1 /* 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "code/nmethod.hpp" 27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp" 28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" 29 #include "gc_implementation/g1/g1OopClosures.inline.hpp" 30 #include "gc_implementation/g1/heapRegion.inline.hpp" 31 #include "gc_implementation/g1/heapRegionRemSet.hpp" 32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp" 33 #include "memory/genOopClosures.inline.hpp" 34 #include "memory/iterator.hpp" 35 #include "memory/space.inline.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "runtime/orderAccess.inline.hpp" 38 39 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC 40 41 int HeapRegion::LogOfHRGrainBytes = 0; 42 int HeapRegion::LogOfHRGrainWords = 0; 43 size_t HeapRegion::GrainBytes = 0; 44 size_t HeapRegion::GrainWords = 0; 45 size_t HeapRegion::CardsPerRegion = 0; 46 47 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1, 48 HeapRegion* hr, ExtendedOopClosure* cl, 49 CardTableModRefBS::PrecisionStyle precision, 50 FilterKind fk) : 51 ContiguousSpaceDCTOC(hr, cl, precision, NULL), 52 _hr(hr), _fk(fk), _g1(g1) { } 53 54 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r, 55 OopClosure* oc) : 56 _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { } 57 58 template<class ClosureType> 59 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h, 60 HeapRegion* hr, 61 HeapWord* cur, HeapWord* top) { 62 oop cur_oop = oop(cur); 63 int oop_size = cur_oop->size(); 64 HeapWord* next_obj = cur + oop_size; 65 while (next_obj < top) { 66 // Keep filtering the remembered set. 67 if (!g1h->is_obj_dead(cur_oop, hr)) { 68 // Bottom lies entirely below top, so we can call the 69 // non-memRegion version of oop_iterate below. 70 cur_oop->oop_iterate(cl); 71 } 72 cur = next_obj; 73 cur_oop = oop(cur); 74 oop_size = cur_oop->size(); 75 next_obj = cur + oop_size; 76 } 77 return cur; 78 } 79 80 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr, 81 HeapWord* bottom, 82 HeapWord* top, 83 ExtendedOopClosure* cl) { 84 G1CollectedHeap* g1h = _g1; 85 int oop_size; 86 ExtendedOopClosure* cl2 = NULL; 87 88 FilterIntoCSClosure intoCSFilt(this, g1h, cl); 89 FilterOutOfRegionClosure outOfRegionFilt(_hr, cl); 90 91 switch (_fk) { 92 case NoFilterKind: cl2 = cl; break; 93 case IntoCSFilterKind: cl2 = &intoCSFilt; break; 94 case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break; 95 default: ShouldNotReachHere(); 96 } 97 98 // Start filtering what we add to the remembered set. If the object is 99 // not considered dead, either because it is marked (in the mark bitmap) 100 // or it was allocated after marking finished, then we add it. Otherwise 101 // we can safely ignore the object. 102 if (!g1h->is_obj_dead(oop(bottom), _hr)) { 103 oop_size = oop(bottom)->oop_iterate(cl2, mr); 104 } else { 105 oop_size = oop(bottom)->size(); 106 } 107 108 bottom += oop_size; 109 110 if (bottom < top) { 111 // We replicate the loop below for several kinds of possible filters. 112 switch (_fk) { 113 case NoFilterKind: 114 bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top); 115 break; 116 117 case IntoCSFilterKind: { 118 FilterIntoCSClosure filt(this, g1h, cl); 119 bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top); 120 break; 121 } 122 123 case OutOfRegionFilterKind: { 124 FilterOutOfRegionClosure filt(_hr, cl); 125 bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top); 126 break; 127 } 128 129 default: 130 ShouldNotReachHere(); 131 } 132 133 // Last object. Need to do dead-obj filtering here too. 134 if (!g1h->is_obj_dead(oop(bottom), _hr)) { 135 oop(bottom)->oop_iterate(cl2, mr); 136 } 137 } 138 } 139 140 // Minimum region size; we won't go lower than that. 141 // We might want to decrease this in the future, to deal with small 142 // heaps a bit more efficiently. 143 #define MIN_REGION_SIZE ( 1024 * 1024 ) 144 145 // Maximum region size; we don't go higher than that. There's a good 146 // reason for having an upper bound. We don't want regions to get too 147 // large, otherwise cleanup's effectiveness would decrease as there 148 // will be fewer opportunities to find totally empty regions after 149 // marking. 150 #define MAX_REGION_SIZE ( 32 * 1024 * 1024 ) 151 152 // The automatic region size calculation will try to have around this 153 // many regions in the heap (based on the min heap size). 154 #define TARGET_REGION_NUMBER 2048 155 156 size_t HeapRegion::max_region_size() { 157 return (size_t)MAX_REGION_SIZE; 158 } 159 160 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) { 161 uintx region_size = G1HeapRegionSize; 162 if (FLAG_IS_DEFAULT(G1HeapRegionSize)) { 163 size_t average_heap_size = (initial_heap_size + max_heap_size) / 2; 164 region_size = MAX2(average_heap_size / TARGET_REGION_NUMBER, 165 (size_t) MIN_REGION_SIZE); 166 } 167 168 int region_size_log = log2_long((jlong) region_size); 169 // Recalculate the region size to make sure it's a power of 170 // 2. This means that region_size is the largest power of 2 that's 171 // <= what we've calculated so far. 172 region_size = ((uintx)1 << region_size_log); 173 174 // Now make sure that we don't go over or under our limits. 175 if (region_size < MIN_REGION_SIZE) { 176 region_size = MIN_REGION_SIZE; 177 } else if (region_size > MAX_REGION_SIZE) { 178 region_size = MAX_REGION_SIZE; 179 } 180 181 // And recalculate the log. 182 region_size_log = log2_long((jlong) region_size); 183 184 // Now, set up the globals. 185 guarantee(LogOfHRGrainBytes == 0, "we should only set it once"); 186 LogOfHRGrainBytes = region_size_log; 187 188 guarantee(LogOfHRGrainWords == 0, "we should only set it once"); 189 LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize; 190 191 guarantee(GrainBytes == 0, "we should only set it once"); 192 // The cast to int is safe, given that we've bounded region_size by 193 // MIN_REGION_SIZE and MAX_REGION_SIZE. 194 GrainBytes = (size_t)region_size; 195 196 guarantee(GrainWords == 0, "we should only set it once"); 197 GrainWords = GrainBytes >> LogHeapWordSize; 198 guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity"); 199 200 guarantee(CardsPerRegion == 0, "we should only set it once"); 201 CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift; 202 } 203 204 void HeapRegion::reset_after_compaction() { 205 G1OffsetTableContigSpace::reset_after_compaction(); 206 // After a compaction the mark bitmap is invalid, so we must 207 // treat all objects as being inside the unmarked area. 208 zero_marked_bytes(); 209 init_top_at_mark_start(); 210 } 211 212 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) { 213 assert(_humongous_type == NotHumongous, 214 "we should have already filtered out humongous regions"); 215 assert(_humongous_start_region == NULL, 216 "we should have already filtered out humongous regions"); 217 assert(_end == _orig_end, 218 "we should have already filtered out humongous regions"); 219 220 _in_collection_set = false; 221 222 set_young_index_in_cset(-1); 223 uninstall_surv_rate_group(); 224 set_young_type(NotYoung); 225 reset_pre_dummy_top(); 226 227 if (!par) { 228 // If this is parallel, this will be done later. 229 HeapRegionRemSet* hrrs = rem_set(); 230 if (locked) { 231 hrrs->clear_locked(); 232 } else { 233 hrrs->clear(); 234 } 235 _claimed = InitialClaimValue; 236 } 237 zero_marked_bytes(); 238 239 _offsets.resize(HeapRegion::GrainWords); 240 init_top_at_mark_start(); 241 if (clear_space) clear(SpaceDecorator::Mangle); 242 } 243 244 void HeapRegion::par_clear() { 245 assert(used() == 0, "the region should have been already cleared"); 246 assert(capacity() == HeapRegion::GrainBytes, "should be back to normal"); 247 HeapRegionRemSet* hrrs = rem_set(); 248 hrrs->clear(); 249 CardTableModRefBS* ct_bs = 250 (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set(); 251 ct_bs->clear(MemRegion(bottom(), end())); 252 } 253 254 void HeapRegion::calc_gc_efficiency() { 255 // GC efficiency is the ratio of how much space would be 256 // reclaimed over how long we predict it would take to reclaim it. 257 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 258 G1CollectorPolicy* g1p = g1h->g1_policy(); 259 260 // Retrieve a prediction of the elapsed time for this region for 261 // a mixed gc because the region will only be evacuated during a 262 // mixed gc. 263 double region_elapsed_time_ms = 264 g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */); 265 _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms; 266 } 267 268 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) { 269 assert(!isHumongous(), "sanity / pre-condition"); 270 assert(end() == _orig_end, 271 "Should be normal before the humongous object allocation"); 272 assert(top() == bottom(), "should be empty"); 273 assert(bottom() <= new_top && new_top <= new_end, "pre-condition"); 274 275 _humongous_type = StartsHumongous; 276 _humongous_start_region = this; 277 278 set_end(new_end); 279 _offsets.set_for_starts_humongous(new_top); 280 } 281 282 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) { 283 assert(!isHumongous(), "sanity / pre-condition"); 284 assert(end() == _orig_end, 285 "Should be normal before the humongous object allocation"); 286 assert(top() == bottom(), "should be empty"); 287 assert(first_hr->startsHumongous(), "pre-condition"); 288 289 _humongous_type = ContinuesHumongous; 290 _humongous_start_region = first_hr; 291 } 292 293 void HeapRegion::set_notHumongous() { 294 assert(isHumongous(), "pre-condition"); 295 296 if (startsHumongous()) { 297 assert(top() <= end(), "pre-condition"); 298 set_end(_orig_end); 299 if (top() > end()) { 300 // at least one "continues humongous" region after it 301 set_top(end()); 302 } 303 } else { 304 // continues humongous 305 assert(end() == _orig_end, "sanity"); 306 } 307 308 assert(capacity() == HeapRegion::GrainBytes, "pre-condition"); 309 _humongous_type = NotHumongous; 310 _humongous_start_region = NULL; 311 } 312 313 bool HeapRegion::claimHeapRegion(jint claimValue) { 314 jint current = _claimed; 315 if (current != claimValue) { 316 jint res = Atomic::cmpxchg(claimValue, &_claimed, current); 317 if (res == current) { 318 return true; 319 } 320 } 321 return false; 322 } 323 324 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) { 325 HeapWord* low = addr; 326 HeapWord* high = end(); 327 while (low < high) { 328 size_t diff = pointer_delta(high, low); 329 // Must add one below to bias toward the high amount. Otherwise, if 330 // "high" were at the desired value, and "low" were one less, we 331 // would not converge on "high". This is not symmetric, because 332 // we set "high" to a block start, which might be the right one, 333 // which we don't do for "low". 334 HeapWord* middle = low + (diff+1)/2; 335 if (middle == high) return high; 336 HeapWord* mid_bs = block_start_careful(middle); 337 if (mid_bs < addr) { 338 low = middle; 339 } else { 340 high = mid_bs; 341 } 342 } 343 assert(low == high && low >= addr, "Didn't work."); 344 return low; 345 } 346 347 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away 348 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 349 #endif // _MSC_VER 350 351 352 HeapRegion::HeapRegion(uint hrs_index, 353 G1BlockOffsetSharedArray* sharedOffsetArray, 354 MemRegion mr) : 355 G1OffsetTableContigSpace(sharedOffsetArray, mr), 356 _hrs_index(hrs_index), 357 _humongous_type(NotHumongous), _humongous_start_region(NULL), 358 _in_collection_set(false), 359 _next_in_special_set(NULL), _orig_end(NULL), 360 _claimed(InitialClaimValue), _evacuation_failed(false), 361 _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0), 362 _young_type(NotYoung), _next_young_region(NULL), 363 _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL), _pending_removal(false), 364 #ifdef ASSERT 365 _containing_set(NULL), 366 #endif // ASSERT 367 _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1), 368 _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0), 369 _predicted_bytes_to_copy(0) 370 { 371 _rem_set = new HeapRegionRemSet(sharedOffsetArray, this); 372 _orig_end = mr.end(); 373 // Note that initialize() will set the start of the unmarked area of the 374 // region. 375 hr_clear(false /*par*/, false /*clear_space*/); 376 set_top(bottom()); 377 set_saved_mark(); 378 379 assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant."); 380 } 381 382 CompactibleSpace* HeapRegion::next_compaction_space() const { 383 // We're not using an iterator given that it will wrap around when 384 // it reaches the last region and this is not what we want here. 385 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 386 uint index = hrs_index() + 1; 387 while (index < g1h->n_regions()) { 388 HeapRegion* hr = g1h->region_at(index); 389 if (!hr->isHumongous()) { 390 return hr; 391 } 392 index += 1; 393 } 394 return NULL; 395 } 396 397 void HeapRegion::save_marks() { 398 set_saved_mark(); 399 } 400 401 void HeapRegion::oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl) { 402 HeapWord* p = mr.start(); 403 HeapWord* e = mr.end(); 404 oop obj; 405 while (p < e) { 406 obj = oop(p); 407 p += obj->oop_iterate(cl); 408 } 409 assert(p == e, "bad memregion: doesn't end on obj boundary"); 410 } 411 412 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \ 413 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \ 414 ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl); \ 415 } 416 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN) 417 418 419 void HeapRegion::oop_before_save_marks_iterate(ExtendedOopClosure* cl) { 420 oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl); 421 } 422 423 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark, 424 bool during_conc_mark) { 425 // We always recreate the prev marking info and we'll explicitly 426 // mark all objects we find to be self-forwarded on the prev 427 // bitmap. So all objects need to be below PTAMS. 428 _prev_top_at_mark_start = top(); 429 _prev_marked_bytes = 0; 430 431 if (during_initial_mark) { 432 // During initial-mark, we'll also explicitly mark all objects 433 // we find to be self-forwarded on the next bitmap. So all 434 // objects need to be below NTAMS. 435 _next_top_at_mark_start = top(); 436 _next_marked_bytes = 0; 437 } else if (during_conc_mark) { 438 // During concurrent mark, all objects in the CSet (including 439 // the ones we find to be self-forwarded) are implicitly live. 440 // So all objects need to be above NTAMS. 441 _next_top_at_mark_start = bottom(); 442 _next_marked_bytes = 0; 443 } 444 } 445 446 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark, 447 bool during_conc_mark, 448 size_t marked_bytes) { 449 assert(0 <= marked_bytes && marked_bytes <= used(), 450 err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT, 451 marked_bytes, used())); 452 _prev_marked_bytes = marked_bytes; 453 } 454 455 HeapWord* 456 HeapRegion::object_iterate_mem_careful(MemRegion mr, 457 ObjectClosure* cl) { 458 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 459 // We used to use "block_start_careful" here. But we're actually happy 460 // to update the BOT while we do this... 461 HeapWord* cur = block_start(mr.start()); 462 mr = mr.intersection(used_region()); 463 if (mr.is_empty()) return NULL; 464 // Otherwise, find the obj that extends onto mr.start(). 465 466 assert(cur <= mr.start() 467 && (oop(cur)->klass_or_null() == NULL || 468 cur + oop(cur)->size() > mr.start()), 469 "postcondition of block_start"); 470 oop obj; 471 while (cur < mr.end()) { 472 obj = oop(cur); 473 if (obj->klass_or_null() == NULL) { 474 // Ran into an unparseable point. 475 return cur; 476 } else if (!g1h->is_obj_dead(obj)) { 477 cl->do_object(obj); 478 } 479 cur += obj->size(); 480 } 481 return NULL; 482 } 483 484 HeapWord* 485 HeapRegion:: 486 oops_on_card_seq_iterate_careful(MemRegion mr, 487 FilterOutOfRegionClosure* cl, 488 bool filter_young, 489 jbyte* card_ptr) { 490 // Currently, we should only have to clean the card if filter_young 491 // is true and vice versa. 492 if (filter_young) { 493 assert(card_ptr != NULL, "pre-condition"); 494 } else { 495 assert(card_ptr == NULL, "pre-condition"); 496 } 497 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 498 499 // If we're within a stop-world GC, then we might look at a card in a 500 // GC alloc region that extends onto a GC LAB, which may not be 501 // parseable. Stop such at the "saved_mark" of the region. 502 if (g1h->is_gc_active()) { 503 mr = mr.intersection(used_region_at_save_marks()); 504 } else { 505 mr = mr.intersection(used_region()); 506 } 507 if (mr.is_empty()) return NULL; 508 // Otherwise, find the obj that extends onto mr.start(). 509 510 // The intersection of the incoming mr (for the card) and the 511 // allocated part of the region is non-empty. This implies that 512 // we have actually allocated into this region. The code in 513 // G1CollectedHeap.cpp that allocates a new region sets the 514 // is_young tag on the region before allocating. Thus we 515 // safely know if this region is young. 516 if (is_young() && filter_young) { 517 return NULL; 518 } 519 520 assert(!is_young(), "check value of filter_young"); 521 522 // We can only clean the card here, after we make the decision that 523 // the card is not young. And we only clean the card if we have been 524 // asked to (i.e., card_ptr != NULL). 525 if (card_ptr != NULL) { 526 *card_ptr = CardTableModRefBS::clean_card_val(); 527 // We must complete this write before we do any of the reads below. 528 OrderAccess::storeload(); 529 } 530 531 // Cache the boundaries of the memory region in some const locals 532 HeapWord* const start = mr.start(); 533 HeapWord* const end = mr.end(); 534 535 // We used to use "block_start_careful" here. But we're actually happy 536 // to update the BOT while we do this... 537 HeapWord* cur = block_start(start); 538 assert(cur <= start, "Postcondition"); 539 540 oop obj; 541 542 HeapWord* next = cur; 543 while (next <= start) { 544 cur = next; 545 obj = oop(cur); 546 if (obj->klass_or_null() == NULL) { 547 // Ran into an unparseable point. 548 return cur; 549 } 550 // Otherwise... 551 next = (cur + obj->size()); 552 } 553 554 // If we finish the above loop...We have a parseable object that 555 // begins on or before the start of the memory region, and ends 556 // inside or spans the entire region. 557 558 assert(obj == oop(cur), "sanity"); 559 assert(cur <= start && 560 obj->klass_or_null() != NULL && 561 (cur + obj->size()) > start, 562 "Loop postcondition"); 563 564 if (!g1h->is_obj_dead(obj)) { 565 obj->oop_iterate(cl, mr); 566 } 567 568 while (cur < end) { 569 obj = oop(cur); 570 if (obj->klass_or_null() == NULL) { 571 // Ran into an unparseable point. 572 return cur; 573 }; 574 575 // Otherwise: 576 next = (cur + obj->size()); 577 578 if (!g1h->is_obj_dead(obj)) { 579 if (next < end || !obj->is_objArray()) { 580 // This object either does not span the MemRegion 581 // boundary, or if it does it's not an array. 582 // Apply closure to whole object. 583 obj->oop_iterate(cl); 584 } else { 585 // This obj is an array that spans the boundary. 586 // Stop at the boundary. 587 obj->oop_iterate(cl, mr); 588 } 589 } 590 cur = next; 591 } 592 return NULL; 593 } 594 595 // Code roots support 596 597 void HeapRegion::add_strong_code_root(nmethod* nm) { 598 HeapRegionRemSet* hrrs = rem_set(); 599 hrrs->add_strong_code_root(nm); 600 } 601 602 void HeapRegion::remove_strong_code_root(nmethod* nm) { 603 HeapRegionRemSet* hrrs = rem_set(); 604 hrrs->remove_strong_code_root(nm); 605 } 606 607 void HeapRegion::migrate_strong_code_roots() { 608 assert(in_collection_set(), "only collection set regions"); 609 assert(!isHumongous(), 610 err_msg("humongous region "HR_FORMAT" should not have been added to collection set", 611 HR_FORMAT_PARAMS(this))); 612 613 HeapRegionRemSet* hrrs = rem_set(); 614 hrrs->migrate_strong_code_roots(); 615 } 616 617 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const { 618 HeapRegionRemSet* hrrs = rem_set(); 619 hrrs->strong_code_roots_do(blk); 620 } 621 622 class VerifyStrongCodeRootOopClosure: public OopClosure { 623 const HeapRegion* _hr; 624 nmethod* _nm; 625 bool _failures; 626 bool _has_oops_in_region; 627 628 template <class T> void do_oop_work(T* p) { 629 T heap_oop = oopDesc::load_heap_oop(p); 630 if (!oopDesc::is_null(heap_oop)) { 631 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 632 633 // Note: not all the oops embedded in the nmethod are in the 634 // current region. We only look at those which are. 635 if (_hr->is_in(obj)) { 636 // Object is in the region. Check that its less than top 637 if (_hr->top() <= (HeapWord*)obj) { 638 // Object is above top 639 gclog_or_tty->print_cr("Object "PTR_FORMAT" in region " 640 "["PTR_FORMAT", "PTR_FORMAT") is above " 641 "top "PTR_FORMAT, 642 (void *)obj, _hr->bottom(), _hr->end(), _hr->top()); 643 _failures = true; 644 return; 645 } 646 // Nmethod has at least one oop in the current region 647 _has_oops_in_region = true; 648 } 649 } 650 } 651 652 public: 653 VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm): 654 _hr(hr), _failures(false), _has_oops_in_region(false) {} 655 656 void do_oop(narrowOop* p) { do_oop_work(p); } 657 void do_oop(oop* p) { do_oop_work(p); } 658 659 bool failures() { return _failures; } 660 bool has_oops_in_region() { return _has_oops_in_region; } 661 }; 662 663 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure { 664 const HeapRegion* _hr; 665 bool _failures; 666 public: 667 VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) : 668 _hr(hr), _failures(false) {} 669 670 void do_code_blob(CodeBlob* cb) { 671 nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null(); 672 if (nm != NULL) { 673 // Verify that the nemthod is live 674 if (!nm->is_alive()) { 675 gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod " 676 PTR_FORMAT" in its strong code roots", 677 _hr->bottom(), _hr->end(), nm); 678 _failures = true; 679 } else { 680 VerifyStrongCodeRootOopClosure oop_cl(_hr, nm); 681 nm->oops_do(&oop_cl); 682 if (!oop_cl.has_oops_in_region()) { 683 gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod " 684 PTR_FORMAT" in its strong code roots " 685 "with no pointers into region", 686 _hr->bottom(), _hr->end(), nm); 687 _failures = true; 688 } else if (oop_cl.failures()) { 689 gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other " 690 "failures for nmethod "PTR_FORMAT, 691 _hr->bottom(), _hr->end(), nm); 692 _failures = true; 693 } 694 } 695 } 696 } 697 698 bool failures() { return _failures; } 699 }; 700 701 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const { 702 if (!G1VerifyHeapRegionCodeRoots) { 703 // We're not verifying code roots. 704 return; 705 } 706 if (vo == VerifyOption_G1UseMarkWord) { 707 // Marking verification during a full GC is performed after class 708 // unloading, code cache unloading, etc so the strong code roots 709 // attached to each heap region are in an inconsistent state. They won't 710 // be consistent until the strong code roots are rebuilt after the 711 // actual GC. Skip verifying the strong code roots in this particular 712 // time. 713 assert(VerifyDuringGC, "only way to get here"); 714 return; 715 } 716 717 HeapRegionRemSet* hrrs = rem_set(); 718 size_t strong_code_roots_length = hrrs->strong_code_roots_list_length(); 719 720 // if this region is empty then there should be no entries 721 // on its strong code root list 722 if (is_empty()) { 723 if (strong_code_roots_length > 0) { 724 gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty " 725 "but has "SIZE_FORMAT" code root entries", 726 bottom(), end(), strong_code_roots_length); 727 *failures = true; 728 } 729 return; 730 } 731 732 if (continuesHumongous()) { 733 if (strong_code_roots_length > 0) { 734 gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous " 735 "region but has "SIZE_FORMAT" code root entries", 736 HR_FORMAT_PARAMS(this), strong_code_roots_length); 737 *failures = true; 738 } 739 return; 740 } 741 742 VerifyStrongCodeRootCodeBlobClosure cb_cl(this); 743 strong_code_roots_do(&cb_cl); 744 745 if (cb_cl.failures()) { 746 *failures = true; 747 } 748 } 749 750 void HeapRegion::print() const { print_on(gclog_or_tty); } 751 void HeapRegion::print_on(outputStream* st) const { 752 if (isHumongous()) { 753 if (startsHumongous()) 754 st->print(" HS"); 755 else 756 st->print(" HC"); 757 } else { 758 st->print(" "); 759 } 760 if (in_collection_set()) 761 st->print(" CS"); 762 else 763 st->print(" "); 764 if (is_young()) 765 st->print(is_survivor() ? " SU" : " Y "); 766 else 767 st->print(" "); 768 if (is_empty()) 769 st->print(" F"); 770 else 771 st->print(" "); 772 st->print(" TS %5d", _gc_time_stamp); 773 st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT, 774 prev_top_at_mark_start(), next_top_at_mark_start()); 775 G1OffsetTableContigSpace::print_on(st); 776 } 777 778 class VerifyLiveClosure: public OopClosure { 779 private: 780 G1CollectedHeap* _g1h; 781 CardTableModRefBS* _bs; 782 oop _containing_obj; 783 bool _failures; 784 int _n_failures; 785 VerifyOption _vo; 786 public: 787 // _vo == UsePrevMarking -> use "prev" marking information, 788 // _vo == UseNextMarking -> use "next" marking information, 789 // _vo == UseMarkWord -> use mark word from object header. 790 VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : 791 _g1h(g1h), _bs(NULL), _containing_obj(NULL), 792 _failures(false), _n_failures(0), _vo(vo) 793 { 794 BarrierSet* bs = _g1h->barrier_set(); 795 if (bs->is_a(BarrierSet::CardTableModRef)) 796 _bs = (CardTableModRefBS*)bs; 797 } 798 799 void set_containing_obj(oop obj) { 800 _containing_obj = obj; 801 } 802 803 bool failures() { return _failures; } 804 int n_failures() { return _n_failures; } 805 806 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 807 virtual void do_oop( oop* p) { do_oop_work(p); } 808 809 void print_object(outputStream* out, oop obj) { 810 #ifdef PRODUCT 811 Klass* k = obj->klass(); 812 const char* class_name = InstanceKlass::cast(k)->external_name(); 813 out->print_cr("class name %s", class_name); 814 #else // PRODUCT 815 obj->print_on(out); 816 #endif // PRODUCT 817 } 818 819 template <class T> 820 void do_oop_work(T* p) { 821 assert(_containing_obj != NULL, "Precondition"); 822 assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo), 823 "Precondition"); 824 T heap_oop = oopDesc::load_heap_oop(p); 825 if (!oopDesc::is_null(heap_oop)) { 826 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 827 bool failed = false; 828 if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) { 829 MutexLockerEx x(ParGCRareEvent_lock, 830 Mutex::_no_safepoint_check_flag); 831 832 if (!_failures) { 833 gclog_or_tty->cr(); 834 gclog_or_tty->print_cr("----------"); 835 } 836 if (!_g1h->is_in_closed_subset(obj)) { 837 HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p); 838 gclog_or_tty->print_cr("Field "PTR_FORMAT 839 " of live obj "PTR_FORMAT" in region " 840 "["PTR_FORMAT", "PTR_FORMAT")", 841 p, (void*) _containing_obj, 842 from->bottom(), from->end()); 843 print_object(gclog_or_tty, _containing_obj); 844 gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap", 845 (void*) obj); 846 } else { 847 HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p); 848 HeapRegion* to = _g1h->heap_region_containing((HeapWord*)obj); 849 gclog_or_tty->print_cr("Field "PTR_FORMAT 850 " of live obj "PTR_FORMAT" in region " 851 "["PTR_FORMAT", "PTR_FORMAT")", 852 p, (void*) _containing_obj, 853 from->bottom(), from->end()); 854 print_object(gclog_or_tty, _containing_obj); 855 gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region " 856 "["PTR_FORMAT", "PTR_FORMAT")", 857 (void*) obj, to->bottom(), to->end()); 858 print_object(gclog_or_tty, obj); 859 } 860 gclog_or_tty->print_cr("----------"); 861 gclog_or_tty->flush(); 862 _failures = true; 863 failed = true; 864 _n_failures++; 865 } 866 867 if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) { 868 HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p); 869 HeapRegion* to = _g1h->heap_region_containing(obj); 870 if (from != NULL && to != NULL && 871 from != to && 872 !to->isHumongous()) { 873 jbyte cv_obj = *_bs->byte_for_const(_containing_obj); 874 jbyte cv_field = *_bs->byte_for_const(p); 875 const jbyte dirty = CardTableModRefBS::dirty_card_val(); 876 877 bool is_bad = !(from->is_young() 878 || to->rem_set()->contains_reference(p) 879 || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed 880 (_containing_obj->is_objArray() ? 881 cv_field == dirty 882 : cv_obj == dirty || cv_field == dirty)); 883 if (is_bad) { 884 MutexLockerEx x(ParGCRareEvent_lock, 885 Mutex::_no_safepoint_check_flag); 886 887 if (!_failures) { 888 gclog_or_tty->cr(); 889 gclog_or_tty->print_cr("----------"); 890 } 891 gclog_or_tty->print_cr("Missing rem set entry:"); 892 gclog_or_tty->print_cr("Field "PTR_FORMAT" " 893 "of obj "PTR_FORMAT", " 894 "in region "HR_FORMAT, 895 p, (void*) _containing_obj, 896 HR_FORMAT_PARAMS(from)); 897 _containing_obj->print_on(gclog_or_tty); 898 gclog_or_tty->print_cr("points to obj "PTR_FORMAT" " 899 "in region "HR_FORMAT, 900 (void*) obj, 901 HR_FORMAT_PARAMS(to)); 902 obj->print_on(gclog_or_tty); 903 gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.", 904 cv_obj, cv_field); 905 gclog_or_tty->print_cr("----------"); 906 gclog_or_tty->flush(); 907 _failures = true; 908 if (!failed) _n_failures++; 909 } 910 } 911 } 912 } 913 } 914 }; 915 916 // This really ought to be commoned up into OffsetTableContigSpace somehow. 917 // We would need a mechanism to make that code skip dead objects. 918 919 void HeapRegion::verify(VerifyOption vo, 920 bool* failures) const { 921 G1CollectedHeap* g1 = G1CollectedHeap::heap(); 922 *failures = false; 923 HeapWord* p = bottom(); 924 HeapWord* prev_p = NULL; 925 VerifyLiveClosure vl_cl(g1, vo); 926 bool is_humongous = isHumongous(); 927 bool do_bot_verify = !is_young(); 928 size_t object_num = 0; 929 while (p < top()) { 930 oop obj = oop(p); 931 size_t obj_size = obj->size(); 932 object_num += 1; 933 934 if (is_humongous != g1->isHumongous(obj_size)) { 935 gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size (" 936 SIZE_FORMAT" words) in a %shumongous region", 937 p, g1->isHumongous(obj_size) ? "" : "non-", 938 obj_size, is_humongous ? "" : "non-"); 939 *failures = true; 940 return; 941 } 942 943 // If it returns false, verify_for_object() will output the 944 // appropriate messasge. 945 if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) { 946 *failures = true; 947 return; 948 } 949 950 if (!g1->is_obj_dead_cond(obj, this, vo)) { 951 if (obj->is_oop()) { 952 Klass* klass = obj->klass(); 953 if (!klass->is_metaspace_object()) { 954 gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" " 955 "not metadata", klass, (void *)obj); 956 *failures = true; 957 return; 958 } else if (!klass->is_klass()) { 959 gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" " 960 "not a klass", klass, (void *)obj); 961 *failures = true; 962 return; 963 } else { 964 vl_cl.set_containing_obj(obj); 965 obj->oop_iterate_no_header(&vl_cl); 966 if (vl_cl.failures()) { 967 *failures = true; 968 } 969 if (G1MaxVerifyFailures >= 0 && 970 vl_cl.n_failures() >= G1MaxVerifyFailures) { 971 return; 972 } 973 } 974 } else { 975 gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj); 976 *failures = true; 977 return; 978 } 979 } 980 prev_p = p; 981 p += obj_size; 982 } 983 984 if (p != top()) { 985 gclog_or_tty->print_cr("end of last object "PTR_FORMAT" " 986 "does not match top "PTR_FORMAT, p, top()); 987 *failures = true; 988 return; 989 } 990 991 HeapWord* the_end = end(); 992 assert(p == top(), "it should still hold"); 993 // Do some extra BOT consistency checking for addresses in the 994 // range [top, end). BOT look-ups in this range should yield 995 // top. No point in doing that if top == end (there's nothing there). 996 if (p < the_end) { 997 // Look up top 998 HeapWord* addr_1 = p; 999 HeapWord* b_start_1 = _offsets.block_start_const(addr_1); 1000 if (b_start_1 != p) { 1001 gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" " 1002 " yielded "PTR_FORMAT", expecting "PTR_FORMAT, 1003 addr_1, b_start_1, p); 1004 *failures = true; 1005 return; 1006 } 1007 1008 // Look up top + 1 1009 HeapWord* addr_2 = p + 1; 1010 if (addr_2 < the_end) { 1011 HeapWord* b_start_2 = _offsets.block_start_const(addr_2); 1012 if (b_start_2 != p) { 1013 gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" " 1014 " yielded "PTR_FORMAT", expecting "PTR_FORMAT, 1015 addr_2, b_start_2, p); 1016 *failures = true; 1017 return; 1018 } 1019 } 1020 1021 // Look up an address between top and end 1022 size_t diff = pointer_delta(the_end, p) / 2; 1023 HeapWord* addr_3 = p + diff; 1024 if (addr_3 < the_end) { 1025 HeapWord* b_start_3 = _offsets.block_start_const(addr_3); 1026 if (b_start_3 != p) { 1027 gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" " 1028 " yielded "PTR_FORMAT", expecting "PTR_FORMAT, 1029 addr_3, b_start_3, p); 1030 *failures = true; 1031 return; 1032 } 1033 } 1034 1035 // Look up end - 1 1036 HeapWord* addr_4 = the_end - 1; 1037 HeapWord* b_start_4 = _offsets.block_start_const(addr_4); 1038 if (b_start_4 != p) { 1039 gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" " 1040 " yielded "PTR_FORMAT", expecting "PTR_FORMAT, 1041 addr_4, b_start_4, p); 1042 *failures = true; 1043 return; 1044 } 1045 } 1046 1047 if (is_humongous && object_num > 1) { 1048 gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous " 1049 "but has "SIZE_FORMAT", objects", 1050 bottom(), end(), object_num); 1051 *failures = true; 1052 return; 1053 } 1054 1055 verify_strong_code_roots(vo, failures); 1056 } 1057 1058 void HeapRegion::verify() const { 1059 bool dummy = false; 1060 verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy); 1061 } 1062 1063 // G1OffsetTableContigSpace code; copied from space.cpp. Hope this can go 1064 // away eventually. 1065 1066 void G1OffsetTableContigSpace::clear(bool mangle_space) { 1067 ContiguousSpace::clear(mangle_space); 1068 _offsets.zero_bottom_entry(); 1069 _offsets.initialize_threshold(); 1070 } 1071 1072 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) { 1073 Space::set_bottom(new_bottom); 1074 _offsets.set_bottom(new_bottom); 1075 } 1076 1077 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) { 1078 Space::set_end(new_end); 1079 _offsets.resize(new_end - bottom()); 1080 } 1081 1082 void G1OffsetTableContigSpace::print() const { 1083 print_short(); 1084 gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " 1085 INTPTR_FORMAT ", " INTPTR_FORMAT ")", 1086 bottom(), top(), _offsets.threshold(), end()); 1087 } 1088 1089 HeapWord* G1OffsetTableContigSpace::initialize_threshold() { 1090 return _offsets.initialize_threshold(); 1091 } 1092 1093 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start, 1094 HeapWord* end) { 1095 _offsets.alloc_block(start, end); 1096 return _offsets.threshold(); 1097 } 1098 1099 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const { 1100 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 1101 assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" ); 1102 if (_gc_time_stamp < g1h->get_gc_time_stamp()) 1103 return top(); 1104 else 1105 return ContiguousSpace::saved_mark_word(); 1106 } 1107 1108 void G1OffsetTableContigSpace::set_saved_mark() { 1109 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 1110 unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp(); 1111 1112 if (_gc_time_stamp < curr_gc_time_stamp) { 1113 // The order of these is important, as another thread might be 1114 // about to start scanning this region. If it does so after 1115 // set_saved_mark and before _gc_time_stamp = ..., then the latter 1116 // will be false, and it will pick up top() as the high water mark 1117 // of region. If it does so after _gc_time_stamp = ..., then it 1118 // will pick up the right saved_mark_word() as the high water mark 1119 // of the region. Either way, the behavior will be correct. 1120 ContiguousSpace::set_saved_mark(); 1121 OrderAccess::storestore(); 1122 _gc_time_stamp = curr_gc_time_stamp; 1123 // No need to do another barrier to flush the writes above. If 1124 // this is called in parallel with other threads trying to 1125 // allocate into the region, the caller should call this while 1126 // holding a lock and when the lock is released the writes will be 1127 // flushed. 1128 } 1129 } 1130 1131 G1OffsetTableContigSpace:: 1132 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray, 1133 MemRegion mr) : 1134 _offsets(sharedOffsetArray, mr), 1135 _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true), 1136 _gc_time_stamp(0) 1137 { 1138 _offsets.set_space(this); 1139 // false ==> we'll do the clearing if there's clearing to be done. 1140 ContiguousSpace::initialize(mr, false, SpaceDecorator::Mangle); 1141 _offsets.zero_bottom_entry(); 1142 _offsets.initialize_threshold(); 1143 }