1 /* 2 * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/altHashing.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" 29 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" 30 #include "gc_implementation/g1/g1StringDedupTable.hpp" 31 #include "memory/gcLocker.hpp" 32 #include "memory/padded.inline.hpp" 33 #include "oops/typeArrayOop.hpp" 34 #include "runtime/mutexLocker.hpp" 35 36 // 37 // Freelist in the deduplication table entry cache. Links table 38 // entries together using their _next fields. 39 // 40 class G1StringDedupEntryFreeList : public CHeapObj<mtGC> { 41 private: 42 G1StringDedupEntry* _list; 43 size_t _length; 44 45 public: 46 G1StringDedupEntryFreeList() : 47 _list(NULL), 48 _length(0) { 49 } 50 51 void add(G1StringDedupEntry* entry) { 52 entry->set_next(_list); 53 _list = entry; 54 _length++; 55 } 56 57 G1StringDedupEntry* remove() { 58 G1StringDedupEntry* entry = _list; 59 if (entry != NULL) { 60 _list = entry->next(); 61 _length--; 62 } 63 return entry; 64 } 65 66 size_t length() { 67 return _length; 68 } 69 }; 70 71 // 72 // Cache of deduplication table entries. This cache provides fast allocation and 73 // reuse of table entries to lower the pressure on the underlying allocator. 74 // But more importantly, it provides fast/deferred freeing of table entries. This 75 // is important because freeing of table entries is done during stop-the-world 76 // phases and it is not uncommon for large number of entries to be freed at once. 77 // Tables entries that are freed during these phases are placed onto a freelist in 78 // the cache. The deduplication thread, which executes in a concurrent phase, will 79 // later reuse or free the underlying memory for these entries. 80 // 81 // The cache allows for single-threaded allocations and multi-threaded frees. 82 // Allocations are synchronized by StringDedupTable_lock as part of a table 83 // modification. 84 // 85 class G1StringDedupEntryCache : public CHeapObj<mtGC> { 86 private: 87 // One freelist per GC worker to allow lock less freeing of 88 // entries while doing a parallel scan of the table. Using 89 // PaddedEnd to avoid false sharing. 90 PaddedEnd<G1StringDedupEntryFreeList>* _lists; 91 size_t _nlists; 92 93 public: 94 G1StringDedupEntryCache(); 95 ~G1StringDedupEntryCache(); 96 97 // Get a table entry from the cache freelist, or allocate a new 98 // entry if the cache is empty. 99 G1StringDedupEntry* alloc(); 100 101 // Insert a table entry into the cache freelist. 102 void free(G1StringDedupEntry* entry, uint worker_id); 103 104 // Returns current number of entries in the cache. 105 size_t size(); 106 107 // If the cache has grown above the given max size, trim it down 108 // and deallocate the memory occupied by trimmed of entries. 109 void trim(size_t max_size); 110 }; 111 112 G1StringDedupEntryCache::G1StringDedupEntryCache() { 113 _nlists = MAX2(ParallelGCThreads, (size_t)1); 114 _lists = PaddedArray<G1StringDedupEntryFreeList, mtGC>::create_unfreeable((uint)_nlists); 115 } 116 117 G1StringDedupEntryCache::~G1StringDedupEntryCache() { 118 ShouldNotReachHere(); 119 } 120 121 G1StringDedupEntry* G1StringDedupEntryCache::alloc() { 122 for (size_t i = 0; i < _nlists; i++) { 123 G1StringDedupEntry* entry = _lists[i].remove(); 124 if (entry != NULL) { 125 return entry; 126 } 127 } 128 return new G1StringDedupEntry(); 129 } 130 131 void G1StringDedupEntryCache::free(G1StringDedupEntry* entry, uint worker_id) { 132 assert(entry->obj() != NULL, "Double free"); 133 assert(worker_id < _nlists, "Invalid worker id"); 134 entry->set_obj(NULL); 135 entry->set_hash(0); 136 _lists[worker_id].add(entry); 137 } 138 139 size_t G1StringDedupEntryCache::size() { 140 size_t size = 0; 141 for (size_t i = 0; i < _nlists; i++) { 142 size += _lists[i].length(); 143 } 144 return size; 145 } 146 147 void G1StringDedupEntryCache::trim(size_t max_size) { 148 size_t cache_size = 0; 149 for (size_t i = 0; i < _nlists; i++) { 150 G1StringDedupEntryFreeList* list = &_lists[i]; 151 cache_size += list->length(); 152 while (cache_size > max_size) { 153 G1StringDedupEntry* entry = list->remove(); 154 assert(entry != NULL, "Should not be null"); 155 cache_size--; 156 delete entry; 157 } 158 } 159 } 160 161 G1StringDedupTable* G1StringDedupTable::_table = NULL; 162 G1StringDedupEntryCache* G1StringDedupTable::_entry_cache = NULL; 163 164 const size_t G1StringDedupTable::_min_size = (1 << 10); // 1024 165 const size_t G1StringDedupTable::_max_size = (1 << 24); // 16777216 166 const double G1StringDedupTable::_grow_load_factor = 2.0; // Grow table at 200% load 167 const double G1StringDedupTable::_shrink_load_factor = _grow_load_factor / 3.0; // Shrink table at 67% load 168 const double G1StringDedupTable::_max_cache_factor = 0.1; // Cache a maximum of 10% of the table size 169 const uintx G1StringDedupTable::_rehash_multiple = 60; // Hash bucket has 60 times more collisions than expected 170 const uintx G1StringDedupTable::_rehash_threshold = (uintx)(_rehash_multiple * _grow_load_factor); 171 172 uintx G1StringDedupTable::_entries_added = 0; 173 uintx G1StringDedupTable::_entries_removed = 0; 174 uintx G1StringDedupTable::_resize_count = 0; 175 uintx G1StringDedupTable::_rehash_count = 0; 176 177 G1StringDedupTable::G1StringDedupTable(size_t size, jint hash_seed) : 178 _size(size), 179 _entries(0), 180 _grow_threshold((uintx)(size * _grow_load_factor)), 181 _shrink_threshold((uintx)(size * _shrink_load_factor)), 182 _rehash_needed(false), 183 _hash_seed(hash_seed) { 184 assert(is_power_of_2(size), "Table size must be a power of 2"); 185 _buckets = NEW_C_HEAP_ARRAY(G1StringDedupEntry*, _size, mtGC); 186 memset(_buckets, 0, _size * sizeof(G1StringDedupEntry*)); 187 } 188 189 G1StringDedupTable::~G1StringDedupTable() { 190 FREE_C_HEAP_ARRAY(G1StringDedupEntry*, _buckets, mtGC); 191 } 192 193 void G1StringDedupTable::create() { 194 assert(_table == NULL, "One string deduplication table allowed"); 195 _entry_cache = new G1StringDedupEntryCache(); 196 _table = new G1StringDedupTable(_min_size); 197 } 198 199 void G1StringDedupTable::add(typeArrayOop value, unsigned int hash, G1StringDedupEntry** list) { 200 G1StringDedupEntry* entry = _entry_cache->alloc(); 201 entry->set_obj(value); 202 entry->set_hash(hash); 203 entry->set_next(*list); 204 *list = entry; 205 _entries++; 206 } 207 208 void G1StringDedupTable::remove(G1StringDedupEntry** pentry, uint worker_id) { 209 G1StringDedupEntry* entry = *pentry; 210 *pentry = entry->next(); 211 _entry_cache->free(entry, worker_id); 212 } 213 214 void G1StringDedupTable::transfer(G1StringDedupEntry** pentry, G1StringDedupTable* dest) { 215 G1StringDedupEntry* entry = *pentry; 216 *pentry = entry->next(); 217 unsigned int hash = entry->hash(); 218 size_t index = dest->hash_to_index(hash); 219 G1StringDedupEntry** list = dest->bucket(index); 220 entry->set_next(*list); 221 *list = entry; 222 } 223 224 bool G1StringDedupTable::equals(typeArrayOop value1, typeArrayOop value2) { 225 return (value1 == value2 || 226 (value1->length() == value2->length() && 227 (!memcmp(value1->base(T_CHAR), 228 value2->base(T_CHAR), 229 value1->length() * sizeof(jchar))))); 230 } 231 232 typeArrayOop G1StringDedupTable::lookup(typeArrayOop value, unsigned int hash, 233 G1StringDedupEntry** list, uintx &count) { 234 for (G1StringDedupEntry* entry = *list; entry != NULL; entry = entry->next()) { 235 if (entry->hash() == hash) { 236 typeArrayOop existing_value = entry->obj(); 237 if (equals(value, existing_value)) { 238 // Match found 239 return existing_value; 240 } 241 } 242 count++; 243 } 244 245 // Not found 246 return NULL; 247 } 248 249 typeArrayOop G1StringDedupTable::lookup_or_add_inner(typeArrayOop value, unsigned int hash) { 250 size_t index = hash_to_index(hash); 251 G1StringDedupEntry** list = bucket(index); 252 uintx count = 0; 253 254 // Lookup in list 255 typeArrayOop existing_value = lookup(value, hash, list, count); 256 257 // Check if rehash is needed 258 if (count > _rehash_threshold) { 259 _rehash_needed = true; 260 } 261 262 if (existing_value == NULL) { 263 // Not found, add new entry 264 add(value, hash, list); 265 266 // Update statistics 267 _entries_added++; 268 } 269 270 return existing_value; 271 } 272 273 unsigned int G1StringDedupTable::hash_code(typeArrayOop value) { 274 unsigned int hash; 275 int length = value->length(); 276 const jchar* data = (jchar*)value->base(T_CHAR); 277 278 if (use_java_hash()) { 279 hash = java_lang_String::hash_code(data, length); 280 } else { 281 hash = AltHashing::murmur3_32(_table->_hash_seed, data, length); 282 } 283 284 return hash; 285 } 286 287 void G1StringDedupTable::deduplicate(oop java_string, G1StringDedupStat& stat) { 288 assert(java_lang_String::is_instance(java_string), "Must be a string"); 289 No_Safepoint_Verifier nsv; 290 291 stat.inc_inspected(); 292 293 typeArrayOop value = java_lang_String::value(java_string); 294 if (value == NULL) { 295 // String has no value 296 stat.inc_skipped(); 297 return; 298 } 299 300 unsigned int hash = 0; 301 302 if (use_java_hash()) { 303 // Get hash code from cache 304 hash = java_lang_String::hash(java_string); 305 } 306 307 if (hash == 0) { 308 // Compute hash 309 hash = hash_code(value); 310 stat.inc_hashed(); 311 } 312 313 if (use_java_hash() && hash != 0) { 314 // Store hash code in cache 315 java_lang_String::set_hash(java_string, hash); 316 } 317 318 typeArrayOop existing_value = lookup_or_add(value, hash); 319 if (existing_value == value) { 320 // Same value, already known 321 stat.inc_known(); 322 return; 323 } 324 325 // Get size of value array 326 uintx size_in_bytes = value->size() * HeapWordSize; 327 stat.inc_new(size_in_bytes); 328 329 if (existing_value != NULL) { 330 // Enqueue the reference to make sure it is kept alive. Concurrent mark might 331 // otherwise declare it dead if there are no other strong references to this object. 332 G1SATBCardTableModRefBS::enqueue(existing_value); 333 334 // Existing value found, deduplicate string 335 java_lang_String::set_value(java_string, existing_value); 336 337 if (G1CollectedHeap::heap()->is_in_young(value)) { 338 stat.inc_deduped_young(size_in_bytes); 339 } else { 340 stat.inc_deduped_old(size_in_bytes); 341 } 342 } 343 } 344 345 G1StringDedupTable* G1StringDedupTable::prepare_resize() { 346 size_t size = _table->_size; 347 348 // Check if the hashtable needs to be resized 349 if (_table->_entries > _table->_grow_threshold) { 350 // Grow table, double the size 351 size *= 2; 352 if (size > _max_size) { 353 // Too big, don't resize 354 return NULL; 355 } 356 } else if (_table->_entries < _table->_shrink_threshold) { 357 // Shrink table, half the size 358 size /= 2; 359 if (size < _min_size) { 360 // Too small, don't resize 361 return NULL; 362 } 363 } else if (StringDeduplicationResizeALot) { 364 // Force grow 365 size *= 2; 366 if (size > _max_size) { 367 // Too big, force shrink instead 368 size /= 4; 369 } 370 } else { 371 // Resize not needed 372 return NULL; 373 } 374 375 // Update statistics 376 _resize_count++; 377 378 // Allocate the new table. The new table will be populated by workers 379 // calling unlink_or_oops_do() and finally installed by finish_resize(). 380 return new G1StringDedupTable(size, _table->_hash_seed); 381 } 382 383 void G1StringDedupTable::finish_resize(G1StringDedupTable* resized_table) { 384 assert(resized_table != NULL, "Invalid table"); 385 386 resized_table->_entries = _table->_entries; 387 388 // Free old table 389 delete _table; 390 391 // Install new table 392 _table = resized_table; 393 } 394 395 void G1StringDedupTable::unlink_or_oops_do(G1StringDedupUnlinkOrOopsDoClosure* cl, uint worker_id) { 396 // The table is divided into partitions to allow lock-less parallel processing by 397 // multiple worker threads. A worker thread first claims a partition, which ensures 398 // exclusive access to that part of the table, then continues to process it. To allow 399 // shrinking of the table in parallel we also need to make sure that the same worker 400 // thread processes all partitions where entries will hash to the same destination 401 // partition. Since the table size is always a power of two and we always shrink by 402 // dividing the table in half, we know that for a given partition there is only one 403 // other partition whoes entries will hash to the same destination partition. That 404 // other partition is always the sibling partition in the second half of the table. 405 // For example, if the table is divided into 8 partitions, the sibling of partition 0 406 // is partition 4, the sibling of partition 1 is partition 5, etc. 407 size_t table_half = _table->_size / 2; 408 409 // Let each partition be one page worth of buckets 410 size_t partition_size = MIN2(table_half, os::vm_page_size() / sizeof(G1StringDedupEntry*)); 411 assert(table_half % partition_size == 0, "Invalid partition size"); 412 413 // Number of entries removed during the scan 414 uintx removed = 0; 415 416 for (;;) { 417 // Grab next partition to scan 418 size_t partition_begin = cl->claim_table_partition(partition_size); 419 size_t partition_end = partition_begin + partition_size; 420 if (partition_begin >= table_half) { 421 // End of table 422 break; 423 } 424 425 // Scan the partition followed by the sibling partition in the second half of the table 426 removed += unlink_or_oops_do(cl, partition_begin, partition_end, worker_id); 427 removed += unlink_or_oops_do(cl, table_half + partition_begin, table_half + partition_end, worker_id); 428 } 429 430 // Delayed update avoid contention on the table lock 431 if (removed > 0) { 432 MutexLockerEx ml(StringDedupTable_lock, Mutex::_no_safepoint_check_flag); 433 _table->_entries -= removed; 434 _entries_removed += removed; 435 } 436 } 437 438 uintx G1StringDedupTable::unlink_or_oops_do(G1StringDedupUnlinkOrOopsDoClosure* cl, 439 size_t partition_begin, 440 size_t partition_end, 441 uint worker_id) { 442 uintx removed = 0; 443 for (size_t bucket = partition_begin; bucket < partition_end; bucket++) { 444 G1StringDedupEntry** entry = _table->bucket(bucket); 445 while (*entry != NULL) { 446 oop* p = (oop*)(*entry)->obj_addr(); 447 if (cl->is_alive(*p)) { 448 cl->keep_alive(p); 449 if (cl->is_resizing()) { 450 // We are resizing the table, transfer entry to the new table 451 _table->transfer(entry, cl->resized_table()); 452 } else { 453 if (cl->is_rehashing()) { 454 // We are rehashing the table, rehash the entry but keep it 455 // in the table. We can't transfer entries into the new table 456 // at this point since we don't have exclusive access to all 457 // destination partitions. finish_rehash() will do a single 458 // threaded transfer of all entries. 459 typeArrayOop value = (typeArrayOop)*p; 460 unsigned int hash = hash_code(value); 461 (*entry)->set_hash(hash); 462 } 463 464 // Move to next entry 465 entry = (*entry)->next_addr(); 466 } 467 } else { 468 // Not alive, remove entry from table 469 _table->remove(entry, worker_id); 470 removed++; 471 } 472 } 473 } 474 475 return removed; 476 } 477 478 G1StringDedupTable* G1StringDedupTable::prepare_rehash() { 479 if (!_table->_rehash_needed && !StringDeduplicationRehashALot) { 480 // Rehash not needed 481 return NULL; 482 } 483 484 // Update statistics 485 _rehash_count++; 486 487 // Compute new hash seed 488 _table->_hash_seed = AltHashing::compute_seed(); 489 490 // Allocate the new table, same size and hash seed 491 return new G1StringDedupTable(_table->_size, _table->_hash_seed); 492 } 493 494 void G1StringDedupTable::finish_rehash(G1StringDedupTable* rehashed_table) { 495 assert(rehashed_table != NULL, "Invalid table"); 496 497 // Move all newly rehashed entries into the correct buckets in the new table 498 for (size_t bucket = 0; bucket < _table->_size; bucket++) { 499 G1StringDedupEntry** entry = _table->bucket(bucket); 500 while (*entry != NULL) { 501 _table->transfer(entry, rehashed_table); 502 } 503 } 504 505 rehashed_table->_entries = _table->_entries; 506 507 // Free old table 508 delete _table; 509 510 // Install new table 511 _table = rehashed_table; 512 } 513 514 void G1StringDedupTable::verify() { 515 for (size_t bucket = 0; bucket < _table->_size; bucket++) { 516 // Verify entries 517 G1StringDedupEntry** entry = _table->bucket(bucket); 518 while (*entry != NULL) { 519 typeArrayOop value = (*entry)->obj(); 520 guarantee(value != NULL, "Object must not be NULL"); 521 guarantee(Universe::heap()->is_in_reserved(value), "Object must be on the heap"); 522 guarantee(!value->is_forwarded(), "Object must not be forwarded"); 523 guarantee(value->is_typeArray(), "Object must be a typeArrayOop"); 524 unsigned int hash = hash_code(value); 525 guarantee((*entry)->hash() == hash, "Table entry has inorrect hash"); 526 guarantee(_table->hash_to_index(hash) == bucket, "Table entry has incorrect index"); 527 entry = (*entry)->next_addr(); 528 } 529 530 // Verify that we do not have entries with identical oops or identical arrays. 531 // We only need to compare entries in the same bucket. If the same oop or an 532 // identical array has been inserted more than once into different/incorrect 533 // buckets the verification step above will catch that. 534 G1StringDedupEntry** entry1 = _table->bucket(bucket); 535 while (*entry1 != NULL) { 536 typeArrayOop value1 = (*entry1)->obj(); 537 G1StringDedupEntry** entry2 = (*entry1)->next_addr(); 538 while (*entry2 != NULL) { 539 typeArrayOop value2 = (*entry2)->obj(); 540 guarantee(!equals(value1, value2), "Table entries must not have identical arrays"); 541 entry2 = (*entry2)->next_addr(); 542 } 543 entry1 = (*entry1)->next_addr(); 544 } 545 } 546 } 547 548 void G1StringDedupTable::trim_entry_cache() { 549 MutexLockerEx ml(StringDedupTable_lock, Mutex::_no_safepoint_check_flag); 550 size_t max_cache_size = (size_t)(_table->_size * _max_cache_factor); 551 _entry_cache->trim(max_cache_size); 552 } 553 554 void G1StringDedupTable::print_statistics(outputStream* st) { 555 st->print_cr( 556 " [Table]\n" 557 " [Memory Usage: "G1_STRDEDUP_BYTES_FORMAT_NS"]\n" 558 " [Size: "SIZE_FORMAT", Min: "SIZE_FORMAT", Max: "SIZE_FORMAT"]\n" 559 " [Entries: "UINTX_FORMAT", Load: "G1_STRDEDUP_PERCENT_FORMAT_NS", Cached: " UINTX_FORMAT ", Added: "UINTX_FORMAT", Removed: "UINTX_FORMAT"]\n" 560 " [Resize Count: "UINTX_FORMAT", Shrink Threshold: "UINTX_FORMAT"("G1_STRDEDUP_PERCENT_FORMAT_NS"), Grow Threshold: "UINTX_FORMAT"("G1_STRDEDUP_PERCENT_FORMAT_NS")]\n" 561 " [Rehash Count: "UINTX_FORMAT", Rehash Threshold: "UINTX_FORMAT", Hash Seed: 0x%x]\n" 562 " [Age Threshold: "UINTX_FORMAT"]", 563 G1_STRDEDUP_BYTES_PARAM(_table->_size * sizeof(G1StringDedupEntry*) + (_table->_entries + _entry_cache->size()) * sizeof(G1StringDedupEntry)), 564 _table->_size, _min_size, _max_size, 565 _table->_entries, (double)_table->_entries / (double)_table->_size * 100.0, _entry_cache->size(), _entries_added, _entries_removed, 566 _resize_count, _table->_shrink_threshold, _shrink_load_factor * 100.0, _table->_grow_threshold, _grow_load_factor * 100.0, 567 _rehash_count, _rehash_threshold, _table->_hash_seed, 568 StringDeduplicationAgeThreshold); 569 }