_t)VirtualSpaceSize, preferred_words);
1280 grow_vs_words = align_size_up(grow_vs_words, Metaspace::reserve_alignment_words());
1281
1282 if (create_new_virtual_space(grow_vs_words)) {
1283 if (current_virtual_space()->is_pre_committed()) {
1284 // The memory was pre-committed, so we are done here.
1285 assert(min_words <= current_virtual_space()->committed_words(),
1286 "The new VirtualSpace was pre-committed, so it"
1287 "should be large enough to fit the alloc request.");
1288 return true;
1289 }
1290
1291 return expand_node_by(current_virtual_space(),
1292 min_words,
1293 max_expansion_words);
1294 }
1295
1296 return false;
1297 }
1298
1299 Metachunk* VirtualSpaceList::get_new_chunk(size_t word_size,
1300 size_t grow_chunks_by_words,
1301 size_t medium_chunk_bunch) {
1302
1303 // Allocate a chunk out of the current virtual space.
1304 Metachunk* next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
1305
1306 if (next != NULL) {
1307 return next;
1308 }
1309
1310 // The expand amount is currently only determined by the requested sizes
1311 // and not how much committed memory is left in the current virtual space.
1312
1313 size_t min_word_size = align_size_up(grow_chunks_by_words, Metaspace::commit_alignment_words());
1314 size_t preferred_word_size = align_size_up(medium_chunk_bunch, Metaspace::commit_alignment_words());
1315 if (min_word_size >= preferred_word_size) {
1316 // Can happen when humongous chunks are allocated.
1317 preferred_word_size = min_word_size;
1318 }
1319
1320 bool expanded = expand_by(min_word_size, preferred_word_size);
1321 if (expanded) {
1322 next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
1323 assert(next != NULL, "The allocation was expected to succeed after the expansion");
1324 }
1325
1326 return next;
1327 }
1328
1329 void VirtualSpaceList::print_on(outputStream* st) const {
1330 if (TraceMetadataChunkAllocation && Verbose) {
1331 VirtualSpaceListIterator iter(virtual_space_list());
1332 while (iter.repeat()) {
1333 VirtualSpaceNode* node = iter.get_next();
1334 node->print_on(st);
1335 }
1336 }
1337 }
1338
1339 // MetaspaceGC methods
1340
1341 // VM_CollectForMetadataAllocation is the vm operation used to GC.
1342 // Within the VM operation after the GC the attempt to allocate the metadata
1343 // should succeed. If the GC did not free enough space for the metaspace
1344 // allocation, the HWM is increased so that another virtualspace will be
1345 // allocated for the metadata. With perm gen the increase in the perm
1346 // gen had bounds, MinMetaspaceExpansion and MaxMetaspaceExpansion. The
1347 // metaspace policy uses those as the small and large steps for the HWM.
1348 //
1349 // After the GC the compute_new_size() for MetaspaceGC is called to
1350 // resize the capacity of the metaspaces. The current implementation
1351 // is based on the flags MinMetaspaceFreeRatio and MaxMetaspaceFreeRatio used
1352 // to resize the Java heap by some GC's. New flags can be implemented
1353 // if really needed. MinMetaspaceFreeRatio is used to calculate how much
1354 // free space is desirable in the metaspace capacity to decide how much
1355 // to increase the HWM. MaxMetaspaceFreeRatio is used to decide how much
1356 // free space is desirable in the metaspace capacity before decreasing
1357 // the HWM.
1358
1359 // Calculate the amount to increase the high water mark (HWM).
1360 // Increase by a minimum amount (MinMetaspaceExpansion) so that
1361 // another expansion is not requested too soon. If that is not
1362 // enough to satisfy the allocation, increase by MaxMetaspaceExpansion.
1363 // If that is still not enough, expand by the size of the allocation
1364 // plus some.
1365 size_t MetaspaceGC::delta_capacity_until_GC(size_t bytes) {
1366 size_t min_delta = MinMetaspaceExpansion;
1367 size_t max_delta = MaxMetaspaceExpansion;
1368 size_t delta = align_size_up(bytes, Metaspace::commit_alignment());
1369
1370 if (delta <= min_delta) {
1371 delta = min_delta;
1372 } else if (delta <= max_delta) {
1373 // Don't want to hit the high water mark on the next
1374 // allocation so make the delta greater than just enough
1375 // for this allocation.
1376 delta = max_delta;
1377 } else {
1378 // This allocation is large but the next ones are probably not
1379 // so increase by the minimum.
1380 delta = delta + min_delta;
1381 }
1382
1383 assert_is_size_aligned(delta, Metaspace::commit_alignment());
1384
1385 return delta;
1386 }
1387
1388 size_t MetaspaceGC::capacity_until_GC() {
1389 size_t value = (size_t)OrderAccess::load_ptr_acquire(&_capacity_until_GC);
1390 assert(value >= MetaspaceSize, "Not initialied properly?");
1391 return value;
1392 }
1393
1394 size_t MetaspaceGC::inc_capacity_until_GC(size_t v) {
1395 assert_is_size_aligned(v, Metaspace::commit_alignment());
1396
1397 return (size_t)Atomic::add_ptr(v, &_capacity_until_GC);
1398 }
1399
1400 size_t MetaspaceGC::dec_capacity_until_GC(size_t v) {
1401 assert_is_size_aligned(v, Metaspace::commit_alignment());
1402
1403 return (size_t)Atomic::add_ptr(-(intptr_t)v, &_capacity_until_GC);
1404 }
1405
1406 bool MetaspaceGC::can_expand(size_t word_size, bool is_class) {
1407 // Check if the compressed class space is full.
1408 if (is_class && Metaspace::using_class_space()) {
1409 size_t class_committed = MetaspaceAux::committed_bytes(Metaspace::ClassType);
1410 if (class_committed + word_size * BytesPerWord > CompressedClassSpaceSize) {
1411 return false;
1412 }
1413 }
1414
1415 // Check if the user has imposed a limit on the metaspace memory.
1416 size_t committed_bytes = MetaspaceAux::committed_bytes();
1417 if (committed_bytes + word_size * BytesPerWord > MaxMetaspaceSize) {
1418 return false;
1419 }
1420
1421 return true;
1422 }
1423
1424 size_t MetaspaceGC::allowed_expansion() {
1425 size_t committed_bytes = MetaspaceAux::committed_bytes();
1426
1427 size_t left_until_max = MaxMetaspaceSize - committed_bytes;
1428
1429 // Always grant expansion if we are initiating the JVM,
1430 // or if the GC_locker is preventing GCs.
1431 if (!is_init_completed() || GC_locker::is_active_and_needs_gc()) {
1432 return left_until_max / BytesPerWord;
1433 }
1434
1435 size_t capacity_until_gc = capacity_until_GC();
1436
1437 if (capacity_until_gc <= committed_bytes) {
1438 return 0;
1439 }
1440
1441 size_t left_until_GC = capacity_until_gc - committed_bytes;
1442 size_t left_to_commit = MIN2(left_until_GC, left_until_max);
1443
1444 return left_to_commit / BytesPerWord;
1445 }
1446
1447 void MetaspaceGC::compute_new_size() {
1448 assert(_shrink_factor <= 100, "invalid shrink factor");
1449 uint current_shrink_factor = _shrink_factor;
1450 _shrink_factor = 0;
1451
1452 const size_t used_after_gc = MetaspaceAux::capacity_bytes();
1453 const size_t capacity_until_GC = MetaspaceGC::capacity_until_GC();
1454
1455 const double minimum_free_percentage = MinMetaspaceFreeRatio / 100.0;
1456 const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1457
1458 const double min_tmp = used_after_gc / maximum_used_percentage;
1459 size_t minimum_desired_capacity =
1460 (size_t)MIN2(min_tmp, double(max_uintx));
1461 // Don't shrink less than the initial generation size
1462 minimum_desired_capacity = MAX2(minimum_desired_capacity,
1463 (size_t)MetaspaceSize);
1464
1465 if (PrintGCDetails && Verbose) {
1466 gclog_or_tty->print_cr("\nMetaspaceGC::compute_new_size: ");
1467 gclog_or_tty->print_cr(" "
1468 " minimum_free_percentage: %6.2f"
1469 " maximum_used_percentage: %6.2f",
1470 minimum_free_percentage,
1471 maximum_used_percentage);
1472 gclog_or_tty->print_cr(" "
1473 " used_after_gc : %6.1fKB",
1474 used_after_gc / (double) K);
1475 }
1476
1477
1478 size_t shrink_bytes = 0;
1479 if (capacity_until_GC < minimum_desired_capacity) {
1480 // If we have less capacity below the metaspace HWM, then
1481 // increment the HWM.
1482 size_t expand_bytes = minimum_desired_capacity - capacity_until_GC;
1483 expand_bytes = align_size_up(expand_bytes, Metaspace::commit_alignment());
1484 // Don't expand unless it's significant
1485 if (expand_bytes >= MinMetaspaceExpansion) {
1486 size_t new_capacity_until_GC = MetaspaceGC::inc_capacity_until_GC(expand_bytes);
1487 Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
1488 new_capacity_until_GC,
1489 MetaspaceGCThresholdUpdater::ComputeNewSize);
1490 if (PrintGCDetails && Verbose) {
1491 gclog_or_tty->print_cr(" expanding:"
1492 " minimum_desired_capacity: %6.1fKB"
1493 " expand_bytes: %6.1fKB"
1494 " MinMetaspaceExpansion: %6.1fKB"
1495 " new metaspace HWM: %6.1fKB",
1496 minimum_desired_capacity / (double) K,
1497 expand_bytes / (double) K,
1498 MinMetaspaceExpansion / (double) K,
1499 new_capacity_until_GC / (double) K);
1500 }
1501 }
1502 return;
1503 }
1504
1505 // No expansion, now see if we want to shrink
1506 // We would never want to shrink more than this
1507 assert(capacity_until_GC >= minimum_desired_capacity,
1508 err_msg(SIZE_FORMAT " >= " SIZE_FORMAT,
1509 capacity_until_GC, minimum_desired_capacity));
1510 size_t max_shrink_bytes = capacity_until_GC - minimum_desired_capacity;
1511
1512 // Should shrinking be considered?
1513 if (MaxMetaspaceFreeRatio < 100) {
1514 const double maximum_free_percentage = MaxMetaspaceFreeRatio / 100.0;
1515 const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1516 const double max_tmp = used_after_gc / minimum_used_percentage;
1517 size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
1518 maximum_desired_capacity = MAX2(maximum_desired_capacity,
1519 (size_t)MetaspaceSize);
1520 if (PrintGCDetails && Verbose) {
1521 gclog_or_tty->print_cr(" "
1522 " maximum_free_percentage: %6.2f"
1523 " minimum_used_percentage: %6.2f",
1524 maximum_free_percentage,
1525 minimum_used_percentage);
1526 gclog_or_tty->print_cr(" "
1527 " minimum_desired_capacity: %6.1fKB"
1528 " maximum_desired_capacity: %6.1fKB",
1529 minimum_desired_capacity / (double) K,
1530 maximum_desired_capacity / (double) K);
1531 }
1532
1533 assert(minimum_desired_capacity <= maximum_desired_capacity,
1534 "sanity check");
1535
1536 if (capacity_until_GC > maximum_desired_capacity) {
1537 // Capacity too large, compute shrinking size
1538 shrink_bytes = capacity_until_GC - maximum_desired_capacity;
1539 // We don't want shrink all the way back to initSize if people call
1540 // System.gc(), because some programs do that between "phases" and then
1541 // we'd just have to grow the heap up again for the next phase. So we
1542 // damp the shrinking: 0% on the first call, 10% on the second call, 40%
1543 // on the third call, and 100% by the fourth call. But if we recompute
1544 // size without shrinking, it goes back to 0%.
1545 shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
1546
1547 shrink_bytes = align_size_down(shrink_bytes, Metaspace::commit_alignment());
1548
1549 assert(shrink_bytes <= max_shrink_bytes,
1550 err_msg("invalid shrink size " SIZE_FORMAT " not <= " SIZE_FORMAT,
1551 shrink_bytes, max_shrink_bytes));
1552 if (current_shrink_factor == 0) {
1553 _shrink_factor = 10;
1554 } else {
1555 _shrink_factor = MIN2(current_shrink_factor * 4, (uint) 100);
1556 }
1557 if (PrintGCDetails && Verbose) {
1558 gclog_or_tty->print_cr(" "
1559 " shrinking:"
1560 " initSize: %.1fK"
1561 " maximum_desired_capacity: %.1fK",
1562 MetaspaceSize / (double) K,
1563 maximum_desired_capacity / (double) K);
1564 gclog_or_tty->print_cr(" "
1565 " shrink_bytes: %.1fK"
1566 " current_shrink_factor: %d"
1567 " new shrink factor: %d"
1568 " MinMetaspaceExpansion: %.1fK",
1569 shrink_bytes / (double) K,
1570 current_shrink_factor,
1571 _shrink_factor,
1572 MinMetaspaceExpansion / (double) K);
1573 }
1574 }
1575 }
1576
1577 // Don't shrink unless it's significant
1578 if (shrink_bytes >= MinMetaspaceExpansion &&
1579 ((capacity_until_GC - shrink_bytes) >= MetaspaceSize)) {
1580 size_t new_capacity_until_GC = MetaspaceGC::dec_capacity_until_GC(shrink_bytes);
1581 Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
1582 new_capacity_until_GC,
1583 MetaspaceGCThresholdUpdater::ComputeNewSize);
1584 }
1585 }
1586
1587 // Metadebug methods
1588
1589 void Metadebug::init_allocation_fail_alot_count() {
1590 if (MetadataAllocationFailALot) {
1591 _allocation_fail_alot_count =
1592 1+(long)((double)MetadataAllocationFailALotInterval*os::random()/(max_jint+1.0));
1593 }
1594 }
1595
1596 #ifdef ASSERT
1597 bool Metadebug::test_metadata_failure() {
1598 if (MetadataAllocationFailALot &&
1599 Threads::is_vm_complete()) {
1600 if (_allocation_fail_alot_count > 0) {
1601 _allocation_fail_alot_count--;
1602 } else {
1603 if (TraceMetadataChunkAllocation && Verbose) {
1604 gclog_or_tty->print_cr("Metadata allocation failing for "
1605 "MetadataAllocationFailALot");
1606 }
1607 init_allocation_fail_alot_count();
1608 return true;
1609 }
1610 }
1611 return false;
1612 }
1613 #endif
1614
1615 // ChunkManager methods
1616
1617 size_t ChunkManager::free_chunks_total_words() {
1618 return _free_chunks_total;
1619 }
1620
1621 size_t ChunkManager::free_chunks_total_bytes() {
1622 return free_chunks_total_words() * BytesPerWord;
1623 }
1624
1625 size_t ChunkManager::free_chunks_count() {
1626 #ifdef ASSERT
1627 if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
1628 MutexLockerEx cl(SpaceManager::expand_lock(),
1629 Mutex::_no_safepoint_check_flag);
1630 // This lock is only needed in debug because the verification
1631 // of the _free_chunks_totals walks the list of free chunks
1632 slow_locked_verify_free_chunks_count();
1633 }
1634 #endif
1635 return _free_chunks_count;
1636 }
1637
1638 void ChunkManager::locked_verify_free_chunks_total() {
1639 assert_lock_strong(SpaceManager::expand_lock());
1640 assert(sum_free_chunks() == _free_chunks_total,
1641 err_msg("_free_chunks_total " SIZE_FORMAT " is not the"
1642 " same as sum " SIZE_FORMAT, _free_chunks_total,
1643 sum_free_chunks()));
1644 }
1645
1646 void ChunkManager::verify_free_chunks_total() {
1647 MutexLockerEx cl(SpaceManager::expand_lock(),
1648 Mutex::_no_safepoint_check_flag);
1649 locked_verify_free_chunks_total();
1650 }
1651
1652 void ChunkManager::locked_verify_free_chunks_count() {
1653 assert_lock_strong(SpaceManager::expand_lock());
1654 assert(sum_free_chunks_count() == _free_chunks_count,
1655 err_msg("_free_chunks_count " SIZE_FORMAT " is not the"
1656 " same as sum " SIZE_FORMAT, _free_chunks_count,
1657 sum_free_chunks_count()));
1658 }
1659
1660 void ChunkManager::verify_free_chunks_count() {
1661 #ifdef ASSERT
1662 MutexLockerEx cl(SpaceManager::expand_lock(),
1663 Mutex::_no_safepoint_check_flag);
1664 locked_verify_free_chunks_count();
1665 #endif
1666 }
1667
1668 void ChunkManager::verify() {
1669 MutexLockerEx cl(SpaceManager::expand_lock(),
1670 Mutex::_no_safepoint_check_flag);
1671 locked_verify();
1672 }
1673
1674 void ChunkManager::locked_verify() {
1675 locked_verify_free_chunks_count();
1676 locked_verify_free_chunks_total();
1677 }
1678
1679 void ChunkManager::locked_print_free_chunks(outputStream* st) {
1680 assert_lock_strong(SpaceManager::expand_lock());
1681 st->print_cr("Free chunk total " SIZE_FORMAT " count " SIZE_FORMAT,
1682 _free_chunks_total, _free_chunks_count);
1683 }
1684
1685 void ChunkManager::locked_print_sum_free_chunks(outputStream* st) {
1686 assert_lock_strong(SpaceManager::expand_lock());
1687 st->print_cr("Sum free chunk total " SIZE_FORMAT " count " SIZE_FORMAT,
1688 sum_free_chunks(), sum_free_chunks_count());
1689 }
1690 ChunkList* ChunkManager::free_chunks(ChunkIndex index) {
1691 return &_free_chunks[index];
1692 }
1693
1694 // These methods that sum the free chunk lists are used in printing
1695 // methods that are used in product builds.
1696 size_t ChunkManager::sum_free_chunks() {
1697 assert_lock_strong(SpaceManager::expand_lock());
1698 size_t result = 0;
1699 for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1700 ChunkList* list = free_chunks(i);
1701
1702 if (list == NULL) {
1703 continue;
1704 }
1705
1706 result = result + list->count() * list->size();
1707 }
1708 result = result + humongous_dictionary()->total_size();
1709 return result;
1710 }
1711
1712 size_t ChunkManager::sum_free_chunks_count() {
1713 assert_lock_strong(SpaceManager::expand_lock());
1714 size_t count = 0;
1715 for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1716 ChunkList* list = free_chunks(i);
1717 if (list == NULL) {
1718 continue;
1719 }
1720 count = count + list->count();
1721 }
1722 count = count + humongous_dictionary()->total_free_blocks();
1723 return count;
1724 }
1725
1726 ChunkList* ChunkManager::find_free_chunks_list(size_t word_size) {
1727 ChunkIndex index = list_index(word_size);
1728 assert(index < HumongousIndex, "No humongous list");
1729 return free_chunks(index);
1730 }
1731
1732 Metachunk* ChunkManager::free_chunks_get(size_t word_size) {
1733 assert_lock_strong(SpaceManager::expand_lock());
1734
1735 slow_locked_verify();
1736
1737 Metachunk* chunk = NULL;
1738 if (list_index(word_size) != HumongousIndex) {
1739 ChunkList* free_list = find_free_chunks_list(word_size);
1740 assert(free_list != NULL, "Sanity check");
1741
1742 chunk = free_list->head();
1743
1744 if (chunk == NULL) {
1745 return NULL;
1746 }
1747
1748 // Remove the chunk as the head of the list.
1749 free_list->remove_chunk(chunk);
1750
1751 if (TraceMetadataChunkAllocation && Verbose) {
1752 gclog_or_tty->print_cr("ChunkManager::free_chunks_get: free_list "
1753 PTR_FORMAT " head " PTR_FORMAT " size " SIZE_FORMAT,
1754 free_list, chunk, chunk->word_size());
1755 }
1756 } else {
1757 chunk = humongous_dictionary()->get_chunk(
1758 word_size,
1759 FreeBlockDictionary<Metachunk>::atLeast);
1760
1761 if (chunk == NULL) {
1762 return NULL;
1763 }
1764
1765 if (TraceMetadataHumongousAllocation) {
1766 size_t waste = chunk->word_size() - word_size;
1767 gclog_or_tty->print_cr("Free list allocate humongous chunk size "
1768 SIZE_FORMAT " for requested size " SIZE_FORMAT
1769 " waste " SIZE_FORMAT,
1770 chunk->word_size(), word_size, waste);
1771 }
1772 }
1773
1774 // Chunk is being removed from the chunks free list.
1775 dec_free_chunks_total(chunk->word_size());
1776
1777 // Remove it from the links to this freelist
1778 chunk->set_next(NULL);
1779 chunk->set_prev(NULL);
1780 #ifdef ASSERT
1781 // Chunk is no longer on any freelist. Setting to false make container_count_slow()
1782 // work.
1783 chunk->set_is_tagged_free(false);
1784 #endif
1785 chunk->container()->inc_container_count();
1786
1787 slow_locked_verify();
1788 return chunk;
1789 }
1790
1791 Metachunk* ChunkManager::chunk_freelist_allocate(size_t word_size) {
1792 assert_lock_strong(SpaceManager::expand_lock());
1793 slow_locked_verify();
1794
1795 // Take from the beginning of the list
1796 Metachunk* chunk = free_chunks_get(word_size);
1797 if (chunk == NULL) {
1798 return NULL;
1799 }
1800
1801 assert((word_size <= chunk->word_size()) ||
1802 list_index(chunk->word_size() == HumongousIndex),
1803 "Non-humongous variable sized chunk");
1804 if (TraceMetadataChunkAllocation) {
1805 size_t list_count;
1806 if (list_index(word_size) < HumongousIndex) {
1807 ChunkList* list = find_free_chunks_list(word_size);
1808 list_count = list->count();
1809 } else {
1810 list_count = humongous_dictionary()->total_count();
1811 }
1812 gclog_or_tty->print("ChunkManager::chunk_freelist_allocate: " PTR_FORMAT " chunk "
1813 PTR_FORMAT " size " SIZE_FORMAT " count " SIZE_FORMAT " ",
1814 this, chunk, chunk->word_size(), list_count);
1815 locked_print_free_chunks(gclog_or_tty);
1816 }
1817
1818 return chunk;
1819 }
1820
1821 void ChunkManager::print_on(outputStream* out) const {
1822 if (PrintFLSStatistics != 0) {
1823 const_cast<ChunkManager *>(this)->humongous_dictionary()->report_statistics();
1824 }
1825 }
1826
1827 // SpaceManager methods
1828
1829 void SpaceManager::get_initial_chunk_sizes(Metaspace::MetaspaceType type,
1830 size_t* chunk_word_size,
1831 size_t* class_chunk_word_size) {
1832 switch (type) {
1833 case Metaspace::BootMetaspaceType:
1834 *chunk_word_size = Metaspace::first_chunk_word_size();
1835 *class_chunk_word_size = Metaspace::first_class_chunk_word_size();
1836 break;
1837 case Metaspace::ROMetaspaceType:
1838 *chunk_word_size = SharedReadOnlySize / wordSize;
1839 *class_chunk_word_size = ClassSpecializedChunk;
1840 break;
1841 case Metaspace::ReadWriteMetaspaceType:
1842 *chunk_word_size = SharedReadWriteSize / wordSize;
1843 *class_chunk_word_size = ClassSpecializedChunk;
1844 break;
1845 case Metaspace::AnonymousMetaspaceType:
1846 case Metaspace::ReflectionMetaspaceType:
1847 *chunk_word_size = SpecializedChunk;
1848 *class_chunk_word_size = ClassSpecializedChunk;
1849 break;
1850 default:
1851 *chunk_word_size = SmallChunk;
1852 *class_chunk_word_size = ClassSmallChunk;
1853 break;
1854 }
1855 assert(*chunk_word_size != 0 && *class_chunk_word_size != 0,
1856 err_msg("Initial chunks sizes bad: data " SIZE_FORMAT
1857 " class " SIZE_FORMAT,
1858 *chunk_word_size, *class_chunk_word_size));
1859 }
1860
1861 size_t SpaceManager::sum_free_in_chunks_in_use() const {
1862 MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1863 size_t free = 0;
1864 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1865 Metachunk* chunk = chunks_in_use(i);
1866 while (chunk != NULL) {
1867 free += chunk->free_word_size();
1868 chunk = chunk->next();
1869 }
1870 }
1871 return free;
1872 }
1873
1874 size_t SpaceManager::sum_waste_in_chunks_in_use() const {
1875 MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1876 size_t result = 0;
1877 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1878 result += sum_waste_in_chunks_in_use(i);
1879 }
1880
1881 return result;
1882 }
1883
1884 size_t SpaceManager::sum_waste_in_chunks_in_use(ChunkIndex index) const {
1885 size_t result = 0;
1886 Metachunk* chunk = chunks_in_use(index);
1887 // Count the free space in all the chunk but not the
1888 // current chunk from which allocations are still being done.
1889 while (chunk != NULL) {
1890 if (chunk != current_chunk()) {
1891 result += chunk->free_word_size();
1892 }
1893 chunk = chunk->next();
1894 }
1895 return result;
1896 }
1897
1898 size_t SpaceManager::sum_capacity_in_chunks_in_use() const {
1899 // For CMS use "allocated_chunks_words()" which does not need the
1900 // Metaspace lock. For the other collectors sum over the
1901 // lists. Use both methods as a check that "allocated_chunks_words()"
1902 // is correct. That is, sum_capacity_in_chunks() is too expensive
1903 // to use in the product and allocated_chunks_words() should be used
1904 // but allow for checking that allocated_chunks_words() returns the same
1905 // value as sum_capacity_in_chunks_in_use() which is the definitive
1906 // answer.
1907 if (UseConcMarkSweepGC) {
1908 return allocated_chunks_words();
1909 } else {
1910 MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1911 size_t sum = 0;
1912 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1913 Metachunk* chunk = chunks_in_use(i);
1914 while (chunk != NULL) {
1915 sum += chunk->word_size();
1916 chunk = chunk->next();
1917 }
1918 }
1919 return sum;
1920 }
1921 }
1922
1923 size_t SpaceManager::sum_count_in_chunks_in_use() {
1924 size_t count = 0;
1925 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1926 count = count + sum_count_in_chunks_in_use(i);
1927 }
1928
1929 return count;
1930 }
1931
1932 size_t SpaceManager::sum_count_in_chunks_in_use(ChunkIndex i) {
1933 size_t count = 0;
1934 Metachunk* chunk = chunks_in_use(i);
1935 while (chunk != NULL) {
1936 count++;
1937 chunk = chunk->next();
1938 }
1939 return count;
1940 }
1941
1942
1943 size_t SpaceManager::sum_used_in_chunks_in_use() const {
1944 MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1945 size_t used = 0;
1946 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1947 Metachunk* chunk = chunks_in_use(i);
1948 while (chunk != NULL) {
1949 used += chunk->used_word_size();
1950 chunk = chunk->next();
1951 }
1952 }
1953 return used;
1954 }
1955
1956 void SpaceManager::locked_print_chunks_in_use_on(outputStream* st) const {
1957
1958 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1959 Metachunk* chunk = chunks_in_use(i);
1960 st->print("SpaceManager: %s " PTR_FORMAT,
1961 chunk_size_name(i), chunk);
1962 if (chunk != NULL) {
1963 st->print_cr(" free " SIZE_FORMAT,
1964 chunk->free_word_size());
1965 } else {
1966 st->cr();
1967 }
1968 }
1969
1970 chunk_manager()->locked_print_free_chunks(st);
1971 chunk_manager()->locked_print_sum_free_chunks(st);
1972 }
1973
1974 size_t SpaceManager::calc_chunk_size(size_t word_size) {
1975
1976 // Decide between a small chunk and a medium chunk. Up to
1977 // _small_chunk_limit small chunks can be allocated but
1978 // once a medium chunk has been allocated, no more small
1979 // chunks will be allocated.
1980 size_t chunk_word_size;
1981 if (chunks_in_use(MediumIndex) == NULL &&
1982 sum_count_in_chunks_in_use(SmallIndex) < _small_chunk_limit) {
1983 chunk_word_size = (size_t) small_chunk_size();
1984 if (word_size + Metachunk::overhead() > small_chunk_size()) {
1985 chunk_word_size = medium_chunk_size();
1986 }
1987 } else {
1988 chunk_word_size = medium_chunk_size();
1989 }
1990
1991 // Might still need a humongous chunk. Enforce
1992 // humongous allocations sizes to be aligned up to
1993 // the smallest chunk size.
1994 size_t if_humongous_sized_chunk =
1995 align_size_up(word_size + Metachunk::overhead(),
1996 smallest_chunk_size());
1997 chunk_word_size =
1998 MAX2((size_t) chunk_word_size, if_humongous_sized_chunk);
1999
2000 assert(!SpaceManager::is_humongous(word_size) ||
2001 chunk_word_size == if_humongous_sized_chunk,
2002 err_msg("Size calculation is wrong, word_size " SIZE_FORMAT
2003 " chunk_word_size " SIZE_FORMAT,
2004 word_size, chunk_word_size));
2005 if (TraceMetadataHumongousAllocation &&
2006 SpaceManager::is_humongous(word_size)) {
2007 gclog_or_tty->print_cr("Metadata humongous allocation:");
2008 gclog_or_tty->print_cr(" word_size " PTR_FORMAT, word_size);
2009 gclog_or_tty->print_cr(" chunk_word_size " PTR_FORMAT,
2010 chunk_word_size);
2011 gclog_or_tty->print_cr(" chunk overhead " PTR_FORMAT,
2012 Metachunk::overhead());
2013 }
2014 return chunk_word_size;
2015 }
2016
2017 void SpaceManager::track_metaspace_memory_usage() {
2018 if (is_init_completed()) {
2019 if (is_class()) {
2020 MemoryService::track_compressed_class_memory_usage();
2021 }
2022 MemoryService::track_metaspace_memory_usage();
2023 }
2024 }
2025
2026 MetaWord* SpaceManager::grow_and_allocate(size_t word_size) {
2027 assert(vs_list()->current_virtual_space() != NULL,
2028 "Should have been set");
2029 assert(current_chunk() == NULL ||
2030 current_chunk()->allocate(word_size) == NULL,
2031 "Don't need to expand");
2032 MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
2033
2034 if (TraceMetadataChunkAllocation && Verbose) {
2035 size_t words_left = 0;
2036 size_t words_used = 0;
2037 if (current_chunk() != NULL) {
2038 words_left = current_chunk()->free_word_size();
2039 words_used = current_chunk()->used_word_size();
2040 }
2041 gclog_or_tty->print_cr("SpaceManager::grow_and_allocate for " SIZE_FORMAT
2042 " words " SIZE_FORMAT " words used " SIZE_FORMAT
2043 " words left",
2044 word_size, words_used, words_left);
2045 }
2046
2047 // Get another chunk out of the virtual space
2048 size_t grow_chunks_by_words = calc_chunk_size(word_size);
2049 Metachunk* next = get_new_chunk(word_size, grow_chunks_by_words);
2050
2051 MetaWord* mem = NULL;
2052
2053 // If a chunk was available, add it to the in-use chunk list
2054 // and do an allocation from it.
2055 if (next != NULL) {
2056 // Add to this manager's list of chunks in use.
2057 add_chunk(next, false);
2058 mem = next->allocate(word_size);
2059 }
2060
2061 // Track metaspace memory usage statistic.
2062 track_metaspace_memory_usage();
2063
2064 return mem;
2065 }
2066
2067 void SpaceManager::print_on(outputStream* st) const {
2068
2069 for (ChunkIndex i = ZeroIndex;
2070 i < NumberOfInUseLists ;
2071 i = next_chunk_index(i) ) {
2072 st->print_cr(" chunks_in_use " PTR_FORMAT " chunk size " PTR_FORMAT,
2073 chunks_in_use(i),
2074 chunks_in_use(i) == NULL ? 0 : chunks_in_use(i)->word_size());
2075 }
2076 st->print_cr(" waste: Small " SIZE_FORMAT " Medium " SIZE_FORMAT
2077 " Humongous " SIZE_FORMAT,
2078 sum_waste_in_chunks_in_use(SmallIndex),
2079 sum_waste_in_chunks_in_use(MediumIndex),
2080 sum_waste_in_chunks_in_use(HumongousIndex));
2081 // block free lists
2082 if (block_freelists() != NULL) {
2083 st->print_cr("total in block free lists " SIZE_FORMAT,
2084 block_freelists()->total_size());
2085 }
2086 }
2087
2088 SpaceManager::SpaceManager(Metaspace::MetadataType mdtype,
2089 Mutex* lock) :
2090 _mdtype(mdtype),
2091 _allocated_blocks_words(0),
2092 _allocated_chunks_words(0),
2093 _allocated_chunks_count(0),
2094 _lock(lock)
2095 {
2096 initialize();
2097 }
2098
2099 void SpaceManager::inc_size_metrics(size_t words) {
2100 assert_lock_strong(SpaceManager::expand_lock());
2101 // Total of allocated Metachunks and allocated Metachunks count
2102 // for each SpaceManager
2103 _allocated_chunks_words = _allocated_chunks_words + words;
2104 _allocated_chunks_count++;
2105 // Global total of capacity in allocated Metachunks
2106 MetaspaceAux::inc_capacity(mdtype(), words);
2107 // Global total of allocated Metablocks.
2108 // used_words_slow() includes the overhead in each
2109 // Metachunk so include it in the used when the
2110 // Metachunk is first added (so only added once per
2111 // Metachunk).
2112 MetaspaceAux::inc_used(mdtype(), Metachunk::overhead());
2113 }
2114
2115 void SpaceManager::inc_used_metrics(size_t words) {
2116 // Add to the per SpaceManager total
2117 Atomic::add_ptr(words, &_allocated_blocks_words);
2118 // Add to the global total
2119 MetaspaceAux::inc_used(mdtype(), words);
2120 }
2121
2122 void SpaceManager::dec_total_from_size_metrics() {
2123 MetaspaceAux::dec_capacity(mdtype(), allocated_chunks_words());
2124 MetaspaceAux::dec_used(mdtype(), allocated_blocks_words());
2125 // Also deduct the overhead per Metachunk
2126 MetaspaceAux::dec_used(mdtype(), allocated_chunks_count() * Metachunk::overhead());
2127 }
2128
2129 void SpaceManager::initialize() {
2130 Metadebug::init_allocation_fail_alot_count();
2131 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2132 _chunks_in_use[i] = NULL;
2133 }
2134 _current_chunk = NULL;
2135 if (TraceMetadataChunkAllocation && Verbose) {
2136 gclog_or_tty->print_cr("SpaceManager(): " PTR_FORMAT, this);
2137 }
2138 }
2139
2140 void ChunkManager::return_chunks(ChunkIndex index, Metachunk* chunks) {
2141 if (chunks == NULL) {
2142 return;
2143 }
2144 ChunkList* list = free_chunks(index);
2145 assert(list->size() == chunks->word_size(), "Mismatch in chunk sizes");
2146 assert_lock_strong(SpaceManager::expand_lock());
2147 Metachunk* cur = chunks;
2148
2149 // This returns chunks one at a time. If a new
2150 // class List can be created that is a base class
2151 // of FreeList then something like FreeList::prepend()
2152 // can be used in place of this loop
2153 while (cur != NULL) {
2154 assert(cur->container() != NULL, "Container should have been set");
2155 cur->container()->dec_container_count();
2156 // Capture the next link before it is changed
2157 // by the call to return_chunk_at_head();
2158 Metachunk* next = cur->next();
2159 DEBUG_ONLY(cur->set_is_tagged_free(true);)
2160 list->return_chunk_at_head(cur);
2161 cur = next;
2162 }
2163 }
2164
2165 SpaceManager::~SpaceManager() {
2166 // This call this->_lock which can't be done while holding expand_lock()
2167 assert(sum_capacity_in_chunks_in_use() == allocated_chunks_words(),
2168 err_msg("sum_capacity_in_chunks_in_use() " SIZE_FORMAT
2169 " allocated_chunks_words() " SIZE_FORMAT,
2170 sum_capacity_in_chunks_in_use(), allocated_chunks_words()));
2171
2172 MutexLockerEx fcl(SpaceManager::expand_lock(),
2173 Mutex::_no_safepoint_check_flag);
2174
2175 chunk_manager()->slow_locked_verify();
2176
2177 dec_total_from_size_metrics();
2178
2179 if (TraceMetadataChunkAllocation && Verbose) {
2180 gclog_or_tty->print_cr("~SpaceManager(): " PTR_FORMAT, this);
2181 locked_print_chunks_in_use_on(gclog_or_tty);
2182 }
2183
2184 // Do not mangle freed Metachunks. The chunk size inside Metachunks
2185 // is during the freeing of a VirtualSpaceNodes.
2186
2187 // Have to update before the chunks_in_use lists are emptied
2188 // below.
2189 chunk_manager()->inc_free_chunks_total(allocated_chunks_words(),
2190 sum_count_in_chunks_in_use());
2191
2192 // Add all the chunks in use by this space manager
2193 // to the global list of free chunks.
2194
2195 // Follow each list of chunks-in-use and add them to the
2196 // free lists. Each list is NULL terminated.
2197
2198 for (ChunkIndex i = ZeroIndex; i < HumongousIndex; i = next_chunk_index(i)) {
2199 if (TraceMetadataChunkAllocation && Verbose) {
2200 gclog_or_tty->print_cr("returned %d %s chunks to freelist",
2201 sum_count_in_chunks_in_use(i),
2202 chunk_size_name(i));
2203 }
2204 Metachunk* chunks = chunks_in_use(i);
2205 chunk_manager()->return_chunks(i, chunks);
2206 set_chunks_in_use(i, NULL);
2207 if (TraceMetadataChunkAllocation && Verbose) {
2208 gclog_or_tty->print_cr("updated freelist count %d %s",
2209 chunk_manager()->free_chunks(i)->count(),
2210 chunk_size_name(i));
2211 }
2212 assert(i != HumongousIndex, "Humongous chunks are handled explicitly later");
2213 }
2214
2215 // The medium chunk case may be optimized by passing the head and
2216 // tail of the medium chunk list to add_at_head(). The tail is often
2217 // the current chunk but there are probably exceptions.
2218
2219 // Humongous chunks
2220 if (TraceMetadataChunkAllocation && Verbose) {
2221 gclog_or_tty->print_cr("returned %d %s humongous chunks to dictionary",
2222 sum_count_in_chunks_in_use(HumongousIndex),
2223 chunk_size_name(HumongousIndex));
2224 gclog_or_tty->print("Humongous chunk dictionary: ");
2225 }
2226 // Humongous chunks are never the current chunk.
2227 Metachunk* humongous_chunks = chunks_in_use(HumongousIndex);
2228
2229 while (humongous_chunks != NULL) {
2230 #ifdef ASSERT
2231 humongous_chunks->set_is_tagged_free(true);
2232 #endif
2233 if (TraceMetadataChunkAllocation && Verbose) {
2234 gclog_or_tty->print(PTR_FORMAT " (" SIZE_FORMAT ") ",
2235 humongous_chunks,
2236 humongous_chunks->word_size());
2237 }
2238 assert(humongous_chunks->word_size() == (size_t)
2239 align_size_up(humongous_chunks->word_size(),
2240 smallest_chunk_size()),
2241 err_msg("Humongous chunk size is wrong: word size " SIZE_FORMAT
2242 " granularity %d",
2243 humongous_chunks->word_size(), smallest_chunk_size()));
2244 Metachunk* next_humongous_chunks = humongous_chunks->next();
2245 humongous_chunks->container()->dec_container_count();
2246 chunk_manager()->humongous_dictionary()->return_chunk(humongous_chunks);
2247 humongous_chunks = next_humongous_chunks;
2248 }
2249 if (TraceMetadataChunkAllocation && Verbose) {
2250 gclog_or_tty->cr();
2251 gclog_or_tty->print_cr("updated dictionary count %d %s",
2252 chunk_manager()->humongous_dictionary()->total_count(),
2253 chunk_size_name(HumongousIndex));
2254 }
2255 chunk_manager()->slow_locked_verify();
2256 }
2257
2258 const char* SpaceManager::chunk_size_name(ChunkIndex index) const {
2259 switch (index) {
2260 case SpecializedIndex:
2261 return "Specialized";
2262 case SmallIndex:
2263 return "Small";
2264 case MediumIndex:
2265 return "Medium";
2266 case HumongousIndex:
2267 return "Humongous";
2268 default:
2269 return NULL;
2270 }
2271 }
2272
2273 ChunkIndex ChunkManager::list_index(size_t size) {
2274 switch (size) {
2275 case SpecializedChunk:
2276 assert(SpecializedChunk == ClassSpecializedChunk,
2277 "Need branch for ClassSpecializedChunk");
2278 return SpecializedIndex;
2279 case SmallChunk:
2280 case ClassSmallChunk:
2281 return SmallIndex;
2282 case MediumChunk:
2283 case ClassMediumChunk:
2284 return MediumIndex;
2285 default:
2286 assert(size > MediumChunk || size > ClassMediumChunk,
2287 "Not a humongous chunk");
2288 return HumongousIndex;
2289 }
2290 }
2291
2292 void SpaceManager::deallocate(MetaWord* p, size_t word_size) {
2293 assert_lock_strong(_lock);
2294 size_t raw_word_size = get_raw_word_size(word_size);
2295 size_t min_size = TreeChunk<Metablock, FreeList<Metablock> >::min_size();
2296 assert(raw_word_size >= min_size,
2297 err_msg("Should not deallocate dark matter " SIZE_FORMAT "<" SIZE_FORMAT, word_size, min_size));
2298 block_freelists()->return_block(p, raw_word_size);
2299 }
2300
2301 // Adds a chunk to the list of chunks in use.
2302 void SpaceManager::add_chunk(Metachunk* new_chunk, bool make_current) {
2303
2304 assert(new_chunk != NULL, "Should not be NULL");
2305 assert(new_chunk->next() == NULL, "Should not be on a list");
2306
2307 new_chunk->reset_empty();
2308
2309 // Find the correct list and and set the current
2310 // chunk for that list.
2311 ChunkIndex index = ChunkManager::list_index(new_chunk->word_size());
2312
2313 if (index != HumongousIndex) {
2314 retire_current_chunk();
2315 set_current_chunk(new_chunk);
2316 new_chunk->set_next(chunks_in_use(index));
2317 set_chunks_in_use(index, new_chunk);
2318 } else {
2319 // For null class loader data and DumpSharedSpaces, the first chunk isn't
2320 // small, so small will be null. Link this first chunk as the current
2321 // chunk.
2322 if (make_current) {
2323 // Set as the current chunk but otherwise treat as a humongous chunk.
2324 set_current_chunk(new_chunk);
2325 }
2326 // Link at head. The _current_chunk only points to a humongous chunk for
2327 // the null class loader metaspace (class and data virtual space managers)
2328 // any humongous chunks so will not point to the tail
2329 // of the humongous chunks list.
2330 new_chunk->set_next(chunks_in_use(HumongousIndex));
2331 set_chunks_in_use(HumongousIndex, new_chunk);
2332
2333 assert(new_chunk->word_size() > medium_chunk_size(), "List inconsistency");
2334 }
2335
2336 // Add to the running sum of capacity
2337 inc_size_metrics(new_chunk->word_size());
2338
2339 assert(new_chunk->is_empty(), "Not ready for reuse");
2340 if (TraceMetadataChunkAllocation && Verbose) {
2341 gclog_or_tty->print("SpaceManager::add_chunk: %d) ",
2342 sum_count_in_chunks_in_use());
2343 new_chunk->print_on(gclog_or_tty);
2344 chunk_manager()->locked_print_free_chunks(gclog_or_tty);
2345 }
2346 }
2347
2348 void SpaceManager::retire_current_chunk() {
2349 if (current_chunk() != NULL) {
2350 size_t remaining_words = current_chunk()->free_word_size();
2351 if (remaining_words >= TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
2352 block_freelists()->return_block(current_chunk()->allocate(remaining_words), remaining_words);
2353 inc_used_metrics(remaining_words);
2354 }
2355 }
2356 }
2357
2358 Metachunk* SpaceManager::get_new_chunk(size_t word_size,
2359 size_t grow_chunks_by_words) {
2360 // Get a chunk from the chunk freelist
2361 Metachunk* next = chunk_manager()->chunk_freelist_allocate(grow_chunks_by_words);
2362
2363 if (next == NULL) {
2364 next = vs_list()->get_new_chunk(word_size,
2365 grow_chunks_by_words,
2366 medium_chunk_bunch());
2367 }
2368
2369 if (TraceMetadataHumongousAllocation && next != NULL &&
2370 SpaceManager::is_humongous(next->word_size())) {
2371 gclog_or_tty->print_cr(" new humongous chunk word size "
2372 PTR_FORMAT, next->word_size());
2373 }
2374
2375 return next;
2376 }
2377
2378 MetaWord* SpaceManager::allocate(size_t word_size) {
2379 MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2380
2381 size_t raw_word_size = get_raw_word_size(word_size);
2382 BlockFreelist* fl = block_freelists();
2383 MetaWord* p = NULL;
2384 // Allocation from the dictionary is expensive in the sense that
2385 // the dictionary has to be searched for a size. Don't allocate
2386 // from the dictionary until it starts to get fat. Is this
2387 // a reasonable policy? Maybe an skinny dictionary is fast enough
2388 // for allocations. Do some profiling. JJJ
2389 if (fl->total_size() > allocation_from_dictionary_limit) {
2390 p = fl->get_block(raw_word_size);
2391 }
2392 if (p == NULL) {
2393 p = allocate_work(raw_word_size);
2394 }
2395
2396 return p;
2397 }
2398
2399 // Returns the address of spaced allocated for "word_size".
2400 // This methods does not know about blocks (Metablocks)
2401 MetaWord* SpaceManager::allocate_work(size_t word_size) {
2402 assert_lock_strong(_lock);
2403 #ifdef ASSERT
2404 if (Metadebug::test_metadata_failure()) {
2405 return NULL;
2406 }
2407 #endif
2408 // Is there space in the current chunk?
2409 MetaWord* result = NULL;
2410
2411 // For DumpSharedSpaces, only allocate out of the current chunk which is
2412 // never null because we gave it the size we wanted. Caller reports out
2413 // of memory if this returns null.
2414 if (DumpSharedSpaces) {
2415 assert(current_chunk() != NULL, "should never happen");
2416 inc_used_metrics(word_size);
2417 return current_chunk()->allocate(word_size); // caller handles null result
2418 }
2419
2420 if (current_chunk() != NULL) {
2421 result = current_chunk()->allocate(word_size);
2422 }
2423
2424 if (result == NULL) {
2425 result = grow_and_allocate(word_size);
2426 }
2427
2428 if (result != NULL) {
2429 inc_used_metrics(word_size);
2430 assert(result != (MetaWord*) chunks_in_use(MediumIndex),
2431 "Head of the list is being allocated");
2432 }
2433
2434 return result;
2435 }
2436
2437 // This function looks at the chunks in the metaspace without locking.
2438 // The chunks are added with store ordering and not deleted except for at
2439 // unloading time.
2440 bool SpaceManager::contains(const void *ptr) {
2441 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i))
2442 {
2443 Metachunk* curr = chunks_in_use(i);
2444 while (curr != NULL) {
2445 if (curr->contains(ptr)) return true;
2446 curr = curr->next();
2447 }
2448 }
2449 return false;
2450 }
2451
2452 void SpaceManager::verify() {
2453 // If there are blocks in the dictionary, then
2454 // verification of chunks does not work since
2455 // being in the dictionary alters a chunk.
2456 if (block_freelists()->total_size() == 0) {
2457 for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2458 Metachunk* curr = chunks_in_use(i);
2459 while (curr != NULL) {
2460 curr->verify();
2461 verify_chunk_size(curr);
2462 curr = curr->next();
2463 }
2464 }
2465 }
2466 }
2467
2468 void SpaceManager::verify_chunk_size(Metachunk* chunk) {
2469 assert(is_humongous(chunk->word_size()) ||
2470 chunk->word_size() == medium_chunk_size() ||
2471 chunk->word_size() == small_chunk_size() ||
2472 chunk->word_size() == specialized_chunk_size(),
2473 "Chunk size is wrong");
2474 return;
2475 }
2476
2477 #ifdef ASSERT
2478 void SpaceManager::verify_allocated_blocks_words() {
2479 // Verification is only guaranteed at a safepoint.
2480 assert(SafepointSynchronize::is_at_safepoint() || !Universe::is_fully_initialized(),
2481 "Verification can fail if the applications is running");
2482 assert(allocated_blocks_words() == sum_used_in_chunks_in_use(),
2483 err_msg("allocation total is not consistent " SIZE_FORMAT
2484 " vs " SIZE_FORMAT,
2485 allocated_blocks_words(), sum_used_in_chunks_in_use()));
2486 }
2487
2488 #endif
2489
2490 void SpaceManager::dump(outputStream* const out) const {
2491 size_t curr_total = 0;
2492 size_t waste = 0;
2493 uint i = 0;
2494 size_t used = 0;
2495 size_t capacity = 0;
2496
2497 // Add up statistics for all chunks in this SpaceManager.
2498 for (ChunkIndex index = ZeroIndex;
2499 index < NumberOfInUseLists;
2500 index = next_chunk_index(index)) {
2501 for (Metachunk* curr = chunks_in_use(index);
2502 curr != NULL;
2503 curr = curr->next()) {
2504 out->print("%d) ", i++);
2505 curr->print_on(out);
2506 curr_total += curr->word_size();
2507 used += curr->used_word_size();
2508 capacity += curr->word_size();
2509 waste += curr->free_word_size() + curr->overhead();;
2510 }
2511 }
2512
2513 if (TraceMetadataChunkAllocation && Verbose) {
2514 block_freelists()->print_on(out);
2515 }
2516
2517 size_t free = current_chunk() == NULL ? 0 : current_chunk()->free_word_size();
2518 // Free space isn't wasted.
2519 waste -= free;
2520
2521 out->print_cr("total of all chunks " SIZE_FORMAT " used " SIZE_FORMAT
2522 " free " SIZE_FORMAT " capacity " SIZE_FORMAT
2523 " waste " SIZE_FORMAT, curr_total, used, free, capacity, waste);
2524 }
2525
2526 #ifndef PRODUCT
2527 void SpaceManager::mangle_freed_chunks() {
2528 for (ChunkIndex index = ZeroIndex;
2529 index < NumberOfInUseLists;
2530 index = next_chunk_index(index)) {
2531 for (Metachunk* curr = chunks_in_use(index);
2532 curr != NULL;
2533 curr = curr->next()) {
2534 curr->mangle();
2535 }
2536 }
2537 }
2538 #endif // PRODUCT
2539
2540 // MetaspaceAux
2541
2542
2543 size_t MetaspaceAux::_capacity_words[] = {0, 0};
2544 size_t MetaspaceAux::_used_words[] = {0, 0};
2545
2546 size_t MetaspaceAux::free_bytes(Metaspace::MetadataType mdtype) {
2547 VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2548 return list == NULL ? 0 : list->free_bytes();
2549 }
2550
2551 size_t MetaspaceAux::free_bytes() {
2552 return free_bytes(Metaspace::ClassType) + free_bytes(Metaspace::NonClassType);
2553 }
2554
2555 void MetaspaceAux::dec_capacity(Metaspace::MetadataType mdtype, size_t words) {
2556 assert_lock_strong(SpaceManager::expand_lock());
2557 assert(words <= capacity_words(mdtype),
2558 err_msg("About to decrement below 0: words " SIZE_FORMAT
2559 " is greater than _capacity_words[%u] " SIZE_FORMAT,
2560 words, mdtype, capacity_words(mdtype)));
2561 _capacity_words[mdtype] -= words;
2562 }
2563
2564 void MetaspaceAux::inc_capacity(Metaspace::MetadataType mdtype, size_t words) {
2565 assert_lock_strong(SpaceManager::expand_lock());
2566 // Needs to be atomic
2567 _capacity_words[mdtype] += words;
2568 }
2569
2570 void MetaspaceAux::dec_used(Metaspace::MetadataType mdtype, size_t words) {
2571 assert(words <= used_words(mdtype),
2572 err_msg("About to decrement below 0: words " SIZE_FORMAT
2573 " is greater than _used_words[%u] " SIZE_FORMAT,
2574 words, mdtype, used_words(mdtype)));
2575 // For CMS deallocation of the Metaspaces occurs during the
2576 // sweep which is a concurrent phase. Protection by the expand_lock()
2577 // is not enough since allocation is on a per Metaspace basis
2578 // and protected by the Metaspace lock.
2579 jlong minus_words = (jlong) - (jlong) words;
2580 Atomic::add_ptr(minus_words, &_used_words[mdtype]);
2581 }
2582
2583 void MetaspaceAux::inc_used(Metaspace::MetadataType mdtype, size_t words) {
2584 // _used_words tracks allocations for
2585 // each piece of metadata. Those allocations are
2586 // generally done concurrently by different application
2587 // threads so must be done atomically.
2588 Atomic::add_ptr(words, &_used_words[mdtype]);
2589 }
2590
2591 size_t MetaspaceAux::used_bytes_slow(Metaspace::MetadataType mdtype) {
2592 size_t used = 0;
2593 ClassLoaderDataGraphMetaspaceIterator iter;
2594 while (iter.repeat()) {
2595 Metaspace* msp = iter.get_next();
2596 // Sum allocated_blocks_words for each metaspace
2597 if (msp != NULL) {
2598 used += msp->used_words_slow(mdtype);
2599 }
2600 }
2601 return used * BytesPerWord;
2602 }
2603
2604 size_t MetaspaceAux::free_bytes_slow(Metaspace::MetadataType mdtype) {
2605 size_t free = 0;
2606 ClassLoaderDataGraphMetaspaceIterator iter;
2607 while (iter.repeat()) {
2608 Metaspace* msp = iter.get_next();
2609 if (msp != NULL) {
2610 free += msp->free_words_slow(mdtype);
2611 }
2612 }
2613 return free * BytesPerWord;
2614 }
2615
2616 size_t MetaspaceAux::capacity_bytes_slow(Metaspace::MetadataType mdtype) {
2617 if ((mdtype == Metaspace::ClassType) && !Metaspace::using_class_space()) {
2618 return 0;
2619 }
2620 // Don't count the space in the freelists. That space will be
2621 // added to the capacity calculation as needed.
2622 size_t capacity = 0;
2623 ClassLoaderDataGraphMetaspaceIterator iter;
2624 while (iter.repeat()) {
2625 Metaspace* msp = iter.get_next();
2626 if (msp != NULL) {
2627 capacity += msp->capacity_words_slow(mdtype);
2628 }
2629 }
2630 return capacity * BytesPerWord;
2631 }
2632
2633 size_t MetaspaceAux::capacity_bytes_slow() {
2634 #ifdef PRODUCT
2635 // Use capacity_bytes() in PRODUCT instead of this function.
2636 guarantee(false, "Should not call capacity_bytes_slow() in the PRODUCT");
2637 #endif
2638 size_t class_capacity = capacity_bytes_slow(Metaspace::ClassType);
2639 size_t non_class_capacity = capacity_bytes_slow(Metaspace::NonClassType);
2640 assert(capacity_bytes() == class_capacity + non_class_capacity,
2641 err_msg("bad accounting: capacity_bytes() " SIZE_FORMAT
2642 " class_capacity + non_class_capacity " SIZE_FORMAT
2643 " class_capacity " SIZE_FORMAT " non_class_capacity " SIZE_FORMAT,
2644 capacity_bytes(), class_capacity + non_class_capacity,
2645 class_capacity, non_class_capacity));
2646
2647 return class_capacity + non_class_capacity;
2648 }
2649
2650 size_t MetaspaceAux::reserved_bytes(Metaspace::MetadataType mdtype) {
2651 VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2652 return list == NULL ? 0 : list->reserved_bytes();
2653 }
2654
2655 size_t MetaspaceAux::committed_bytes(Metaspace::MetadataType mdtype) {
2656 VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2657 return list == NULL ? 0 : list->committed_bytes();
2658 }
2659
2660 size_t MetaspaceAux::min_chunk_size_words() { return Metaspace::first_chunk_word_size(); }
2661
2662 size_t MetaspaceAux::free_chunks_total_words(Metaspace::MetadataType mdtype) {
2663 ChunkManager* chunk_manager = Metaspace::get_chunk_manager(mdtype);
2664 if (chunk_manager == NULL) {
2665 return 0;
2666 }
2667 chunk_manager->slow_verify();
2668 return chunk_manager->free_chunks_total_words();
2669 }
2670
2671 size_t MetaspaceAux::free_chunks_total_bytes(Metaspace::MetadataType mdtype) {
2672 return free_chunks_total_words(mdtype) * BytesPerWord;
2673 }
2674
2675 size_t MetaspaceAux::free_chunks_total_words() {
2676 return free_chunks_total_words(Metaspace::ClassType) +
2677 free_chunks_total_words(Metaspace::NonClassType);
2678 }
2679
2680 size_t MetaspaceAux::free_chunks_total_bytes() {
2681 return free_chunks_total_words() * BytesPerWord;
2682 }
2683
2684 bool MetaspaceAux::has_chunk_free_list(Metaspace::MetadataType mdtype) {
2685 return Metaspace::get_chunk_manager(mdtype) != NULL;
2686 }
2687
2688 MetaspaceChunkFreeListSummary MetaspaceAux::chunk_free_list_summary(Metaspace::MetadataType mdtype) {
2689 if (!has_chunk_free_list(mdtype)) {
2690 return MetaspaceChunkFreeListSummary();
2691 }
2692
2693 const ChunkManager* cm = Metaspace::get_chunk_manager(mdtype);
2694 return cm->chunk_free_list_summary();
2695 }
2696
2697 void MetaspaceAux::print_metaspace_change(size_t prev_metadata_used) {
2698 gclog_or_tty->print(", [Metaspace:");
2699 if (PrintGCDetails && Verbose) {
2700 gclog_or_tty->print(" " SIZE_FORMAT
2701 "->" SIZE_FORMAT
2702 "(" SIZE_FORMAT ")",
2703 prev_metadata_used,
2704 used_bytes(),
2705 reserved_bytes());
2706 } else {
2707 gclog_or_tty->print(" " SIZE_FORMAT "K"
2708 "->" SIZE_FORMAT "K"
2709 "(" SIZE_FORMAT "K)",
2710 prev_metadata_used/K,
2711 used_bytes()/K,
2712 reserved_bytes()/K);
2713 }
2714
2715 gclog_or_tty->print("]");
2716 }
2717
2718 // This is printed when PrintGCDetails
2719 void MetaspaceAux::print_on(outputStream* out) {
2720 Metaspace::MetadataType nct = Metaspace::NonClassType;
2721
2722 out->print_cr(" Metaspace "
2723 "used " SIZE_FORMAT "K, "
2724 "capacity " SIZE_FORMAT "K, "
2725 "committed " SIZE_FORMAT "K, "
2726 "reserved " SIZE_FORMAT "K",
2727 used_bytes()/K,
2728 capacity_bytes()/K,
2729 committed_bytes()/K,
2730 reserved_bytes()/K);
2731
2732 if (Metaspace::using_class_space()) {
2733 Metaspace::MetadataType ct = Metaspace::ClassType;
2734 out->print_cr(" class space "
2735 "used " SIZE_FORMAT "K, "
2736 "capacity " SIZE_FORMAT "K, "
2737 "committed " SIZE_FORMAT "K, "
2738 "reserved " SIZE_FORMAT "K",
2739 used_bytes(ct)/K,
2740 capacity_bytes(ct)/K,
2741 committed_bytes(ct)/K,
2742 reserved_bytes(ct)/K);
2743 }
2744 }
2745
2746 // Print information for class space and data space separately.
2747 // This is almost the same as above.
2748 void MetaspaceAux::print_on(outputStream* out, Metaspace::MetadataType mdtype) {
2749 size_t free_chunks_capacity_bytes = free_chunks_total_bytes(mdtype);
2750 size_t capacity_bytes = capacity_bytes_slow(mdtype);
2751 size_t used_bytes = used_bytes_slow(mdtype);
2752 size_t free_bytes = free_bytes_slow(mdtype);
2753 size_t used_and_free = used_bytes + free_bytes +
2754 free_chunks_capacity_bytes;
2755 out->print_cr(" Chunk accounting: used in chunks " SIZE_FORMAT
2756 "K + unused in chunks " SIZE_FORMAT "K + "
2757 " capacity in free chunks " SIZE_FORMAT "K = " SIZE_FORMAT
2758 "K capacity in allocated chunks " SIZE_FORMAT "K",
2759 used_bytes / K,
2760 free_bytes / K,
2761 free_chunks_capacity_bytes / K,
2762 used_and_free / K,
2763 capacity_bytes / K);
2764 // Accounting can only be correct if we got the values during a safepoint
2765 assert(!SafepointSynchronize::is_at_safepoint() || used_and_free == capacity_bytes, "Accounting is wrong");
2766 }
2767
2768 // Print total fragmentation for class metaspaces
2769 void MetaspaceAux::print_class_waste(outputStream* out) {
2770 assert(Metaspace::using_class_space(), "class metaspace not used");
2771 size_t cls_specialized_waste = 0, cls_small_waste = 0, cls_medium_waste = 0;
2772 size_t cls_specialized_count = 0, cls_small_count = 0, cls_medium_count = 0, cls_humongous_count = 0;
2773 ClassLoaderDataGraphMetaspaceIterator iter;
2774 while (iter.repeat()) {
2775 Metaspace* msp = iter.get_next();
2776 if (msp != NULL) {
2777 cls_specialized_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
2778 cls_specialized_count += msp->class_vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2779 cls_small_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2780 cls_small_count += msp->class_vsm()->sum_count_in_chunks_in_use(SmallIndex);
2781 cls_medium_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2782 cls_medium_count += msp->class_vsm()->sum_count_in_chunks_in_use(MediumIndex);
2783 cls_humongous_count += msp->class_vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2784 }
2785 }
2786 out->print_cr(" class: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
2787 SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2788 SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
2789 "large count " SIZE_FORMAT,
2790 cls_specialized_count, cls_specialized_waste,
2791 cls_small_count, cls_small_waste,
2792 cls_medium_count, cls_medium_waste, cls_humongous_count);
2793 }
2794
2795 // Print total fragmentation for data and class metaspaces separately
2796 void MetaspaceAux::print_waste(outputStream* out) {
2797 size_t specialized_waste = 0, small_waste = 0, medium_waste = 0;
2798 size_t specialized_count = 0, small_count = 0, medium_count = 0, humongous_count = 0;
2799
2800 ClassLoaderDataGraphMetaspaceIterator iter;
2801 while (iter.repeat()) {
2802 Metaspace* msp = iter.get_next();
2803 if (msp != NULL) {
2804 specialized_waste += msp->vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
2805 specialized_count += msp->vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2806 small_waste += msp->vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2807 small_count += msp->vsm()->sum_count_in_chunks_in_use(SmallIndex);
2808 medium_waste += msp->vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2809 medium_count += msp->vsm()->sum_count_in_chunks_in_use(MediumIndex);
2810 humongous_count += msp->vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2811 }
2812 }
2813 out->print_cr("Total fragmentation waste (words) doesn't count free space");
2814 out->print_cr(" data: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
2815 SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2816 SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
2817 "large count " SIZE_FORMAT,
2818 specialized_count, specialized_waste, small_count,
2819 small_waste, medium_count, medium_waste, humongous_count);
2820 if (Metaspace::using_class_space()) {
2821 print_class_waste(out);
2822 }
2823 }
2824
2825 // Dump global metaspace things from the end of ClassLoaderDataGraph
2826 void MetaspaceAux::dump(outputStream* out) {
2827 out->print_cr("All Metaspace:");
2828 out->print("data space: "); print_on(out, Metaspace::NonClassType);
2829 out->print("class space: "); print_on(out, Metaspace::ClassType);
2830 print_waste(out);
2831 }
2832
2833 void MetaspaceAux::verify_free_chunks() {
2834 Metaspace::chunk_manager_metadata()->verify();
2835 if (Metaspace::using_class_space()) {
2836 Metaspace::chunk_manager_class()->verify();
2837 }
2838 }
2839
2840 void MetaspaceAux::verify_capacity() {
2841 #ifdef ASSERT
2842 size_t running_sum_capacity_bytes = capacity_bytes();
2843 // For purposes of the running sum of capacity, verify against capacity
2844 size_t capacity_in_use_bytes = capacity_bytes_slow();
2845 assert(running_sum_capacity_bytes == capacity_in_use_bytes,
2846 err_msg("capacity_words() * BytesPerWord " SIZE_FORMAT
2847 " capacity_bytes_slow()" SIZE_FORMAT,
2848 running_sum_capacity_bytes, capacity_in_use_bytes));
2849 for (Metaspace::MetadataType i = Metaspace::ClassType;
2850 i < Metaspace:: MetadataTypeCount;
2851 i = (Metaspace::MetadataType)(i + 1)) {
2852 size_t capacity_in_use_bytes = capacity_bytes_slow(i);
2853 assert(capacity_bytes(i) == capacity_in_use_bytes,
2854 err_msg("capacity_bytes(%u) " SIZE_FORMAT
2855 " capacity_bytes_slow(%u)" SIZE_FORMAT,
2856 i, capacity_bytes(i), i, capacity_in_use_bytes));
2857 }
2858 #endif
2859 }
2860
2861 void MetaspaceAux::verify_used() {
2862 #ifdef ASSERT
2863 size_t running_sum_used_bytes = used_bytes();
2864 // For purposes of the running sum of used, verify against used
2865 size_t used_in_use_bytes = used_bytes_slow();
2866 assert(used_bytes() == used_in_use_bytes,
2867 err_msg("used_bytes() " SIZE_FORMAT
2868 " used_bytes_slow()" SIZE_FORMAT,
2869 used_bytes(), used_in_use_bytes));
2870 for (Metaspace::MetadataType i = Metaspace::ClassType;
2871 i < Metaspace:: MetadataTypeCount;
2872 i = (Metaspace::MetadataType)(i + 1)) {
2873 size_t used_in_use_bytes = used_bytes_slow(i);
2874 assert(used_bytes(i) == used_in_use_bytes,
2875 err_msg("used_bytes(%u) " SIZE_FORMAT
2876 " used_bytes_slow(%u)" SIZE_FORMAT,
2877 i, used_bytes(i), i, used_in_use_bytes));
2878 }
2879 #endif
2880 }
2881
2882 void MetaspaceAux::verify_metrics() {
2883 verify_capacity();
2884 verify_used();
2885 }
2886
2887
2888 // Metaspace methods
2889
2890 size_t Metaspace::_first_chunk_word_size = 0;
2891 size_t Metaspace::_first_class_chunk_word_size = 0;
2892
2893 size_t Metaspace::_commit_alignment = 0;
2894 size_t Metaspace::_reserve_alignment = 0;
2895
2896 Metaspace::Metaspace(Mutex* lock, MetaspaceType type) {
2897 initialize(lock, type);
2898 }
2899
2900 Metaspace::~Metaspace() {
2901 delete _vsm;
2902 if (using_class_space()) {
2903 delete _class_vsm;
2904 }
2905 }
2906
2907 VirtualSpaceList* Metaspace::_space_list = NULL;
2908 VirtualSpaceList* Metaspace::_class_space_list = NULL;
2909
2910 ChunkManager* Metaspace::_chunk_manager_metadata = NULL;
2911 ChunkManager* Metaspace::_chunk_manager_class = NULL;
2912
2913 #define VIRTUALSPACEMULTIPLIER 2
2914
2915 #ifdef _LP64
2916 static const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1);
2917
2918 void Metaspace::set_narrow_klass_base_and_shift(address metaspace_base, address cds_base) {
2919 // Figure out the narrow_klass_base and the narrow_klass_shift. The
2920 // narrow_klass_base is the lower of the metaspace base and the cds base
2921 // (if cds is enabled). The narrow_klass_shift depends on the distance
2922 // between the lower base and higher address.
2923 address lower_base;
2924 address higher_address;
2925 if (UseSharedSpaces) {
2926 higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
2927 (address)(metaspace_base + compressed_class_space_size()));
2928 lower_base = MIN2(metaspace_base, cds_base);
2929 } else {
2930 higher_address = metaspace_base + compressed_class_space_size();
2931 lower_base = metaspace_base;
2932
2933 uint64_t klass_encoding_max = UnscaledClassSpaceMax << LogKlassAlignmentInBytes;
2934 // If compressed class space fits in lower 32G, we don't need a base.
2935 if (higher_address <= (address)klass_encoding_max) {
2936 lower_base = 0; // Effectively lower base is zero.
2937 }
2938 }
2939
2940 Universe::set_narrow_klass_base(lower_base);
2941
2942 if ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax) {
2943 Universe::set_narrow_klass_shift(0);
2944 } else {
2945 assert(!UseSharedSpaces, "Cannot shift with UseSharedSpaces");
2946 Universe::set_narrow_klass_shift(LogKlassAlignmentInBytes);
2947 }
2948 }
2949
2950 // Return TRUE if the specified metaspace_base and cds_base are close enough
2951 // to work with compressed klass pointers.
2952 bool Metaspace::can_use_cds_with_metaspace_addr(char* metaspace_base, address cds_base) {
2953 assert(cds_base != 0 && UseSharedSpaces, "Only use with CDS");
2954 assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
2955 address lower_base = MIN2((address)metaspace_base, cds_base);
2956 address higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
2957 (address)(metaspace_base + compressed_class_space_size()));
2958 return ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax);
2959 }
2960
2961 // Try to allocate the metaspace at the requested addr.
2962 void Metaspace::allocate_metaspace_compressed_klass_ptrs(char* requested_addr, address cds_base) {
2963 assert(using_class_space(), "called improperly");
2964 assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
2965 assert(compressed_class_space_size() < KlassEncodingMetaspaceMax,
2966 "Metaspace size is too big");
2967 assert_is_ptr_aligned(requested_addr, _reserve_alignment);
2968 assert_is_ptr_aligned(cds_base, _reserve_alignment);
2969 assert_is_size_aligned(compressed_class_space_size(), _reserve_alignment);
2970
2971 // Don't use large pages for the class space.
2972 bool large_pages = false;
2973
2974 ReservedSpace metaspace_rs = ReservedSpace(compressed_class_space_size(),
2975 _reserve_alignment,
2976 large_pages,
2977 requested_addr, 0);
2978 if (!metaspace_rs.is_reserved()) {
2979 if (UseSharedSpaces) {
2980 size_t increment = align_size_up(1*G, _reserve_alignment);
2981
2982 // Keep trying to allocate the metaspace, increasing the requested_addr
2983 // by 1GB each time, until we reach an address that will no longer allow
2984 // use of CDS with compressed klass pointers.
2985 char *addr = requested_addr;
2986 while (!metaspace_rs.is_reserved() && (addr + increment > addr) &&
2987 can_use_cds_with_metaspace_addr(addr + increment, cds_base)) {
2988 addr = addr + increment;
2989 metaspace_rs = ReservedSpace(compressed_class_space_size(),
2990 _reserve_alignment, large_pages, addr, 0);
2991 }
2992 }
2993
2994 // If no successful allocation then try to allocate the space anywhere. If
2995 // that fails then OOM doom. At this point we cannot try allocating the
2996 // metaspace as if UseCompressedClassPointers is off because too much
2997 // initialization has happened that depends on UseCompressedClassPointers.
2998 // So, UseCompressedClassPointers cannot be turned off at this point.
2999 if (!metaspace_rs.is_reserved()) {
3000 metaspace_rs = ReservedSpace(compressed_class_space_size(),
3001 _reserve_alignment, large_pages);
3002 if (!metaspace_rs.is_reserved()) {
3003 vm_exit_during_initialization(err_msg("Could not allocate metaspace: %d bytes",
3004 compressed_class_space_size()));
3005 }
3006 }
3007 }
3008
3009 // If we got here then the metaspace got allocated.
3010 MemTracker::record_virtual_memory_type((address)metaspace_rs.base(), mtClass);
3011
3012 // Verify that we can use shared spaces. Otherwise, turn off CDS.
3013 if (UseSharedSpaces && !can_use_cds_with_metaspace_addr(metaspace_rs.base(), cds_base)) {
3014 FileMapInfo::stop_sharing_and_unmap(
3015 "Could not allocate metaspace at a compatible address");
3016 }
3017
3018 set_narrow_klass_base_and_shift((address)metaspace_rs.base(),
3019 UseSharedSpaces ? (address)cds_base : 0);
3020
3021 initialize_class_space(metaspace_rs);
3022
3023 if (PrintCompressedOopsMode || (PrintMiscellaneous && Verbose)) {
3024 gclog_or_tty->print_cr("Narrow klass base: " PTR_FORMAT ", Narrow klass shift: " SIZE_FORMAT,
3025 Universe::narrow_klass_base(), Universe::narrow_klass_shift());
3026 gclog_or_tty->print_cr("Compressed class space size: " SIZE_FORMAT " Address: " PTR_FORMAT " Req Addr: " PTR_FORMAT,
3027 compressed_class_space_size(), metaspace_rs.base(), requested_addr);
3028 }
3029 }
3030
3031 // For UseCompressedClassPointers the class space is reserved above the top of
3032 // the Java heap. The argument passed in is at the base of the compressed space.
3033 void Metaspace::initialize_class_space(ReservedSpace rs) {
3034 // The reserved space size may be bigger because of alignment, esp with UseLargePages
3035 assert(rs.size() >= CompressedClassSpaceSize,
3036 err_msg(SIZE_FORMAT " != " UINTX_FORMAT, rs.size(), CompressedClassSpaceSize));
3037 assert(using_class_space(), "Must be using class space");
3038 _class_space_list = new VirtualSpaceList(rs);
3039 _chunk_manager_class = new ChunkManager(SpecializedChunk, ClassSmallChunk, ClassMediumChunk);
3040
3041 if (!_class_space_list->initialization_succeeded()) {
3042 vm_exit_during_initialization("Failed to setup compressed class space virtual space list.");
3043 }
3044 }
3045
3046 #endif
3047
3048 void Metaspace::ergo_initialize() {
3049 if (DumpSharedSpaces) {
3050 // Using large pages when dumping the shared archive is currently not implemented.
3051 FLAG_SET_ERGO(bool, UseLargePagesInMetaspace, false);
3052 }
3053
3054 size_t page_size = os::vm_page_size();
3055 if (UseLargePages && UseLargePagesInMetaspace) {
3056 page_size = os::large_page_size();
3057 }
3058
3059 _commit_alignment = page_size;
3060 _reserve_alignment = MAX2(page_size, (size_t)os::vm_allocation_granularity());
3061
3062 // Do not use FLAG_SET_ERGO to update MaxMetaspaceSize, since this will
3063 // override if MaxMetaspaceSize was set on the command line or not.
3064 // This information is needed later to conform to the specification of the
3065 // java.lang.management.MemoryUsage API.
3066 //
3067 // Ideally, we would be able to set the default value of MaxMetaspaceSize in
3068 // globals.hpp to the aligned value, but this is not possible, since the
3069 // alignment depends on other flags being parsed.
3070 MaxMetaspaceSize = align_size_down_bounded(MaxMetaspaceSize, _reserve_alignment);
3071
3072 if (MetaspaceSize > MaxMetaspaceSize) {
3073 MetaspaceSize = MaxMetaspaceSize;
3074 }
3075
3076 MetaspaceSize = align_size_down_bounded(MetaspaceSize, _commit_alignment);
3077
3078 assert(MetaspaceSize <= MaxMetaspaceSize, "MetaspaceSize should be limited by MaxMetaspaceSize");
3079
3080 if (MetaspaceSize < 256*K) {
3081 vm_exit_during_initialization("Too small initial Metaspace size");
3082 }
3083
3084 MinMetaspaceExpansion = align_size_down_bounded(MinMetaspaceExpansion, _commit_alignment);
3085 MaxMetaspaceExpansion = align_size_down_bounded(MaxMetaspaceExpansion, _commit_alignment);
3086
3087 CompressedClassSpaceSize = align_size_down_bounded(CompressedClassSpaceSize, _reserve_alignment);
3088 set_compressed_class_space_size(CompressedClassSpaceSize);
3089 }
3090
3091 void Metaspace::global_initialize() {
3092 // Initialize the alignment for shared spaces.
3093 int max_alignment = os::vm_page_size();
3094 size_t cds_total = 0;
3095
3096 MetaspaceShared::set_max_alignment(max_alignment);
3097
3098 if (DumpSharedSpaces) {
3099 SharedReadOnlySize = align_size_up(SharedReadOnlySize, max_alignment);
3100 SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment);
3101 SharedMiscDataSize = align_size_up(SharedMiscDataSize, max_alignment);
3102 SharedMiscCodeSize = align_size_up(SharedMiscCodeSize, max_alignment);
3103
3104 // Initialize with the sum of the shared space sizes. The read-only
3105 // and read write metaspace chunks will be allocated out of this and the
3106 // remainder is the misc code and data chunks.
3107 cds_total = FileMapInfo::shared_spaces_size();
3108 cds_total = align_size_up(cds_total, _reserve_alignment);
3109 _space_list = new VirtualSpaceList(cds_total/wordSize);
3110 _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3111
3112 if (!_space_list->initialization_succeeded()) {
3113 vm_exit_during_initialization("Unable to dump shared archive.", NULL);
3114 }
3115
3116 #ifdef _LP64
3117 if (cds_total + compressed_class_space_size() > UnscaledClassSpaceMax) {
3118 vm_exit_during_initialization("Unable to dump shared archive.",
3119 err_msg("Size of archive (" SIZE_FORMAT ") + compressed class space ("
3120 SIZE_FORMAT ") == total (" SIZE_FORMAT ") is larger than compressed "
3121 "klass limit: " SIZE_FORMAT, cds_total, compressed_class_space_size(),
3122 cds_total + compressed_class_space_size(), UnscaledClassSpaceMax));
3123 }
3124
3125 // Set the compressed klass pointer base so that decoding of these pointers works
3126 // properly when creating the shared archive.
3127 assert(UseCompressedOops && UseCompressedClassPointers,
3128 "UseCompressedOops and UseCompressedClassPointers must be set");
3129 Universe::set_narrow_klass_base((address)_space_list->current_virtual_space()->bottom());
3130 if (TraceMetavirtualspaceAllocation && Verbose) {
3131 gclog_or_tty->print_cr("Setting_narrow_klass_base to Address: " PTR_FORMAT,
3132 _space_list->current_virtual_space()->bottom());
3133 }
3134
3135 Universe::set_narrow_klass_shift(0);
3136 #endif
3137
3138 } else {
3139 // If using shared space, open the file that contains the shared space
3140 // and map in the memory before initializing the rest of metaspace (so
3141 // the addresses don't conflict)
3142 address cds_address = NULL;
3143 if (UseSharedSpaces) {
3144 FileMapInfo* mapinfo = new FileMapInfo();
3145 memset(mapinfo, 0, sizeof(FileMapInfo));
3146
3147 // Open the shared archive file, read and validate the header. If
3148 // initialization fails, shared spaces [UseSharedSpaces] are
3149 // disabled and the file is closed.
3150 // Map in spaces now also
3151 if (mapinfo->initialize() && MetaspaceShared::map_shared_spaces(mapinfo)) {
3152 FileMapInfo::set_current_info(mapinfo);
3153 cds_total = FileMapInfo::shared_spaces_size();
3154 cds_address = (address)mapinfo->region_base(0);
3155 } else {
3156 assert(!mapinfo->is_open() && !UseSharedSpaces,
3157 "archive file not closed or shared spaces not disabled.");
3158 }
3159 }
3160
3161 #ifdef _LP64
3162 // If UseCompressedClassPointers is set then allocate the metaspace area
3163 // above the heap and above the CDS area (if it exists).
3164 if (using_class_space()) {
3165 if (UseSharedSpaces) {
3166 char* cds_end = (char*)(cds_address + cds_total);
3167 cds_end = (char *)align_ptr_up(cds_end, _reserve_alignment);
3168 allocate_metaspace_compressed_klass_ptrs(cds_end, cds_address);
3169 } else {
3170 char* base = (char*)align_ptr_up(Universe::heap()->reserved_region().end(), _reserve_alignment);
3171 allocate_metaspace_compressed_klass_ptrs(base, 0);
3172 }
3173 }
3174 #endif
3175
3176 // Initialize these before initializing the VirtualSpaceList
3177 _first_chunk_word_size = InitialBootClassLoaderMetaspaceSize / BytesPerWord;
3178 _first_chunk_word_size = align_word_size_up(_first_chunk_word_size);
3179 // Make the first class chunk bigger than a medium chunk so it's not put
3180 // on the medium chunk list. The next chunk will be small and progress
3181 // from there. This size calculated by -version.
3182 _first_class_chunk_word_size = MIN2((uintx)MediumChunk*6,
3183 (CompressedClassSpaceSize/BytesPerWord)*2);
3184 _first_class_chunk_word_size = align_word_size_up(_first_class_chunk_word_size);
3185 // Arbitrarily set the initial virtual space to a multiple
3186 // of the boot class loader size.
3187 size_t word_size = VIRTUALSPACEMULTIPLIER * _first_chunk_word_size;
3188 word_size = align_size_up(word_size, Metaspace::reserve_alignment_words());
3189
3190 // Initialize the list of virtual spaces.
3191 _space_list = new VirtualSpaceList(word_size);
3192 _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3193
3194 if (!_space_list->initialization_succeeded()) {
3195 vm_exit_during_initialization("Unable to setup metadata virtual space list.", NULL);
3196 }
3197 }
3198
3199 MetaspaceGC::initialize();
3200 _tracer = new MetaspaceTracer();
3201 }
3202
3203 Metachunk* Metaspace::get_initialization_chunk(MetadataType mdtype,
3204 size_t chunk_word_size,
3205 size_t chunk_bunch) {
3206 // Get a chunk from the chunk freelist
3207 Metachunk* chunk = get_chunk_manager(mdtype)->chunk_freelist_allocate(chunk_word_size);
3208 if (chunk != NULL) {
3209 return chunk;
3210 }
3211
3212 return get_space_list(mdtype)->get_new_chunk(chunk_word_size, chunk_word_size, chunk_bunch);
3213 }
3214
3215 void Metaspace::initialize(Mutex* lock, MetaspaceType type) {
3216
3217 assert(space_list() != NULL,
3218 "Metadata VirtualSpaceList has not been initialized");
3219 assert(chunk_manager_metadata() != NULL,
3220 "Metadata ChunkManager has not been initialized");
3221
3222 _vsm = new SpaceManager(NonClassType, lock);
3223 if (_vsm == NULL) {
3224 return;
3225 }
3226 size_t word_size;
3227 size_t class_word_size;
3228 vsm()->get_initial_chunk_sizes(type, &word_size, &class_word_size);
3229
3230 if (using_class_space()) {
3231 assert(class_space_list() != NULL,
3232 "Class VirtualSpaceList has not been initialized");
3233 assert(chunk_manager_class() != NULL,
3234 "Class ChunkManager has not been initialized");
3235
3236 // Allocate SpaceManager for classes.
3237 _class_vsm = new SpaceManager(ClassType, lock);
3238 if (_class_vsm == NULL) {
3239 return;
3240 }
3241 }
3242
3243 MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3244
3245 // Allocate chunk for metadata objects
3246 Metachunk* new_chunk = get_initialization_chunk(NonClassType,
3247 word_size,
3248 vsm()->medium_chunk_bunch());
3249 assert(!DumpSharedSpaces || new_chunk != NULL, "should have enough space for both chunks");
3250 if (new_chunk != NULL) {
3251 // Add to this manager's list of chunks in use and current_chunk().
3252 vsm()->add_chunk(new_chunk, true);
3253 }
3254
3255 // Allocate chunk for class metadata objects
3256 if (using_class_space()) {
3257 Metachunk* class_chunk = get_initialization_chunk(ClassType,
3258 class_word_size,
3259 class_vsm()->medium_chunk_bunch());
3260 if (class_chunk != NULL) {
3261 class_vsm()->add_chunk(class_chunk, true);
3262 }
3263 }
3264
3265 _alloc_record_head = NULL;
3266 _alloc_record_tail = NULL;
3267 }
3268
3269 size_t Metaspace::align_word_size_up(size_t word_size) {
3270 size_t byte_size = word_size * wordSize;
3271 return ReservedSpace::allocation_align_size_up(byte_size) / wordSize;
3272 }
3273
3274 MetaWord* Metaspace::allocate(size_t word_size, MetadataType mdtype) {
3275 // DumpSharedSpaces doesn't use class metadata area (yet)
3276 // Also, don't use class_vsm() unless UseCompressedClassPointers is true.
3277 if (is_class_space_allocation(mdtype)) {
3278 return class_vsm()->allocate(word_size);
3279 } else {
3280 return vsm()->allocate(word_size);
3281 }
3282 }
3283
3284 MetaWord* Metaspace::expand_and_allocate(size_t word_size, MetadataType mdtype) {
3285 size_t delta_bytes = MetaspaceGC::delta_capacity_until_GC(word_size * BytesPerWord);
3286 assert(delta_bytes > 0, "Must be");
3287
3288 size_t after_inc = MetaspaceGC::inc_capacity_until_GC(delta_bytes);
3289
3290 // capacity_until_GC might be updated concurrently, must calculate previous value.
3291 size_t before_inc = after_inc - delta_bytes;
3292
3293 tracer()->report_gc_threshold(before_inc, after_inc,
3294 MetaspaceGCThresholdUpdater::ExpandAndAllocate);
3295 if (PrintGCDetails && Verbose) {
3296 gclog_or_tty->print_cr("Increase capacity to GC from " SIZE_FORMAT
3297 " to " SIZE_FORMAT, before_inc, after_inc);
3298 }
3299
3300 return allocate(word_size, mdtype);
3301 }
3302
3303 // Space allocated in the Metaspace. This may
3304 // be across several metadata virtual spaces.
3305 char* Metaspace::bottom() const {
3306 assert(DumpSharedSpaces, "only useful and valid for dumping shared spaces");
3307 return (char*)vsm()->current_chunk()->bottom();
3308 }
3309
3310 size_t Metaspace::used_words_slow(MetadataType mdtype) const {
3311 if (mdtype == ClassType) {
3312 return using_class_space() ? class_vsm()->sum_used_in_chunks_in_use() : 0;
3313 } else {
3314 return vsm()->sum_used_in_chunks_in_use(); // includes overhead!
3315 }
3316 }
3317
3318 size_t Metaspace::free_words_slow(MetadataType mdtype) const {
3319 if (mdtype == ClassType) {
3320 return using_class_space() ? class_vsm()->sum_free_in_chunks_in_use() : 0;
3321 } else {
3322 return vsm()->sum_free_in_chunks_in_use();
3323 }
3324 }
3325
3326 // Space capacity in the Metaspace. It includes
3327 // space in the list of chunks from which allocations
3328 // have been made. Don't include space in the global freelist and
3329 // in the space available in the dictionary which
3330 // is already counted in some chunk.
3331 size_t Metaspace::capacity_words_slow(MetadataType mdtype) const {
3332 if (mdtype == ClassType) {
3333 return using_class_space() ? class_vsm()->sum_capacity_in_chunks_in_use() : 0;
3334 } else {
3335 return vsm()->sum_capacity_in_chunks_in_use();
3336 }
3337 }
3338
3339 size_t Metaspace::used_bytes_slow(MetadataType mdtype) const {
3340 return used_words_slow(mdtype) * BytesPerWord;
3341 }
3342
3343 size_t Metaspace::capacity_bytes_slow(MetadataType mdtype) const {
3344 return capacity_words_slow(mdtype) * BytesPerWord;
3345 }
3346
3347 void Metaspace::deallocate(MetaWord* ptr, size_t word_size, bool is_class) {
3348 assert(!SafepointSynchronize::is_at_safepoint()
3349 || Thread::current()->is_VM_thread(), "should be the VM thread");
3350
3351 MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
3352
3353 if (word_size < TreeChunk<Metablock, FreeList<Metablock> >::min_size()) {
3354 // Dark matter. Too small for dictionary.
3355 #ifdef ASSERT
3356 Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
3357 #endif
3358 return;
3359 }
3360 if (is_class && using_class_space()) {
3361 class_vsm()->deallocate(ptr, word_size);
3362 } else {
3363 vsm()->deallocate(ptr, word_size);
3364 }
3365 }
3366
3367
3368 MetaWord* Metaspace::allocate(ClassLoaderData* loader_data, size_t word_size,
3369 bool read_only, MetaspaceObj::Type type, TRAPS) {
3370 if (HAS_PENDING_EXCEPTION) {
3371 assert(false, "Should not allocate with exception pending");
3372 return NULL; // caller does a CHECK_NULL too
3373 }
3374
3375 assert(loader_data != NULL, "Should never pass around a NULL loader_data. "
3376 "ClassLoaderData::the_null_class_loader_data() should have been used.");
3377
3378 // Allocate in metaspaces without taking out a lock, because it deadlocks
3379 // with the SymbolTable_lock. Dumping is single threaded for now. We'll have
3380 // to revisit this for application class data sharing.
3381 if (DumpSharedSpaces) {
3382 assert(type > MetaspaceObj::UnknownType && type < MetaspaceObj::_number_of_types, "sanity");
3383 Metaspace* space = read_only ? loader_data->ro_metaspace() : loader_data->rw_metaspace();
3384 MetaWord* result = space->allocate(word_size, NonClassType);
3385 if (result == NULL) {
3386 report_out_of_shared_space(read_only ? SharedReadOnly : SharedReadWrite);
3387 }
3388
3389 space->record_allocation(result, type, space->vsm()->get_raw_word_size(word_size));
3390
3391 // Zero initialize.
3392 Copy::fill_to_aligned_words((HeapWord*)result, word_size, 0);
3393
3394 return result;
3395 }
3396
3397 MetadataType mdtype = (type == MetaspaceObj::ClassType) ? ClassType : NonClassType;
3398
3399 // Try to allocate metadata.
3400 MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
3401
3402 if (result == NULL) {
3403 tracer()->report_metaspace_allocation_failure(loader_data, word_size, type, mdtype);
3404
3405 // Allocation failed.
3406 if (is_init_completed()) {
3407 // Only start a GC if the bootstrapping has completed.
3408
3409 // Try to clean out some memory and retry.
3410 result = Universe::heap()->collector_policy()->satisfy_failed_metadata_allocation(
3411 loader_data, word_size, mdtype);
3412 }
3413 }
3414
3415 if (result == NULL) {
3416 report_metadata_oome(loader_data, word_size, type, mdtype, CHECK_NULL);
3417 }
3418
3419 // Zero initialize.
3420 Copy::fill_to_aligned_words((HeapWord*)result, word_size, 0);
3421
3422 return result;
3423 }
3424
3425 size_t Metaspace::class_chunk_size(size_t word_size) {
3426 assert(using_class_space(), "Has to use class space");
3427 return class_vsm()->calc_chunk_size(word_size);
3428 }
3429
3430 void Metaspace::report_metadata_oome(ClassLoaderData* loader_data, size_t word_size, MetaspaceObj::Type type, MetadataType mdtype, TRAPS) {
3431 tracer()->report_metadata_oom(loader_data, word_size, type, mdtype);
3432
3433 // If result is still null, we are out of memory.
3434 if (Verbose && TraceMetadataChunkAllocation) {
3435 gclog_or_tty->print_cr("Metaspace allocation failed for size "
3436 SIZE_FORMAT, word_size);
3437 if (loader_data->metaspace_or_null() != NULL) {
3438 loader_data->dump(gclog_or_tty);
3439 }
3440 MetaspaceAux::dump(gclog_or_tty);
3441 }
3442
3443 bool out_of_compressed_class_space = false;
3444 if (is_class_space_allocation(mdtype)) {
3445 Metaspace* metaspace = loader_data->metaspace_non_null();
3446 out_of_compressed_class_space =
3447 MetaspaceAux::committed_bytes(Metaspace::ClassType) +
3448 (metaspace->class_chunk_size(word_size) * BytesPerWord) >
3449 CompressedClassSpaceSize;
3450 }
3451
3452 // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
3453 const char* space_string = out_of_compressed_class_space ?
3454 "Compressed class space" : "Metaspace";
3455
3456 report_java_out_of_memory(space_string);
3457
3458 if (JvmtiExport::should_post_resource_exhausted()) {
3459 JvmtiExport::post_resource_exhausted(
3460 JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR,
3461 space_string);
3462 }
3463
3464 if (!is_init_completed()) {
3465 vm_exit_during_initialization("OutOfMemoryError", space_string);
3466 }
3467
3468 if (out_of_compressed_class_space) {
3469 THROW_OOP(Universe::out_of_memory_error_class_metaspace());
3470 } else {
3471 THROW_OOP(Universe::out_of_memory_error_metaspace());
3472 }
3473 }
3474
3475 const char* Metaspace::metadata_type_name(Metaspace::MetadataType mdtype) {
3476 switch (mdtype) {
3477 case Metaspace::ClassType: return "Class";
3478 case Metaspace::NonClassType: return "Metadata";
3479 default:
3480 assert(false, err_msg("Got bad mdtype: %d", (int) mdtype));
3481 return NULL;
3482 }
3483 }
3484
3485 void Metaspace::record_allocation(void* ptr, MetaspaceObj::Type type, size_t word_size) {
3486 assert(DumpSharedSpaces, "sanity");
3487
3488 AllocRecord *rec = new AllocRecord((address)ptr, type, (int)word_size * HeapWordSize);
3489 if (_alloc_record_head == NULL) {
3490 _alloc_record_head = _alloc_record_tail = rec;
3491 } else {
3492 _alloc_record_tail->_next = rec;
3493 _alloc_record_tail = rec;
3494 }
3495 }
3496
3497 void Metaspace::iterate(Metaspace::AllocRecordClosure *closure) {
3498 assert(DumpSharedSpaces, "unimplemented for !DumpSharedSpaces");
3499
3500 address last_addr = (address)bottom();
3501
3502 for (AllocRecord *rec = _alloc_record_head; rec; rec = rec->_next) {
3503 address ptr = rec->_ptr;
3504 if (last_addr < ptr) {
3505 closure->doit(last_addr, MetaspaceObj::UnknownType, ptr - last_addr);
3506 }
3507 closure->doit(ptr, rec->_type, rec->_byte_size);
3508 last_addr = ptr + rec->_byte_size;
3509 }
3510
3511 address top = ((address)bottom()) + used_bytes_slow(Metaspace::NonClassType);
3512 if (last_addr < top) {
3513 closure->doit(last_addr, MetaspaceObj::UnknownType, top - last_addr);
3514 }
3515 }
3516
3517 void Metaspace::purge(MetadataType mdtype) {
3518 get_space_list(mdtype)->purge(get_chunk_manager(mdtype));
3519 }
3520
3521 void Metaspace::purge() {
3522 MutexLockerEx cl(SpaceManager::expand_lock(),
3523 Mutex::_no_safepoint_check_flag);
3524 purge(NonClassType);
3525 if (using_class_space()) {
3526 purge(ClassType);
3527 }
3528 }
3529
3530 void Metaspace::print_on(outputStream* out) const {
3531 // Print both class virtual space counts and metaspace.
3532 if (Verbose) {
3533 vsm()->print_on(out);
3534 if (using_class_space()) {
3535 class_vsm()->print_on(out);
3536 }
3537 }
3538 }
3539
3540 bool Metaspace::contains(const void* ptr) {
3541 if (vsm()->contains(ptr)) return true;
3542 if (using_class_space()) {
3543 return class_vsm()->contains(ptr);
3544 }
3545 return false;
3546 }
3547
3548 void Metaspace::verify() {
3549 vsm()->verify();
3550 if (using_class_space()) {
3551 class_vsm()->verify();
3552 }
3553 }
3554
3555 void Metaspace::dump(outputStream* const out) const {
3556 out->print_cr("\nVirtual space manager: " INTPTR_FORMAT, vsm());
3557 vsm()->dump(out);
3558 if (using_class_space()) {
3559 out->print_cr("\nClass space manager: " INTPTR_FORMAT, class_vsm());
3560 class_vsm()->dump(out);
3561 }
3562 }
3563
3564 /////////////// Unit tests ///////////////
3565
3566 #ifndef PRODUCT
3567
3568 class TestMetaspaceAuxTest : AllStatic {
3569 public:
3570 static void test_reserved() {
3571 size_t reserved = MetaspaceAux::reserved_bytes();
3572
3573 assert(reserved > 0, "assert");
3574
3575 size_t committed = MetaspaceAux::committed_bytes();
3576 assert(committed <= reserved, "assert");
3577
3578 size_t reserved_metadata = MetaspaceAux::reserved_bytes(Metaspace::NonClassType);
3579 assert(reserved_metadata > 0, "assert");
3580 assert(reserved_metadata <= reserved, "assert");
3581
3582 if (UseCompressedClassPointers) {
3583 size_t reserved_class = MetaspaceAux::reserved_bytes(Metaspace::ClassType);
3584 assert(reserved_class > 0, "assert");
3585 assert(reserved_class < reserved, "assert");
3586 }
3587 }
3588
3589 static void test_committed() {
3590 size_t committed = MetaspaceAux::committed_bytes();
3591
3592 assert(committed > 0, "assert");
3593
3594 size_t reserved = MetaspaceAux::reserved_bytes();
3595 assert(committed <= reserved, "assert");
3596
3597 size_t committed_metadata = MetaspaceAux::committed_bytes(Metaspace::NonClassType);
3598 assert(committed_metadata > 0, "assert");
3599 assert(committed_metadata <= committed, "assert");
3600
3601 if (UseCompressedClassPointers) {
3602 size_t committed_class = MetaspaceAux::committed_bytes(Metaspace::ClassType);
3603 assert(committed_class > 0, "assert");
3604 assert(committed_class < committed, "assert");
3605 }
3606 }
3607
3608 static void test_virtual_space_list_large_chunk() {
3609 VirtualSpaceList* vs_list = new VirtualSpaceList(os::vm_allocation_granularity());
3610 MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3611 // A size larger than VirtualSpaceSize (256k) and add one page to make it _not_ be
3612 // vm_allocation_granularity aligned on Windows.
3613 size_t large_size = (size_t)(2*256*K + (os::vm_page_size()/BytesPerWord));
3614 large_size += (os::vm_page_size()/BytesPerWord);
3615 vs_list->get_new_chunk(large_size, large_size, 0);
3616 }
3617
3618 static void test() {
3619 test_reserved();
3620 test_committed();
3621 test_virtual_space_list_large_chunk();
3622 }
3623 };
3624
3625 void TestMetaspaceAux_test() {
3626 TestMetaspaceAuxTest::test();
3627 }
3628
3629 class TestVirtualSpaceNodeTest {
3630 static void chunk_up(size_t words_left, size_t& num_medium_chunks,
3631 size_t& num_small_chunks,
3632 size_t& num_specialized_chunks) {
3633 num_medium_chunks = words_left / MediumChunk;
3634 words_left = words_left % MediumChunk;
3635
3636 num_small_chunks = words_left / SmallChunk;
3637 words_left = words_left % SmallChunk;
3638 // how many specialized chunks can we get?
3639 num_specialized_chunks = words_left / SpecializedChunk;
3640 assert(words_left % SpecializedChunk == 0, "should be nothing left");
3641 }
3642
3643 public:
3644 static void test() {
3645 MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3646 const size_t vsn_test_size_words = MediumChunk * 4;
3647 const size_t vsn_test_size_bytes = vsn_test_size_words * BytesPerWord;
3648
3649 // The chunk sizes must be multiples of eachother, or this will fail
3650 STATIC_ASSERT(MediumChunk % SmallChunk == 0);
3651 STATIC_ASSERT(SmallChunk % SpecializedChunk == 0);
3652
3653 { // No committed memory in VSN
3654 ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3655 VirtualSpaceNode vsn(vsn_test_size_bytes);
3656 vsn.initialize();
3657 vsn.retire(&cm);
3658 assert(cm.sum_free_chunks_count() == 0, "did not commit any memory in the VSN");
3659 }
3660
3661 { // All of VSN is committed, half is used by chunks
3662 ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3663 VirtualSpaceNode vsn(vsn_test_size_bytes);
3664 vsn.initialize();
3665 vsn.expand_by(vsn_test_size_words, vsn_test_size_words);
3666 vsn.get_chunk_vs(MediumChunk);
3667 vsn.get_chunk_vs(MediumChunk);
3668 vsn.retire(&cm);
3669 assert(cm.sum_free_chunks_count() == 2, "should have been memory left for 2 medium chunks");
3670 assert(cm.sum_free_chunks() == 2*MediumChunk, "sizes should add up");
3671 }
3672
3673 { // 4 pages of VSN is committed, some is used by chunks
3674 ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3675 VirtualSpaceNode vsn(vsn_test_size_bytes);
3676 const size_t page_chunks = 4 * (size_t)os::vm_page_size() / BytesPerWord;
3677 assert(page_chunks < MediumChunk, "Test expects medium chunks to be at least 4*page_size");
3678 vsn.initialize();
3679 vsn.expand_by(page_chunks, page_chunks);
3680 vsn.get_chunk_vs(SmallChunk);
3681 vsn.get_chunk_vs(SpecializedChunk);
3682 vsn.retire(&cm);
3683
3684 // committed - used = words left to retire
3685 const size_t words_left = page_chunks - SmallChunk - SpecializedChunk;
3686
3687 size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
3688 chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);
3689
3690 assert(num_medium_chunks == 0, "should not get any medium chunks");
3691 assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
3692 assert(cm.sum_free_chunks() == words_left, "sizes should add up");
3693 }
3694
3695 { // Half of VSN is committed, a humongous chunk is used
3696 ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3697 VirtualSpaceNode vsn(vsn_test_size_bytes);
3698 vsn.initialize();
3699 vsn.expand_by(MediumChunk * 2, MediumChunk * 2);
3700 vsn.get_chunk_vs(MediumChunk + SpecializedChunk); // Humongous chunks will be aligned up to MediumChunk + SpecializedChunk
3701 vsn.retire(&cm);
3702
3703 const size_t words_left = MediumChunk * 2 - (MediumChunk + SpecializedChunk);
3704 size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
3705 chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);
3706
3707 assert(num_medium_chunks == 0, "should not get any medium chunks");
3708 assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
3709 assert(cm.sum_free_chunks() == words_left, "sizes should add up");
3710 }
3711
3712 }
3713
3714 #define assert_is_available_positive(word_size) \
3715 assert(vsn.is_available(word_size), \
3716 err_msg(#word_size ": " PTR_FORMAT " bytes were not available in " \
3717 "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
3718 (uintptr_t)(word_size * BytesPerWord), vsn.bottom(), vsn.end()));
3719
3720 #define assert_is_available_negative(word_size) \
3721 assert(!vsn.is_available(word_size), \
3722 err_msg(#word_size ": " PTR_FORMAT " bytes should not be available in " \
3723 "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
3724 (uintptr_t)(word_size * BytesPerWord), vsn.bottom(), vsn.end()));
3725
3726 static void test_is_available_positive() {
3727 // Reserve some memory.
3728 VirtualSpaceNode vsn(os::vm_allocation_granularity());
3729 assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3730
3731 // Commit some memory.
3732 size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3733 bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
3734 assert(expanded, "Failed to commit");
3735
3736 // Check that is_available accepts the committed size.
3737 assert_is_available_positive(commit_word_size);
3738
3739 // Check that is_available accepts half the committed size.
3740 size_t expand_word_size = commit_word_size / 2;
3741 assert_is_available_positive(expand_word_size);
3742 }
3743
3744 static void test_is_available_negative() {
3745 // Reserve some memory.
3746 VirtualSpaceNode vsn(os::vm_allocation_granularity());
3747 assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3748
3749 // Commit some memory.
3750 size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3751 bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
3752 assert(expanded, "Failed to commit");
3753
3754 // Check that is_available doesn't accept a too large size.
3755 size_t two_times_commit_word_size = commit_word_size * 2;
3756 assert_is_available_negative(two_times_commit_word_size);
3757 }
3758
3759 static void test_is_available_overflow() {
3760 // Reserve some memory.
3761 VirtualSpaceNode vsn(os::vm_allocation_granularity());
3762 assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3763
3764 // Commit some memory.
3765 size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3766 bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
3767 assert(expanded, "Failed to commit");
3768
3769 // Calculate a size that will overflow the virtual space size.
3770 void* virtual_space_max = (void*)(uintptr_t)-1;
3771 size_t bottom_to_max = pointer_delta(virtual_space_max, vsn.bottom(), 1);
3772 size_t overflow_size = bottom_to_max + BytesPerWord;
3773 size_t overflow_word_size = overflow_size / BytesPerWord;
3774
3775 // Check that is_available can handle the overflow.
3776 assert_is_available_negative(overflow_word_size);
3777 }
3778
3779 static void test_is_available() {
3780 TestVirtualSpaceNodeTest::test_is_available_positive();
3781 TestVirtualSpaceNodeTest::test_is_available_negative();
3782 TestVirtualSpaceNodeTest::test_is_available_overflow();
3783 }
3784 };
3785
3786 void TestVirtualSpaceNode_test() {
3787 TestVirtualSpaceNodeTest::test();
3788 TestVirtualSpaceNodeTest::test_is_available();
3789 }
3790
3791 #endif